首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary It is shown that valinomycin-mediated alkali ion transport is associated with a characteristic type of current noise. The spectral intensity of the noise which is measured under equilibrium conditions, i.e., at zero net current, is frequency independent (white) both at high and at low frequencies. The transition between the low- and the high-frequency limit occurs in a frequency range which is related to the characteristic relaxation time constants of the transport system. This behavior is predicted from the carrier transport model on the basis of Nyquist's theorem.  相似文献   

2.
Active ion transport by ATP-or light-driven pumps involves a sequence of elementary steps such as binding and release of ions, as well as conformational transitions of the pump protein. At the microscopic level the individual reaction steps occur at random intervals, and therefore the current generated by electrogenic pumps fluctuates around a mean value. In this paper, a theoretical treatment of the electrical noise associated with active ion transport is given. The analysis, which is based on the calculation of the correlation function, yields the spectral intensity S 1 of current noise as a function of frequency, f. The shape of S I(f) contains information on the rate constants as well as on the magnitude of the charge displacements occuring during single reaction steps. The contribution of electrogenic pumps to the total voltage noise of the cell may be estimated from S I(f) and from the frequency-dependent impedance of the cell membrane.  相似文献   

3.
Under equilibrium and nonequilibnum steady-stale conditions the spectral intensity of current noise SJ(f) generated by the transport of hydrophobic unions across lipid bilayer membranes was investigated. The experimental results were compared with different reaction models SJ(f) showed a characteristic increase proportional to f2 between frequency-independent tails at low and high frequencies. This gradient was found to be independent of applied voltage which indicates the contribution of a single voltage-dependent reaction step of ion translocation across the membrane From the shape of SJ(f) at low frequencies the rate constant of ion desorption from the membrane into the aqueous phase could be estimated. Unambiguous evidence for the application of a general model, which includes the coupling of slow ion diffusion in the aqueous phase to ion adsorption/desorption at the membrane interface, could not be obtained from the low-frequency shape of SJ(f). The shot noise of this ion transport determines the amplitude of SJ(f) at high frequencies which decreases with increasing voltage applied. Analysis of voltage-jump current-relaxation experiments and of current noise carried cut on one membrane yielded significant differences of the derived ion partition coefficient. This deviation is qualitatively described on the basis of incomplete reaction steps.  相似文献   

4.
A mathematical treatment is given for 1/f noise observed in the ion transport through membranes. It is shown that this noise can be generated by current or voltage fluctuations which occur after step changes of the membrane permeability. Due to diffusion polarization in the unstirred solution layers near the membrane these fluctuations exhibit a 1 square root of t time course which produces noise with a 1/f frequency dependence. The spectral density of 1/f noise is calculated for porous membranes with random switches between a finite and zero pore permeability. A wide frequency range and a magnitude of 1/f noise are obtained which are compatible with experimental data of 1/f noise reported for nerve membranes.  相似文献   

5.
A formulism is described for the treatment of noise resulting from the transport of ions in channels containing an arbitrary number of activation energy barriers. The analysis is based on Nyquist's theorem and is therefore restricted to fluctuations around the equilibrium state. Within this limit the spectral intensities of current and voltage noise are given by the frequency-dependent admittance, which in turn is closely linked to the relaxation-time spectrum of the transport system. Explicit expressions for the spectral intensity of current noise are derived for channels with two and three energy barriers. The analysis may be used to predict the spectral intensity of noise from the gating system in nerve.  相似文献   

6.
Spectral analysis (1-1000 Hz) of spontaneous fluctuations of potential and current in small areas of squid (Loligo pealei) axon shows two forms of noise: f-1 noise occurs in both excitable and inexcitable axons with an intensity which depends upon the driving force for potassium ions. The other noise has a spectral form corresponding to a relaxation process, i.e. its asymptotic behavior at low frequencies is constant, and at high frequencies it declines with a slope of -2. This latter noise occurs only in excitable axons and was identified in spectra by (1) its disappearance after reduction of K+ current by internal perfusion with solutions containing tetraethylammonium (TEA+), Cs+ or reduced [Ki+] and (2) its insensitivity to block of Na+ conduction and active transport. The transition frequency of relaxation spectra are also voltage and temperature dependent and relate to the kinetics of K+-conduction in the Hodgkin-Huxley formulation. These data strongly suggest that the relaxation noise component arises from the kinetic properties of K+ channels. The f-1 noise is attributed to restricted diffusion in conducting K+ channels and/or leakage pathways. In addition, an induced K+ conduction noise associated with the binding of TEA+ and triethyldecylammonium ion to membrane sites is described. Measurement of the induced noise may provide an alternative means of characterizing the kinetics of interaction of these molecules with the membrane and also suggests that these and other pharmacological agents may not be useful in identifying noise components related to the sodium conduction mechanism which, in these experiments, appears to be much lower in intensity than either the normal K conduction or induced noise components.  相似文献   

7.
In the presence of the hydrophobic ion dipicrylamine, lipid bilayer membranes exhibit a characteristic type of noise spectrum which is different from other forms of noise described so far. The spectral density of current noise measured in zero voltage increases in proportion to the square of frequency at low frequencies and becomes constant at high frequencies. The observed form of the noise spectrum can be interpreted on the basis of a transport model for hydrophobic ions in which it is assumed that the ions are adsorbed in potential-energy minima at either membrane surface and are able to cross the central energy barrier by thermal activation. Accordingly, current-noise results from random fluctuations in the number of ions jumping over the barrier from right to left and from left to right. On the basis of this model the rate constant ki for the translocation of the hydrophobic ion across the barrier, as well as the mean surface concentration Nt of adsorbed ions may be calculated from the observed spectral intensity of current noise. The values of ki obtained in this way closely agree with the results of previous relaxation experiments. A similar, although less quantitative, agreement is also found for the surface concentration Nt.  相似文献   

8.
A recently developed theoretical approach to transport fluctuations around stable steady states in discrete biological transport systems is used in order to investigate general fluctuation properties at nonequilibrium. An expression for the complex frequency dependent admittance at nonequilibrium is derived by calculation of the linear current response of the transport systems to small disturbances in the applied external voltage. It is shown that the Nyquist or fluctuation dissipation theorem, by which at equilibrium the macroscopic admittance or linear response can be expressed in terms of fluctuation properties of the system, breaks down at nonequilibrium. The spectral density of current fluctuations is decomposed into one term containing the macroscopic admittance and a second term which is bilinear in current. This second term is generated by microscopic disturbances, which cannot be excited by external macroscopic perturbations. At special examples it is demonstrated that this second term is decisive for the occurrence of excess noise e.g. the 1/f(2)-Iorentzian noise generated by the opening and closing of nerve channels in biological membranes.  相似文献   

9.
Subject of this paper is the transport noise in discrete systems. The transport systems are given by a number (n) of binding sites separated by energy barriers. These binding sites may be in contact with constant outer reservoirs. The state of the system is characterized by the occupation numbers of particles (current carriers) at these binding sites. The change in time of the occupation numbers is generated by individual “jumps” of particles over the energy barriers, building up the flux matter (for charged particles: the electric current). In the limit n → ∞ continuum processes as e.g. usual diffusion are included in the transport model. The fluctuations in occupation numbers and other quantities linearly coupled to the occupation numbers may be treated with the usual master equation approach. The treatment of the fluctuations in fluxes (current) makes necessary a different theoretical approach which is presented in this paper under the assumption of vanishing interactions between the particles. This approach may be applied to a number of different transport systems in biology and physics (ion transport through porous channels in membranes, carrier mediated ion transport through membranes, jump diffusion e.g. in superionic conductors). As in the master equation approach the calculation of correlations and noise spectra may be reduced to the solution of the macroscopic equations for the occupation numbers. This result may be regarded as a generalization to non-equilibrium current fluctuations of the usual Nyquist theorem relating the current (voltage) noise spectrum in thermal equilibrium to the macroscopic frequency dependent admittance.The validity of the general approach is demonstrated by the calculation of the autocorrelation function and spectrum of current noise for a number of special examples (e.g, pores in membrances, carrier mediated ion transport).  相似文献   

10.
Summary In the presence of the hydrophobic ion dipicrylamine, lipid bilayer membranes exhibit a characteristic type of noise spectrum which is different from other forms of noise described so far. The spectral density of current noise measured at zero voltage increases in proportion to the square of frequency at low frequencies and becomes constant at high frequencies. The observed form of the noise spectrum can be interpreted on the basis of a transport model for hydrophobic ions in which it is assumed that the ions are adsorbed in potential-energy minima at either membrane surface and are able to cross the central energy barrier by thermal activation. Accordingly, current-noise results from random fluctuations in the number of ions jumping over the barrier from right to left and from left to right. On the basis of this model the rate constantk i for the translocation of the hydrophobic ion across the barrier, as well as the mean surface concentrationN t of adsorbed ions may be caluculated from the observed spectral intensity of current noise. The values ofk i obtained in this way closely agree with the results of previous relaxation experiments. A similar, although less quantitative, agreement is also found for the surface concentrationN t .  相似文献   

11.
Summary Stationary electrical conductance experiments together with nonstationary relaxation experiments allow a quantitative determination of rate constants describing carrier-mediated ion transport. Valinomycin-induced ion transport across neutral lipid membranes was studied. The dependence of the transport parameters on the chain length of the lipid molecules, on the kind of alkali ion, and on the temperature was determined. The relaxation time the current following a voltage jump shows a marked increase with decreasing temperature or with increasing chain length of the lipid molecules. This variation of is interpreted on the basis of a varying membrane fluidity. It is shown that under favorable circumstances the equilibrium constant of complex formation in the aqueous phase may be obtained from membrane experiments. Furthermore, the kinetics of exchange of valinomycin between membrane and water was studied. We found a marked influence of the totus surrounding the black film on the kinetics as well as on the total amount of valinomycin molecules in the membrane. The problem of location of the free carrier molecules inside the membrane is discussed.  相似文献   

12.
The autocorrelation function of a given process is related to its spectral density by the Wiener-Khintchine theorem, and both expressions contain the same information. We report here a measurement of the current noise produced in a lipid bilayer membrane doped with hydrophobic anions of dipicrylamine. The results are in good agreement both with relaxation measurements on the same membrane and with an analysis of the spectral density of the current noise for this system which has been presented by other workers. Although measurement of the spectral density function is generally more complete for technical reasons, the autocorrelation function provides, for the case studied here, more physical insight into the underlying charge transport mechanism. We find that the measured autocorrelation function is negative at short, but nonzero, times. This is a consequence of the operative conductance mechanism in this case, which cannot carry current continuously in the same direction without compensatory reverse flow.  相似文献   

13.
As applications of the general theoretical framework of charge transport in biological membranes and related voltage and current noise, a number of model calculations are presented for ion carriers, rigid channels, channels with conformational substates and electrogenic pumps. The results are discussed with special reference to the problem of threshold values for sensory transduction processes and their limitations by voltage fluctuations. Furthermore, starting from the special results of model calculations, an attempt is made to determine more general aspects of electric fluctuations generated by charge-transport processes in biological membranes: different frequency dependences of voltage and current noise, and dependence of noise intensities with increasing distance from the equilibrium state.  相似文献   

14.
To probe protonation dynamics inside the fully open alpha-toxin ion channel, we measured the pH-dependent fluctuations in its current. In the presence of 1 M NaCl dissolved in H2O and positive applied potentials (from the side of protein addition), the low frequency noise exhibited a single well defined peak between pH 4.5 and 7.5. A simple model in which the current is assumed to change by equal amounts upon the reversible protonation of each of N identical ionizable residues inside the channel describes the data well. These results, and the frequency dependence of the spectral density at higher frequencies, allow us to evaluate the effective pK = 5.5, as well as the rate constants for the reversible protonation reactions: kon = 8 x 10(9) M-1 s-1 and koff = 2.5 x 10(4) s-1. The estimate of kon is only slightly less than the diffusion-limited values measured by others for protonation reactions for free carboxyl or imidazole residues. Substitution of H2O by D2O caused a 3.8-fold decrease in the dissociation rate constant and shifted the pK to 6.0. The decrease in the ionization rate constants caused by H2O/D2O substitution permitted the reliable measurement of the characteristic relaxation time over a wide range of D+ concentrations and voltages. The dependence of the relaxation time on D+ concentration strongly supports the first order reaction model. The voltage dependence of the low frequency spectral density suggests that the protonation dynamics are virtually insensitive to the applied potential while the rate-limiting barriers for NaCl transport are voltage dependent. The number of ionizable residues deduced from experiments in H2O (N = 4.2) and D2O (N = 4.1) is in good agreement.  相似文献   

15.
The polarization bremsstrahlung from thermal electrons scattered by the Debye sphere of an ion in a plasma is studied in the quasiclassical approximation. The model of the local plasma frequency is used to check the validity of the asymptotic expression for the polarizability of the electron cloud of an ion in the high-frequency range. This asymptotic expression is then used to derive a formula for the intensity of the total effective polarization bremsstrahlung. The R factor (the ratio of the contribution from the polarization bremsstrahlung to the contribution from conventional static bremsstrahlung) is obtained as a function of the plasma coupling parameter and electron density in order to analyze the role of the polarization bremsstrahlung in the total bremsstrahlung of the thermal plasma electrons. The spectral intensity of the effective polarization bremsstrahlung is calculated in the rotational approximation, which was previously employed in the theory of conventional static bremsstrahlung. It is shown that the spectral intensity of the polarization bremsstrahlung from thermal electrons scattered by the Debye sphere around an ion, as compared with the polarization bremsstrahlung by fast superthermal electrons, decreases more gradually with increasing frequency.  相似文献   

16.
We describe some examples of the study of intermolecular interactions in water and in weak aqueous solutions using the low-frequency Raman spectra. An improved method of determining parameters of the dynamic susceptibility from the Raman spectra is described. The nine spectral parameters (the intensity, the frequency and the width of the two oscillators, the intensity and the width of the relaxation motion and the intensity of fluorescent background) completely describe the spectrum in the frequency range of 4 to 320 cm?1. For hydrogen peroxide the dependences of these parameters on the concentration is shown. Concentration dependence of the spectral parameters of the hydrogen peroxide solution in water indicates a change in the structure of the molecular bonds in water near a peroxide molecule at a distance up to 0.7–0.9 nm. The effect of the exciting laser radiation on the parameters of the spectra in the registration of the Raman spectra of water is shown.  相似文献   

17.
Open-channel noise was studied in the large potassium channel of the sarcoplasmic reticulum (SR). Inside-out patches were excised directly from the SR of split skeletal muscle fibers of lobster, with lobster relaxing ringer (LRR) in bath and pipette. The power spectrum of open- channel noise is very low and approximately flat in the 100 Hz-10 kHz frequency range. At 20 degrees C, with an applied voltage of 50 mV, the mean single-channel current (i) is 9 pA (mean single-channel conductance = 180 pS) and the mean power spectral density 1.1 x 10(-29) A2/Hz. The latter increases nonlinearly with (i), showing a progressively steeper dependence as (i) increases. At 20 mV, the mean power spectral density is almost independent of (i) and approximately 1.4 times that of the Johnson noise calculated for the equivalent ideal resistor with zero net current; at 70 mV it increases approximately in proportion to (i)2. The mean power spectral density has a weak temperature dependence, very similar to that of (i), and both are well described by a Q10 of 1.3 throughout the range 3-40 degrees C. Discrete ion transport events are thought to account for a significant fraction of the measured open-channel noise, probably approximately 30-50% at 50 mV. Brief interruptions of the single-channel current, due either to blockage of the open channel by an extrinsic aqueous species, or to intrinsic conformational changes in the channel molecule itself, were a possible additional source of open-channel noise. Experiments in modified bathing solutions indicate, however, that open-channel noise is not affected by any of the identified aqueous species present in LRR. In particular, magnesium ions, the species thought most likely to cause brief blockages, and calcium and hydrogen ions, have no detectable effect. This channel's openings exhibit many brief closings and substrates, due to intrinsic gating of the channel. Unresolved brief full closings are calculated to make a negligible contribution (< 1%) to the measured power spectral density. The only significant source of noise due to band width-limited missed events is brief, frequent 80% substrates (mean duration 20 microseconds, mean frequency 1,000 s-1) which account for a small part of the measured power spectral density (approximately 14%, at 50 mV, 20 degrees C). We conclude that a large fraction of the measured open-channel noise results from intrinsic conductance fluctuations, with a corner frequency higher than the resolution of our recordings, in the range 10(4)-10(7) Hz.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
We have measured the fluctuations in the current through gramicidin A (GA) channels in symmetrical solutions of monovalent cations of various concentrations, and compared the spectral density values with those computed using E. Frehland's theory for noise in discrete transport systems (Frehland, E. 1978. Biophys. Chem. 8:255-265). The noise for the transport of NH4+ and Na+ ions in glycerol-monooleate/squalene membranes could be accounted for entirely by "shot noise" in the process of transport through a single-filing pore with two ion binding sites. However, in confirmation of results in a previous paper (Sigworth, F. J., D. W. Urry, and K. U. Prasad. 1987. Biophys. J. 52:1055-1064) currents of Cs+ showed a substantial excess noise at low ion concentrations, as did currents of K+ and Rb+. The excess noise was increased in thicker membranes. The observations are accounted for by a theory that postulates fluctuations of the entry rates of ions into the channel on a time scale of approximately 1 microsecond. These fluctuations occur preferentially when the channel is empty; the presence of bound ions stabilizes the "high conductance" conformation of the channel. The fluctuations are sensed to different degrees by the various ion species, and their kinetics depend on membrane thickness.  相似文献   

19.
Protective antigen (PA) of the tripartite anthrax toxin binds to a cell surface receptor and mediates the transport of two enzymatic components, edema factor and lethal factor, into the cytosol of host cells. Here recombinant PA(63) from Bacillus anthracis was reconstituted into artificial lipid bilayer membranes and formed ion permeable channels. The heptameric PA(63)-channel contains a binding site for 4-aminoquinolones, which block ion transport through PA in vitro. This result allowed a detailed investigation of ligand binding and the stability constants for the binding of chloroquine, fluphenazine, and quinacrine to the binding site inside the PA(63)-channel were determined using titration experiments. Open PA(63)-channels exhibit 1/f noise in the frequency range between 1 and 100 Hz, whereas the spectral density of the ligand-induced current noise was of Lorentzian type. The analysis of the power density spectra allowed the evaluation of the on- and off-rate constants (k(1) and k(-1)) of ligand binding. The on-rate constants of ligand binding were between 10(6) and 10(8) M(-1) s(-1) and were dependent on the ionic strength of the aqueous phase, sidedness of ligand addition, as well as the orientation and intensity of the applied electric field. The off-rates varied between approximately 10 s(-1) and 2600 s(-1) and depended mainly on the structure of the ligand.  相似文献   

20.
The random passage of ions through an open channel is expected to result in shot noise fluctuations in the channel current. The patch-clamp technique now allows fluctuations of this size to be observed in single-channel currents. In the experiments reported here the acetylcholine-induced currents in cultured rat muscle cells were analyzed; fluctuations were found that were considerably larger than expected for shot noise. A low-frequency component, which was fitted with a Lorentzian, was examined in detail; it appears to arise from fluctuations in channel conductance of approximately 3% on a time scale of 1 ms. The characteristic relaxation time is voltage dependent and temperature dependent (Q10 approximately equal to 3) suggesting that the fluctuations arise from conformational fluctuations in the channel protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号