首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen sulfide (H2S) is a signal molecule that is involved in plant growth, development and the acquisition of stress tolerance including heat tolerance, but the mechanism of H2S-induced heat tolerance is not completely clear. In present study, the effect of sodium hydrosulfide (NaHS), a H2S donor, treatment on heat tolerance of maize seedlings in relation to antioxidant system was investigated. The results showed that NaHS treatment improved survival percentage of maize seedlings under heat stress in a concentration-dependent manner, indicating that H2S treatment could improve heat tolerance of maize seedlings. To further study mechanism of NaHS-induced heat tolerance, catalase (CAT), guaiacol peroxidase (GPX), superoxide dismutase (SOD), glutathione reductase (GR) and ascorbate peroxidase (APX) activities, and glutathione (GSH) and ascorbic acid (AsA) contents in maize seedlings were determined. The results showed that NaHS treatment increased the activities of CAT, GPX, SOD and GR, and GSH and AsA contents as well as the ratio of reduced antioxidants to total antioxidants [AsA/(AsA+DHA) and GSH/(GSH +GSSG)] in maize seedlings under normal culture conditions compared with the control. Under heat stress, antioxidant enzymes activities, antioxidants contents and the ratio of the reduced antioxidants to total antioxidants in control and treated seedlings all decreased, but NaHS-treated seedlings maintained higher antioxidant enzymes activities and antioxidants levels as well as the ratio of reduced antioxidants to total antioxidants. All of above-mentioned results suggested that NaHS treatment could improve heat tolerance of maize seedlings, and the acquisition of this heat tolerance may be relation to enhanced antioxidant system activity.  相似文献   

2.
Antioxidants as novel therapy in a murine model of colitis   总被引:5,自引:0,他引:5  
Reactive oxygen species (ROS) are increased in inflammatory bowel disease (IBD) and have been implicated as mediators of intestinal inflammation. We investigated the hypothesis that antioxidants with diverse properties attenuate disease progression in a murine dextran sodium sulfate (DSS)-induced colitis model. These antioxidants were (A) S-adenosylmethionine, a glutathione (GSH) precursor; (B) green tea polyphenols, a well-known antioxidant; and (C) 2(R,S)-n-propylthiazolidine-4(R)-carboxylic acid (PTCA), a cysteine prodrug, involved in GSH biosynthesis. BALB/c mice were divided into four groups and provided with the above mentioned antioxidants or the vehicle incorporated into chow. The animals were further divided into two subgroups and given normal drinking water (control) or water supplemented with DSS (to induce colitis), and the progression of the disease was studied. DSS-treated mice developed severe colitis as shown by bloody diarrhea, weight loss and pathological involvement (P<.001). However, all the antioxidants significantly improved diarrhea and colon lesions (P<.01), and increased body weights (P<.05). Hematocrits were significantly less affected in DSS-treated animals receiving antioxidants (P<.01). Colon lengths were significantly decreased due to mucosal inflammation in DSS-treated animals, but antioxidant therapy normalized this pathological finding (P<.001). The blood level of reduced GSH was decreased in DSS-treated mice (P<.05) and returned to normal when treated with antioxidants. Serum amyloid A (acute phase protein; P=.0015) and tumor necrosis factor-alpha (TNF-alpha; pro-inflammatory cytokine; P<.01) were significantly increased in DSS-treated animals (161+/-40 pg/ml) and improved with antioxidant treatment (P<.01). Finally, actin cytoskeleton was distorted and fragmented in the mucosa of DSS-treated mice and improved with antioxidant therapy. In conclusion, three structurally dissimilar antioxidants provided protection against DSS-induced colitis in this murine model, supporting a possible role for antioxidant therapy in IBD patients.  相似文献   

3.
Induction of CD95 ligand (CD95-L) may contribute to drug-induced apoptosis in chemosensitive leukemias and solid tumors. Here we report that induction of CD95-L and apoptosis by doxorubicin in leukemic and neuroblastoma cells is regulated by the redox state and reactive oxygen species (ROS). Preincubation of chemosensitive cells with antioxidants such as N-acetyl-cysteine (NAC) or glutathione (GSH), significantly reduced doxorubicin-induced apoptosis, hyperexpression of ROS, loss of mitochondrial membrane potential (DeltaPsim) and upregulation of CD95-L expression. Doxorubicin-resistant cells exhibited higher levels of GSH in comparison to chemosensitive cells and were deficient in hyperproduction of ROS, loss of DeltaPsim and upregulation of CD95-L in response to cytotoxic drugs. Downregulation of intracellular GSH concentrations reversed deficient drug-induced hyperproduction of ROS and CD95-L upregulation. In addition, overexpression of Bcl-XL in CEM cells blocked doxorubicin-triggered ROS and CD95-L expression. These findings suggest that induction of CD95-L by cytotoxic drugs is modulated by the cellular redox state and mitochondria derived ROS.  相似文献   

4.
Oxidative stress is implicated in the pathogenesis of asthma, and antioxidant levels are reduced in asthma patients. Previously, glutathione S-transferase (GST) with reduced IgE binding suppressed oxidative stress and modulated airway inflammation to some extent in mice. GST catalyzes the quenching of reactive oxygen species by reduced glutathione (GSH) and the absence of any one of them may limit antioxidative behavior. This study evaluates the effects of mutated (m) GST with GSH in combination and individually in limiting oxidative stress and inflammatory responses in a mouse model. BALB/c mice were immunized and challenged with ovalbumin. The mice were treated with mGST, GSH, mGST + GSH, or α-lipoic acid by inhalation and sacrificed to evaluate inflammation and oxidative stress parameters. Treatment with the mGST + GSH combination showed significantly reduced total cell (p < 0.01) and eosinophil (p < 0.01) counts in BALF compared to other groups. The lung inflammation score was lowest for the mGST + GSH group, along with reduced IL-4 (p < 0.01) and OVA-specific IgE compared to the other treatment groups. Oxidative stress as per the lipid peroxidation and 8-isoprostane level in BALF of mGST + GSH mice was reduced significantly compared to the individual antioxidants. In conclusion, mGST in combination with GSH has a synergistic effect in reducing airway inflammation compared to the individual antioxidants and has potential for the treatment of asthma.  相似文献   

5.
Recent studies show a relationship between oxidants, antioxidants, and degenerative disease of aging like cataract formation. Focal lens cortical changes and cortical liquification have been reported in patients with Down syndrome (DS) over 14 years. There is evidence supporting the hypothesis that trisomy 21 patients have an increase in free radical reactions. These changes in antioxidant system may play a role in cataractogenesis in Down syndrome. We screened serum samples from 12 patients with DS and cataract: and 12 healthy age and sex-matched persons. We evaluated the antioxidant enzyme activities of superoxide dismutase (SOD), glutathione peroxidase (GSHPx), glutathione-S-transferase (GST) and reduced glutathione (GSH) in erythrocytes. SOD and GSHPx levels of patients with DS were significantly higher than the control group. No significant changes were observed in GST and GSH levels between the DS and control groups. These findings suggest impairment in antioxidant system, which may be a possible mechanism for early cataract formation in DS.  相似文献   

6.
Thymoquinone (TQ) is the bioactive constituent of the volatile oil of Nigella sativa L. and has been shown to exert antioxidant antineoplastic and anti-inflammatory effects. During the study of its possible mechanism of action, we found that TQ reacts chemically (i.e. nonenzymatically) with glutathione (GSH), NADH and NADPH. A combination of liquid chromatography/UV-Vis spectrophotometry/Mass spectrometry analyses was used to identify the products of these reactions. The reaction that occur in physiological conditions indicates the formation of only two products, glutathionyl-dihydrothymoquinone after rapid reaction with GSH, and dihydrothymoquinone (DHTQ) after slow reaction time with NADH and NADPH. Measurement of the antioxidant activity of reduced compounds against organic radicals such as 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)(ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) also revealed a potential scavenging activity for glutathionyl-dihydrothymoquinone similar to that of DHTQ. Under our experimental conditions, TQ shows lower scavenging activities than glutathionyl-dihydrothymoquinone and DHTQ; it is very interesting to observe that the reduced compounds apparently show an antioxidant capacity equivalent to Trolox. The results indicate a possible intracellular nonenzymatic metabolic activation of TQ dependent on GSH, NADH or NADPH that may represent a “cellular switch” able to modulate cellular antioxidant defences.  相似文献   

7.
BackgroundThe aim of this study was to determine the levels of lipid peroxidation (MDA) and antioxidants such as reduced glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD) in the blood serum of patients with cirrhosis and liver transplantation.MethodsIn this study, serum malondialdehyde acid (MDA) levels, superoxide dismutase (SOD), reduced glutathione (GSH), and catalase (CAT) activities were measured spectrophotometrically and compared to the results of the healthy control group.ResultsSOD, CAT and GSH activities were significantly decreased in the patient groups compared to the healthy control group (p<0.05). MDA levels were significantly higher in the patient group compared to the healthy control group (p <0.05).ConclusionsIn conclusion, this study demonstrated that oxidative stress may play an important role in the development of liver cirrhosis and in liver transplantation. This study is the first one to show how MDA, SOD, CAT and GSH levels change in liver cirrhosis and liver transplantation, while further studies are essential to investigate antioxidant enzymes and oxidative stress status in patients with cirrhosis and liver transplantation.  相似文献   

8.
Low non-freezing temperature is one of the major environmental factors affecting growth, development and geographical distribution of chilling-sensitive plants, Jatropha curcas is considered as a sustainable energy plants with great potential for biodiesel production. In this study, chilling shock at 5 °C followed by recovery at 26 °C for 4 h significantly improved survival percentage of J. curcas seedlings under chilling stress at 1 °C. In addition, chilling shock could obviously enhance the activities of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR), and the levels of antioxidants ascorbic acid (AsA) and glutathione (GSH), as well as the contents of osmolytes proline and betaine in leaves of seedlings of J. curcas compared with the control without chilling shock. During the process of recovery, GR activity, AsA, GSH, proline and betaine contents sequentially increased, whereas SOD, APX and CAT activities gradually decreased, but they markedly maintained higher activities than those of control. Under chilling stress, activities of SOD, APX, CAT, GR and GPX, and contents of AsA, GSH, proline and betaine, as well as the ratio of the reduced antioxidants to total antioxidants [AsA/(AsA + DHA) and GSH/(GSH + GSSG)] in the shocked and non-shock seedlings all dropped, but shocked seedlings sustained significantly higher antioxidant enzyme activity, antioxidant and osmolyte contents, as well as ratio of reduced antioxidants to total antioxidants from beginning to end compared with control. These results indicated that the chilling shock followed by recovery could improve chilling tolerance of seedlings in J. curcas, and antioxidant enzymes and osmolytes play important role in the acquisition of chilling tolerance.  相似文献   

9.
Our aim was to assess the degree of oxidative stress in patients with periodontitis by measuring their levels of thiobarbituric acid reactive substances (TBARS), enzymatic antioxidants (superoxide dismutase (SOD), catalase (CAT), glutathione peroxide (GSHPx)), and non-enzymatic antioxidants (vitamins E and C, reduced glutathione (GSH)). This study was conducted on 25 adult chronic periodontitis sufferers who were patients in Rajah Muthiah Dental College and Hospital, Annamalai University. The levels of TBARS and non-enzymatic antioxidants, and the activities of enzymatic antioxidants in the patients' plasma, erythrocytes and gingival tissues were assayed using specific colorimetric methods. The periodontitis sufferers had a significantly higher TBARS level than the healthy subjects. In the plasma, erythrocytes, erythrocyte membranes and gingival tissues of the periodontitis sufferers, enzymatic antioxidant activities were found to be significantly higher, whereas the levels of non-enzymatic antioxidants were significantly lower (except for reduced glutathione in the gingival tissues) relative to the parameters found for healthy subjects. The disturbance in the endogenous antioxidant defense system due to over-production of lipid peroxidation products at inflammatory sites can be related to a higher level of oxidative stress in patients with periodontitis.  相似文献   

10.
Enhanced lipid peroxidation and decreased antioxidant defences have been defined in several diseases. In the present study, we aimed to evaluate the oxidative-antioxidative status of patients with cutaneous leishmaniasis (CL). Concentrations of erythrocyte lipid peroxidation (LPO), as an indicator for the oxidative status, reduced glutathione (GSH), glutathione peroxidase (GSH-Px) and serum vitamin C levels, as indicators for the antioxidative status, were measured. Seventy patients aged between 15 and 50 years (38 patients had active CL and 32 patients had healed CL) and 40 healthy controls aged between 19 and 50 years were included in the study. LPO and GSH of the patients with active CL were significantly higher (p < 0.001), whereas erythrocyte GSH-Px and serum vitamin C levels were lower (p < 0.001, p < 0.01 respectively) than those of healthy controls. There was a significant inverse correlation between LPO and serum vitamin C level (r=-0.32, p < 0.05) in active CL. No significant correlation of LPO, GSH, GSH-Px and serum vitamin C levels in control groups or in the group with healed CL was detected. In the light of our findings it is possible to conclude that patients having CL are affected by oxidative stress, which most likely induces the endogenous antioxidant system. An imbalance between the oxidant and antioxidant systems occurs and the suppressed antioxidants and increased lipid peroxidation may contribute to the progression of the disease.  相似文献   

11.
In this article, oxidative stress and enzymic-non-enzymic antioxidants status were investigated in children with acute pneumonia. Our study included 28 children with acute pneumonia and 29 control subjects. The age ranged from 2 to 11 years (4.57+/-2.13 years) and 2 to 12 years (4.89+/-2.22 years) in the study and control groups, respectively. Whole blood malondialdehyde (MDA) and reduced glutathione (GSH), serum beta-carotene, retinol, vitamin C, vitamin E, catalase (CAT), ceruloplasmin (CLP), total bilirubin, erythrocyte superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels were studied in all subjects. There was a statistically significant difference between the groups for all parameters except for serum CAT. Whole blood MDA, serum CLP and total bilirubin levels were higher in the study group than those of the control group. However, SOD, GPx, beta-carotene, retinol, vitamin C, vitamin E and GSH levels were lower in the study group compared with the control group. All antioxidant vitamin activities were decreased in children with acute pneumonia. Our study demonstrated that oxidative stress was increased whereas enzymic and non-enzymic antioxidant activities were significantly decreased in children with acute pneumonia.  相似文献   

12.
抗氧化系统在H2O2诱导的玉米幼苗耐热性形成中的作用   总被引:7,自引:0,他引:7  
H2O2预处理可显著增强玉米幼苗的耐热性.H2O2预处理后,玉米幼苗抗氧化酶谷胱甘肽还原酶(GR)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)的活性及还原型抗氧化剂抗坏血酸(ASA)和谷胱甘肽(GSH)的水平显著提高,且H2O2预处理过的幼苗在高温处理期间及其后的恢复过程中均能保持相对较高的抗氧化酶活力和还原型/氧化型抗氧化剂比例.  相似文献   

13.
Jatropha curcas L. is a sustainable energy plant with great potential for biodiesel production, and low temperature is an important limiting factor for its distribution and production. In this present work, chill hardening-induced chilling tolerance and involvement of antioxidant defense system were investigated in J. curcas seedlings. The results showed that chill hardening at 10 or 12 °C for 1 and 2 days greatly lowered death rate and alleviated electrolyte leakage as well as accumulation of the lipid peroxidation product malondialdehyde (MDA) of J. curcas seedlings under severe chilling stress at 1 °C for 1–7 days, indicating that the chill hardening significantly improved chilling tolerance of J. curcas seedlings. Measurement of activities of the antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD), and glutathione reductase (GR), and the levels of the antioxidants ascorbic acid (AsA) and glutathione (GSH) showed the chill hardening at 12 °C for 2 days could obviously increase the activities of these antioxidant enzymes and AsA and GSH contents in the hardened seedlings. When the hardened and non-hardening (control) seedlings were subjected to severe chilling stress at 1 °C for 1–7 days, the chill-hardened seedlings generally maintained significantly higher activities of the antioxidant enzymes SOD, APX, CAT, POD, and GR, and content of the antioxidants AsA and GSH as well as ratio of the reduced antioxidants to total antioxidants [AsA/(AsA + DHA) and GSH/(GSH + GSSG)], when compared with the control without chill hardening. All above-mentioned results indicated that the chill hardening could enhance the chilling tolerance, and the antioxidant defense system plays an important role in the chill hardening-induced chilling tolerance in J. curcas seedlings.  相似文献   

14.
Oxidative stress may be regarded as an imbalance between free radical production and opposing antioxidant defenses. Free radical oxidative stress is implicated in rat cerebral ischemia and naturaceutical antioxidants are dietary supplements that have been reported to have neuroprotective activity. Many studies have reported dietary sesame oil (SO) as an effective antioxidant. In the present study the neuroprotective effect of dietary SO was evaluated against middle cerebral artery occlusion (MCAO)-induced cerebral ischemia injury in rats. Rats were fed on diet (20% SO) for 15 days. The middle cerebral artery of adult male Wistar rat was occluded for 2 h and reperfused for 22 h. The antioxidant properties of brain were measured as levels of reduced glutathione (GSH), glutathione-S-transferase (GST), glutathione peroxide (GPx), glutathione reductase (GR), catalase (CAT), superoxide dismutase (SOD) and thiobarbituric acid reactive substance (TBARS). A decrease in the activity of all the enzymatic and non-enzymatic antioxidants was observed along with an increase in lipid peroxidation (LPO) in MCAO group. The neurobehavioral activity of rats was also observed by using videopath analyzer. Dietary SO improved the antioxidant status in MCAO+SO group when compared with MCAO group. The results of neurobehavioral activity also support our biochemical data. The results obtained suggest protective effect of SO against cerebral ischemia in rat brain through their antioxidant properties.  相似文献   

15.
Many clinical studies reported that diabetic patients had lower glutathione contents in erythrocytes or plasma. Recently, selenium, an essential trace element with well-known antioxidant characteristics, has been found to have insulin-mimetic properties. But seldom information is available about the influence of selenium on glutathione changes induced by diabetes mellitus in animals. Therefore, this study was designed to compare the impacts of selenite treatment on glutathione (GSH) levels of blood and tissues such as brain, kidney, liver, spleen and testis in mice. Four groups were used in this study: a control group, a diabetic group, a selenite-treated normal group and a selenite-treated diabetic group. Selenite was administered to the mice for 4 weeks with an oral dose of 2 mg kg(-1) day(-1) by gavage. The blood glucose level, and GSH level in blood and tissues were determined. The results show that the selenite-treated diabetic group had significantly lower blood glucose levels than the diabetic group. Moreover, alloxan-induced diabetes significantly decreased GSH levels in blood, kidney, liver and testis compared to the controls. Selenite treatment of the diabetic mice only improved the GSH levels in liver and brain. On the other hand, selenite administered to the normal mice reduced GSH levels in the liver compared to the controls. In conclusion, this study suggests that selenite treatment of diabetic mice with an effective dose would be beneficial for the antioxidant system of liver and brain although it exerts a toxic effect on the liver of normal mice.  相似文献   

16.
对漂浮育苗的烟草幼苗进行控水-半萎焉-复水-恢复的循环干旱锻炼。结果表明,这种干旱锻炼能显著提高烟草叶片抗氧化剂谷胱甘肽(GSH)、抗坏血酸(AsA)的含量、还原型抗氧化剂在总抗氧化剂中的比例和抗氧化酶包括超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、过氧化氢酶(CAT)、愈创木酚过氧化物酶(GPX)、谷胱甘肽还原酶(GR)的活性,降低丙二醛(MDA)的含量。当烟草植株遭受后续的干旱胁迫时,与未锻炼的对照相比,干旱锻炼过的烟草植株能保持较高的GSH和AsA含量、还原型抗氧化剂在总抗氧化剂中的比例和抗氧化酶(SOD、APx、CAT、GPX和GR)活性,以及较低的MDA含量,表明这种循环干旱锻炼提高了细胞抗氧化能力,有助于缓解烟草植株由干旱引起的氧化胁迫及其所导致的伤害,最终提高其抗旱性。这些结果表明。抗氧化系统参与了循环干旱锻炼提高烟草植株抗旱性的形成过程。  相似文献   

17.
Bull sperm are exposed to aerobic conditions during processing before freezing, and they have little endogenous antioxidant to protect them against reactive oxygen species that may be present. Seventeen laboratory studies and two field trials were conducted with 174 semen collections from bulls in an artificial breeding cooperative. More than 250 combinations and concentrations of reduced glutathione (GSH), superoxide dismutase (SOD), ascorbic acid, hypotaurine (HPT), 2,2,6,6-tetramethylpeperidine-1-oxyl (Tempo) and 4-hydroxy-2, 2, 6, 6-tetramethylpeperidine (Tempol) were tested by adding these compounds to fresh semen, and to a whole milk (WM) glycerol extender. Semen packaged in straws in the WM extender was frozen with liquid nitrogen. The motility of frozen-thawed sperm during storage at 25 or 5 degrees C after freezing was compared with semen stored without freezing. Antioxidants generally were not beneficial, except the percentage of motile sperm was improved by 6-11% units (P<0.05) when sperm were stored unfrozen or after freezing when 0.5mM of GSH with or without SOD was added. In two field trials, non-return rates were 71.9, 69.5 and 70.9% (P>0.05) with WM containing 0.0, 0.5 and 1.0mM of GSH, respectively, and 74.0 and 73.9% with WM and WM plus 0.5mM of GSH and 100U/ml of SOD (P>0.05). WM contains an abundant supply of casein which is an antioxidant, and additional antioxidants were ineffective in improving motility of sperm immediately after freezing and thawing or in affecting fertility. However, sperm responses were different in egg yolk-Tris extender. Sperm in this egg yolk extender tolerated substantial concentrations of Tempo and Tempol compared with toxic effects in WM (P<0.05). Therefore, optimal combinations of antioxidants tested here may have more useful applications in organizations using an egg yolk-based semen extender.  相似文献   

18.
The activity of the glutathione system and conjugated diene content (CD) have been investigated in the liver and blood serum of rats with experimental hyperthyroidism treated with melaxen and valdoxan. The study of glutathione reductase (GR), glutathione peroxidase (GP) and glutathione transferase (GST) activities increased under this pathology has shown that administration of these compounds decreased these activities towards control levels. Melaxen and valdoxan administration increased reduced glutathione (GSH) content as compared with untreated hyperthyroid rats. This increase may be associated with its decreased utilization for detoxification of toxic products of free radical oxidation (FRO). Administration of the melatonin correcting drugs also tended to normalize the CD level increased in the liver and blood serum of hyperthyroid rats. Results of this study indicate that melaxen and valdoxan exhibit positive effect on free radical homeostasis. This appears to be accompanied by a decrease in the load of the glutathione antioxidant system in comparison with the examined pathology.  相似文献   

19.
20.
Patients affected by nonketotic hyperglycinemia (NKH) usually present severe neurological symptoms and suffer from acute episodes of intractable seizures with leukoencephalopathy. Although excitotoxicity seems to be involved in the brain damage of NKH, the mechanisms underlying the neuropathology of this disease are not fully established. The objective of the present study was to investigate the in vitro effects of glycine (GLY), that accumulate at high concentrations in the brain of patients affected by this disorder, on important parameters of oxidative stress, such as lipid peroxidation (thiobarbituric acid-reactive substances (TBA-RS) and chemiluminescence) and the most important non-enzymatic antioxidant defense reduced glutathione (GSH) in cerebral cortex from 30-day-old rats. GLY significantly increased TBA-RS and chemiluminescence values, indicating that this metabolite provokes lipid oxidative damage. Furthermore, the addition of high doses of the antioxidants melatonin, trolox (soluble vitamin E) and GSH fully prevented GLY-induced increase of lipid peroxidation, indicating that free radicals were involved in this effect. GLY also decreased GSH brain concentrations, which was totally blocked by melatonin treatment. Finally, GLY significantly reduced sulfhydryl group content from a commercial GSH solution, but did not oxidize reduced cytochrome C. Our data indicate that oxidative stress elicited in vitro by GLY may possibly contribute at least in part to the pathophysiology of the neurological dysfunction in NKH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号