首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulatory citrate lyase mutants of Salmonella typhimurium   总被引:1,自引:1,他引:1  
Citrate lyase, the key enzyme of anaerobic citrate catabolism, could not be deleted from Salmonella typhimurium. The only class of mutants found had a mode of covalent regulation that strongly resembled the Escherichia coli system: citrate lyase was only active, i.e., acetylated, when a cosubstrate was present.  相似文献   

2.
Summary Size and shape of mitochondrial DNA molecules of Schizosaccharomyces pombe were analyzed by electron microscopy. Besides numerous linear molecules, circular molecules ranging from 0.83 m to 12.81 m were found. Depending on the method of preparation, both closed and open circular molecules were found. Most of the circular molecules could be assigned to five major size classes of 0.83±0.05 m, 1.7±0.05 m, 4.74±0.04 m, 5.74±0.04 m, and 8.32±0.07 m. Possible explanations for the different size classes of mitochondrial DNA molecules are discussed.  相似文献   

3.
The cysB region in Salmonella typhimurium regulates in a positive manner the noncontiguous structural genes for the enzymes responsible for sulfate reduction in cysteine biosynthesis. We treated three cysB mutants with chemical mutagens and selected 81 secondary mutants in which the inability to utilize sulfate was suppressed. Growth experiments on the suppressed mutants showed that the original loss of sulfate utilization had been corrected to varying degrees and that portions of the pathway had been established in abnormal relationship to one another. Sixty of the suppressed mutations were mapped via transductional analysis, and each was very closely linked to the original cysB mutation. We demonstrated that the cysB product functions in the regulation of the cysteine biosynthetic enzymes during both logarithmic growth and stationary phase. Mutation can alter the regulatory response of one enzyme in either an upward or downward direction while the regulation of other enzymes in the pathway remains unchanged. These data are consistent with the idea of a multivalent or multisite regulator molecule.  相似文献   

4.
Phosphate starvation regulon of Salmonella typhimurium.   总被引:11,自引:4,他引:7       下载免费PDF全文
Several phosphate-starvation-inducible (psi) genetic loci in Salmonella typhimurium were identified by fusing the lacZ gene to psi promoters by using the Mu d1 and Mu d1-8 bacteriophages. Although several different starvation conditions were examined, the psi loci responded solely to phosphate deprivation. A regulatory locus, psiR, was identified as controlling the psiC locus. The psiR locus did not affect the expression of the Escherichia coli phoA locus or any of the other psi loci described.  相似文献   

5.
In Salmonella typhimurium, the order of the deo genes with respect to the serB locus has been determined as deoC-deoA-deoB-deoD-serB-thr.  相似文献   

6.
7.
Peptidase mutants of Salmonella typhimurium   总被引:13,自引:30,他引:13       下载免费PDF全文
Six peptidase activities have been distinguished electrophoretically in cell extracts of Salmonella typhimurium with the aid of a histochemical stain. The activities can also be partially separated by chromatography on diethylaminoethyl-cellulose. These peptidases show overlapping substrate specificities. Mutants (pepN) of the parent strain leu-485 lacking one of these enzymes (peptidase N) were obtained by screening for colonies that do not hydrolyze the chromogenic substrate l-alanyl-beta-naphthylamide. The absence of this broad-specificity peptidase in leu-485 pepN(-) mutants allowed the selection of mutants unable to use l-leucyl-l-alaninamide as a leucine source. These mutants (leu-485 pepN(-)pepA(-)) lack a broad-specificity peptidase (peptidase A) similar to aminopeptidase I previously described in Escherichia coli. Mutants (pepD) lacking a dipeptidase (peptidase D) have been isolated from a leu-485 pepN(-)pepA(-) parent by penicillin selection for mutants unable to use l-leucyl-l-glycine as a leucine source. Mutants (pepB) lacking a fourth peptidase (peptidase B) have been isolated from a leu-485 pepN(-)pepA(-)pepD(-) strain by penicillin selection for failure to utilize l-leucyl-l-leucine as a source of leucine. Single recombinants were obtained by transduction for each of the peptidases missing in a leu-485 pepN(-)pepA(-)pepD(-)pepB(-) strain. The growth response of these recombinants to leucine peptides shows that all of these peptidases can function in the catabolism of peptides and that they display overlapping substrate specificities in vivo.  相似文献   

8.
rfaP mutants of Salmonella typhimurium   总被引:13,自引:0,他引:13  
Salmonella typhimurium rfaP mutants were isolated and characterised with respect to their sensitivity towards hydrophobic antibiotics and detergents, and their lipopolysaccharides were chemically analysed. The rfaP mutants were selected after diethylsulfate mutagenesis or as spontaneous mutants. The mutation in two independent mutants SH7770 (line LT2) and SH8551 (line TML) was mapped by cotransduction with cysE to the rfa locus. The mutants were sensitive to hydrophobic antibiotics (clindamycin, erythromycin and novobiocin) and detergents (benzalkoniumchloride and sodium dodecyl sulfate). Analysis of their lipopolysaccharides by chemical methods and by sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed that their saccharide portion was, to a large extent, of chemotype Rc with small proportions of material containing a more complete core oligosaccharide and O-specific chains. Only 2.5 mol phosphate/mol lipopolysaccharide was found whereas the phosphate content of the lipopolysaccharide of a galE mutant strain was 4.8 mol. Thus the rfaP mutant lipopolysaccharides lacked more than two phosphate residues. Assessment of the location of phosphate groups in rfaP lipopolysaccharides revealed the presence of at least 2 mol phosphate in lipid A, indicating that the core oligosaccharide was almost devoid of phosphate. The chemical, physiological and genetic data obtained for these mutants are in full agreement with those reported earlier for rfaP mutants of Salmonella minnesota.  相似文献   

9.
Deoxynucleoside-sensitive mutants of Salmonella typhimurium   总被引:8,自引:0,他引:8  
Summary Thymineless mutants ofSalmonella typhimurium which are able to grow with low added concentrations of thymine (20 M) fall into two classes on the basis of growth on deoxyribose as sole carbon source. Those which can grow are deoxyribomutase negative and those which cannot are deoxyriboaldolase negative. The former class are inhibited by deoxynucleosides and this provides a method for discriminating between different classes oftlr mutants ofEscherichia coli K12, which cannot utilize deoxyribose as a carbon source. It is suggested that the sensitivity of deoxyriboaldolase negative strains is due to the accumulation of deoxyribose-5-phosphate. The data also indicate that deoxyribose-5-phosphate is the inducer of thymidine phosphorylase. It seems that one or both of the deoxyribose phosphates is the toxic compound, and that reversal of inhibition by ribonucleosides is due to inhibition of the enzymes catalysing their formation from deoxynucleosides. We propose that the symbolsdrm anddra be used to denote the structural genes for deoxyribomutase and deoxyriboaldolase respectively.  相似文献   

10.
Salmonella typhimurium proline mutants.   总被引:12,自引:9,他引:3       下载免费PDF全文
  相似文献   

11.
12.
Oligopeptidase-deficient mutants of Salmonella typhimurium.   总被引:12,自引:11,他引:1       下载免费PDF全文
E R Vimr  L Green    C G Miller 《Journal of bacteriology》1983,153(3):1259-1265
An oligopeptidase that hydrolyzes N-acetyl-L-alanyl-L-alanyl-L-alanyl-L-alanine (AcAla4) has been identified in extracts of Salmonella typhimurium. Mutants lacking this activity have been isolated in dcp mutant strains by screening extracts of mutagenized clones for failure to hydrolyze AcAla4 or by screening colonies for inability to use AcAla4 as a nitrogen source. Double mutants (dcp optA) lacking both oligopeptidase A and dipeptidyl carboxypeptidase cannot use AcAla4 as a nitrogen source, although dcp+ optA and dcp optA+ strains grow on this peptide. The mutations responsible for the loss of activity map at a locus (optA) between asd (75 map units) and xylA (78 map units). Oligopeptidase A hydrolyzes certain N-blocked tetrapeptides, unblocked pentapeptides, and unblocked hexapeptides, usually but not always liberating the C-terminal tripeptide. These two activities seem to be responsible for the production of a large fraction of the dipeptides that accumulate during protein breakdown in a pepN pepA pepB pepD strain.  相似文献   

13.
6-Aminonicotinamide-resistant mutants of Salmonella typhimurium   总被引:8,自引:4,他引:4  
Resistance to the nicotinamide analog 6-aminonicotinamide has been used to identify the following three new classes of mutants in pyridine nucleotide metabolism. (i) pncX mutants have Tn10 insertion mutations near the pncA locus which reduce but do not eliminate the pncA product, nicotinamide deamidase. (ii) nadB (6-aminonicotinamide-resistant) mutants have dominant alleles of the nadB gene, which we propose are altered in feedback inhibition of the nadB enzyme, L-aspartate oxidase. Many of these mutants also exhibit a temperature-sensitive nicotinamide requirement phenotype. (iii) nadD mutants have mutations that affect a new gene involved in pyridine nucleotide metabolism. Since a high proportion of nadD mutations are temperature-sensitive lethal mutations, this appears to be an essential gene for NAD and NADP biosynthesis. In vivo labeling experiments indicate that in all the above cases, resistance is gained by increasing the ratio of NAD to 6-aminonicotinamide adenine dinucleotide. 6-Aminonicotinamide adenine dinucleotide turns over significantly more slowly in vivo than does normal NAD.  相似文献   

14.
15.
Salmonella DNA was partially digested with EcoRI, and the digest was fractionated to obtain fragments larger than 8 kilobases (kb). These were ligated into EcoRI-cut pBR322, and the mixture was used to transform Salmonella Xyl- cells selecting for ampR xyl+ transformants. A 21- and a 27-kb plasmid were isolated, both of which contained the entire xylose regulon. The xylose regulon was localized to a 6.3-kb segment of a 13.5-kb EcoRI fragment. Subclones were constructed which contained either the genes for D-xylose isomerase and D-xylulokinase or the genes for the D-xylose transport and the D-xylose regulatory factors. The gene order determined by the subcloning experiments is consistent with that determined by genetic mapping. The spots corresponding to D-xylose isomerase and D-xylulokinase subunits were identified in two-dimensional gels of several xylose-induced strains. Each of them had a molecular weight of 45,000 and an isoelectric point of 6.2 +/- 0.1.  相似文献   

16.
17.
18.
19.
20.
Spontaneously occurring mutants of Salmonella typhimurium resistant to 5-fluoroorotate (5-FOA) were isolated. One class of mutant showed marked derepression of pyrimidine biosynthetic enzymes and had the unusual property of being unable to grow on nutrient agar. However, when the osmotic strength of nutrient agar was increased, the mutants were able to grow. The genetic basis for the osmotic fragility and elevated pyr enzyme synthesis was the result of mutations affecting pyrH, encoding the enzyme uridine 5'-monophosphate kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号