首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Human erythrocytes contain a phosphatase that is highly specific for phosphoglycollate. It shows optimum pH of 6.7 and has Km 1 mM for phosphoglycollate. The molecular weight appears to be about 72000. The enzyme is a dimeric molecule having subunits of mol. wt. about 35000. It could be purified approx. 4000-fold up to a specific activity of 5.98 units/mg of protein. The activity of the enzyme is Mg2+-dependent. Co2+, and to a smaller extent Mn2+, may substitute for Mg2+. Half-maximum inhibition of the phosphatase by 5,5'-dithiobis-(2-nitrobenzoate), EDTA and NaF is obtained at 0.5 microM, 1 mM and 4 mM respectively. Moreover, it needs a univalent cation for optimum activity. Phosphoglycollate phosphatase is a cytoplasmic enzyme. Approx. 5% of its total activity is membrane-associated. This part of activity can be approx. 70% solubilized by freezing, thawing and treatment with 0.25% Triton X-100.  相似文献   

2.
N-Acetylglutamate 5-phosphotransferase (ATP: N-acetyl-L-glutamate 5-phosphotransferase EC 2.7.2.8), the second enzyme of arginine biosynthesis, was purified over 2000-fold from Pseudomonas aeruginosa. The purification procedure involved a heat treatment, ammonium sulfate precipitation, and chromatography on DEAE-cellulose, Sephadex G-150, and hydroxyapatite. The purified enzyme was greater than 90% pure as judged by analytical polyacrylamide gel electrophoresis. A molecular weight of approximately 230000 was obtained by gel filtration. Electrophoresis in sodium dodecyl sulfate gels gave a single band corresponding to a molecular weight of 29000. Due to the capacity for self-association, the enzyme can exist in different states of aggregation depending on the nature of ligands and the concentrations of phosphate buffer. As estimated by gel filtration, the molecular weight was about 230000 in the presence of N-acetyl-L-glutamate. With L-arginine, the feedback inhibitor, and MgATP forms of smaller molecular weight (minimum of approximately 65000) were found. A concurrent change in the sedimentation coefficient as a function of ligands was demonstrated by sucrose gradient centrifugation. The synthesis of N-acetylglutamate 5-phosphotransferase was not repressed by exogenous L-arginine or its precursors.  相似文献   

3.
Ecto-ATPase in rat cauda-epididymal intact spermatozoa has a high degree of substrate specificity for the hydrolysis of ATP and dATP rather than of ADP, AMP, GTP, dGTP, CTP, dCTP, TTP and UTP. The enzyme is activated by bivalent metal ions in the order Mg2+ greater than Mn2+ greater than Co2+ greater than Ca2+. The apparent Km values of the enzyme for Mg2+, Mn2+, Co2+ and Ca2+ are approx. 80, 100, 100 and 150 microM respectively. Addition of Ca2+ (0.1 or 1 mM) gives no further stimulation of the Mg2+-activated ecto-ATPase activity. The apparent Km value of the enzyme for ATP is 95 microM. Pi (16 mM) inhibits the enzymic activity (by 25%), whereas Na+ (50 mM) or K+ (10 mM) alone or in combination, polyamines (spermine and spermidine; 1--12.5mM) and nucleic acids (yeast RNA and calf thymus DNA; 0.12 or 0.62 mg/ml) had no significant effect on the activity of the enzyme. Orthovanadate at a relatively low concentration (20 microM) strongly inhibits (approx. 50%) the ecto-ATPase activity. Vanadate inhibition can be reversed by noradrenaline (2.5 mM). The vanadate-sensitivity of the enzyme increases markedly during spermatozoal maturation in the epididymis. However, the activity of the spermatozoal ecto-ATPase decreases progressively during the epididymal transit of the testicular spermatozoa.  相似文献   

4.
N-Acetylglucosamine kinase (ATP:2-acetamido-2-deoxy-D-glucose 6-phosphotransferase, EC 2.7.1.59) catalyzes the first reaction in the inducible N-acetylglucosamine catabolic pathway of Candida albicans, an obligatory aerobic yeast. As a part of continuing biochemical studies concerning the regulation of gene expression in a simple eukaryote, N-acetylglucosamine kinase has been purified and characterized biochemically. The enzyme has been purified about 300-fold from the crude extract and its molecular weight of 75 000 has been determined by Sephadex G-100 gel filtration. Isolation and analysis procedures are described. The kinase reaction is optimal within a pH range of 7--8. The enzyme is strictly specific for GlcNAc as phosphate acceptor; ATP is the phosphoryl group donor for the kinase reaction and to a lesser extent dATP and CTP. Km values for GlcNAc and ATP are 1.33 mM and 1.82 mM, respectively. The enzyme required Mg2+, which may be replaced by other bivalent metal ions such as Mn2+, Ca2+, Ba2+ and Co2+ for a lesser degree of effectiveness. The purified enzyme is extremely sensitive to thermal denaturation and becomes completely inactive by heating at 65% C for 2 min. The enzyme is also inactivated by sulphydryl reagents such as p-chloromercuribenzene sulfonic acid and N-ethylmaleimide.  相似文献   

5.
Properties of rat heart adenosine kinase.   总被引:3,自引:0,他引:3       下载免费PDF全文
Adenosine kinase was purified 870-fold from rat heart by a combination of gel filtration and affinity chromatography. The preparation was free of purine-metabolizing enzymes that could interfere in the assay of the kinase. A study of the properties of the purified enzyme showed that it is activated by Na+ and K+, it possesses a broad pH optimum between 6 and 8, MgATP is the nucleotide substrate, free Mg2+ is an inhibitor with respect to both MgATP and adenosine, and the enzyme is subject to substrate inhibition by adenosine. The severity of this inhibition increases as the concentration of free Mg2+ increase. The Km for MgATP was calculated to be 0.8 mM and that for adenosine, at likely physiological concentrations of MgATP and free MgCl2, was about 0.2 microM. In vivo the enzyme is likely to be saturated with both MgATP and adenosine. Indeed, the adenosine concentration in rat heart in vivo is probably sufficient to cause substrate inhibition, and this would be increased by an increase in free Mg2+ concentration. Changes in the concentrations of adenosine and free Mg2+ may play a role in modifying the activity of the enzyme in vivo.  相似文献   

6.
The membrane-bound ATP synthetase complex of Methanobacterium thermoautotrophicum showed maximum activity for ATP hydrolysis at pH 8, at temperatures between 65 and 70 degrees C, and at an ATP-Mg2+ ratio of 0.5. Anaerobic conditions were not prerequisite for enzyme activity. The enzyme showed a Km value for ATP of 2 mM, and activity was Mg2+ dependent; Mn2+, Co2+, Ca2+, and Zn2+ could replace Mg2+ to some extent. Other nucleoside triphosphates could be hydrolyzed. N,N'-dicyclohexylcarbodiimide inhibited ATP hydrolysis. A proton-motive force, artificially imposed by a pH shift or valinomycin, resulted in ATP synthesis in whole cells. The ATP synthetase complex of the thermophilic methanogenic bacterium is similar to those described in aerobic and anaerobic microorganisms.  相似文献   

7.
Particulate preparations from epimastigote forms of Trypanosoma cruzi contain an adenylyl cyclase (ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1) which could be stored at --20 degree C and resisted 5 cycles of freezing and thawing over 10 days without significant loss of activity. The enzyme reaction strictly required Mn2+, had a pH optimum of 7.7 and was not inhibited or stimulated by NaF. Particles prepared in the presence of 10 mM Mn2+ or Mg2+ were 3--4 times more active than particles prepared in the absence of these cations. However, Mg2+ could not substitute for Mn2+ during enzyme assay nor did it enhance activity in the presence of saturating concentrations of Mn2+. The binary complex Mn - ATP2- was shown to be the true substrate for the adenylyl cyclase and free ATP was highly inhibitory. Plots of enzyme activity against equimolar concentrations of ATP - Mn gave sigmoid curves with n values in Hill plots ranging between 1.5 and 2.0. Excess Mn2+ activated the cyclase catalyzed reaction at low but not at high concentrations of ATP - Mn. In the presence of an excess of 1 mM Mn2+, which transforms 97% of the added ATP to productive Mn - ATP2- complex, the substrate saturation curve assumed a Michaelian pattern with an apparent Km =0.2 mM.  相似文献   

8.
ATP-sulfurylase (ATP:sulfate adenylyltransferase, EC 2.7.7.4), purified about 200-fold from sea urchin embryos, was free of ATPase and inorganic pyrophosphatase. The molecular weight of the enzyme was approx. 280 000 measured by gel filtration. The enzyme was activated by Mg2+, Ca2+ or Zn2+; EDTA and p-chloromercuriphenylsulfonate inhibited the enzyme activity. The inhibition was reversed by addition of Mg2+ and dithiothreitol, respectively. The enzyme activity increased continuously as the pH was raised from 5.6 to 10.6. The Km values for the enzyme were calculated to be 13 microM for adenosine 5'-phosphosulfate and 23 microM for pyrophosphate.  相似文献   

9.
Specific effects of spermine on Na+,K+-adenosine triphosphatase   总被引:2,自引:0,他引:2  
Specific effects of spermine on Na+,K+-ATPase were observed using an enzyme partially purified from rabbit kidney microsomes by extraction with deoxycholate. 1. Spermine competed with K+ for K+-dependent, ouabain-sensitive nitrophenylphosphatase. The K1 for spermine was 0.075 mm in the presence of 1 mM Mg2+ and 5 mM p-nitrophenylphosphate at pH 7.5. 2. spermine activated Na+,K+-ATPase over limited concentration ranges of K+ and Na+ in the presence of 0.05 mM ATP. The spermine concentration required for half maximal activation was 0.055 mM in the presence of 1 mM K+, 10 mM Na+, 1 mM Mg2+, and 0.05 mM ATP. 3. The activation of Na+,K4-ATPase was not due to substitution of spermine for K+, Na+, or Mg2+. 4. When the concentration of K+ or Na+ was extremely low, or in excess, spermine did not activate Na+,K+-ATPase, but inhibited it slightly. 5. Plots of 1/v vs. 1/[ATP] at various concentrations of spermine showed that spermine decreased the Km for ATP without changing the Vmax. 6. Plots of 1/v vs. 1/[ATP] at concentrations of K+ from 0.05 mM to 0.5 mM showed that K+ increased the Km for ATP with increase in the Vmax in the presence of 0.2 mM spermine similarly to that in the absence of spermine. The contradictory effects of spermine on this enzyme system suggest that the K+-dependent monophosphatase activity does not reflect the second half (the dephosphorylation step) of the Na+,K+-ATPase catalytic cycle.  相似文献   

10.
1. A study of the initial reaction rates at variable substrate concentrations and of the molecular weight of the enzyme in the presence of different effectors, has been carried out using fructokinase (ATP: fructose 6-phosphotransferase, EC 2.7.1.4) from Streptomyces violaceoruber. 2. Saturation curves for MgATP or CoATP are sigmoidal and they change to hyperbolic in the presence of 10 mM Mg2+ or Co2+ in excess over the nucleoside triphosphate. 3. Saturation cuvves for fructose show intermediary plateaux at high (but not at low) concentrations of ATP or Mg2+. 4. The molecular weight of the enzyme in the presence of high concentrations of MgATP is 80 000. In the presence of fructose, and/or Mg2+, the molecular weight is 20 000. 5. The effects of MgADP, uncomplexed ADP or ATP, and low concentrations of detergent on the kinetics have been studied. The results are interpreted as showing the existence of cooperative effects.  相似文献   

11.
Evidence is presented for the presence of both diethylstilbestrol (DES)-sensitive and DES-insensitive Mg2+-ATPase activities in plasma membrane enriched fractions of Dictyostelium discoideum. When removed from the membrane, the DES-sensitive activity is markedly less stable than the DES-insensitive activity, and the two activities display a number of quite distinct properties. The DES-sensitive enzyme has a decided preference for Mg2+ over Ca2+, displays saturation kinetics in response to ATP as substrate (Km = 0.2 mM) and has a narrow pH optimum range. In contrast, the DES-insensitive activity is stimulated equally by Mg2+ or Ca2+, is not saturable by ATP within the mM concentration range and has a much broader pH optimum. The DES-insensitive activity has been purified extensively. The purified enzyme is inhibited by vanadate and fluoride, but is insensitive to N,N'-dicyclohexylcarbodiimide (DCCD), N-ethylmaleimide and thimerosal. In the absence of divalent cations, the enzyme displays a sigmoidal activity curve in response to substrate concentration, which is abolished by addition of either Mg2+ or Ca2+, suggesting a binding site for a divalent cation and a positive cooperative interaction. The enzyme is capable of hydrolyzing other nucleotide triphosphates and ADP, but is without activity on AMP, p-nitrophenyl phosphate and pyrophosphate. The enzyme has an apparent molecular weight of approximately 64,000.  相似文献   

12.
The labile non-allosteric form of phosphofructokinase (ATP:D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) was purified to a specific activity of 107 U/mg (2078-fold) from aerobic cultures of Escherichia coli K-12. The enzyme has an isoelectric point (pI) of 5.1, a native molecular weight of 67 000 +/- 3000 and a subunit weight of 34 000 +/- 400. A number of divalent metal ions can substitute for Mg2+ in the enzyme reaction in decreasing order Mn2+ > Mg2+ > Co2+ > Ca2+. In the presence of excess Mg2+, nucleotides do not affect the Km for fructose 6-phosphate with a value of 0.042 mM. The order of efficiency for nucleotides to act as phosphoryl donors is ATP > ITP > GTP > UTP > CTP. This remains unchanged in the presence of excess Mn2+, but V is increased 2.4-fold with ATP. A 2 : 1 ratio of Mn2+/nucleotide 5'-triphosphate produced an equivalent dissociation constant of 1.1 mM for all nucleotides, which was markedly decreased at a high Mn2+ level. The rate of enzyme catalysis was found to be dependent on the concentration of MnATP2-. Mn2+ at non-limiting values does affect the binding of fructose 6-phosphate to the enzyme.  相似文献   

13.
A carbamoyl-phosphate synthase has been purified from mycelia of Phycomyces blakesleeanus NRRL 1555 (-). The molecular weight of the enzyme was estimated to be 188,000 by gel filtration. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed that the enzyme consists of two unequal subunits with molecular weights of 130,000 and 55,000. The purified enzyme has been shown to be highly unstable. The carbamoyl-phosphate synthase from Phycomyces uses ammonia and not L-glutamine as a primary N donor and does not require activation by N-acetyl-L-glutamate, but it does require free Mg2+ for maximal activity. Kinetic studies showed a hyperbolic behavior with respect to ammonia (Km 6.34 mM), bicarbonate (Km 10.5 mM) and ATP.2 Mg2+ (Km 0.93 mM). The optimum pH of the enzyme activity was 7.4-7.8. The Phycomyces carbamoyl-phosphate synthase showed a transition temperature at 38.5 degrees C. It was completely indifferent to ornithine, cysteine, glycine, IMP, dithiothreitol, glycerol, UMP, UDP and UTP. The enzyme was inhibited by reaction with 5 mM N-ethylmaleimide.  相似文献   

14.
A galactokinase and the other enzymes of a galactose catabolic pathway were found in Mycobacterium sp. 279 galactose mutant. The galactokinase was partially purified in a procedure involving ammonium sulfate precipitation, Sephadex G-100 filtration and DEAE-cellulose chromatography. The enzyme was 170-fold purified with 25% of recovery. It was most active at pH 7.8-8.0 in the presence of Mg2+, CO2+, Mn2+ or Fe2+ ions. The molecular weight of the enzyme as determined by Sephadex G-100 filtration amounted to 41,700. The apparent Michaelis constants for galactose and ATP in spectrophotometric test were 1.0 mM and 0.29 mM, respectively. Mercuric compounds at concentration of 0.4 mM completely blocked the enzyme. The galactokinase was quite stable during storage at moderatory temperatures and neutral pH but underwent rapid inactivation on heating above 50 degrees C.  相似文献   

15.
Several seeds and husks of some plants belonging to leguminosae, Graminae, Compositae and Palmae were evaluated as carbon substrates to produce α-galactosidase (α-Gal) by the thermophilic fungus, Thielavia terrestris NRRL 8126 in solid substrate fermentation. The results showed that Cicer arietinum (chick pea seed) was the best substrate for α-Gal production. The crude enzyme was precipitated by ammonium sulphate (60%) and purified by gel filtration on sephadex G-100 followed by ion exchange chromatography on DEAE-Cellulose. The final purification fold of the enzyme was 30.42. The temperature and pH optima of purified α-Gal from Thielavia terrestris were 70 °C and 6.5, respectively. The enzyme showed high thermal stability at 70 °C and 75 °C and the half-life of the α-Gal at 90 °C was 45 min. Km of the purified enzyme was 1.31 mM. The purified enzyme was inhibited by Ag2+, Hg2+, Zn2+, Ba2+, Mg2+, Mn2+ and Fe2+ at 5 mM and 10 mM. Also, EDTA, sodium arsenate, L-cysteine and iodoacetate inhibited the enzyme activity. On the other hand, Ca2+, Cu2+, K+ and Na+ slightly enhanced the enzyme activity at 5 mM while at 10 mM they caused inhibition. The molecular weight of the α-Gal was estimated to be 82 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This enzyme displays a number of biochemical properties that make it a potentially strong candidate for biotechnological and medicinal applications.  相似文献   

16.
Purified chondrocytic alkaline phosphatase (orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1) from bovine fetal epiphyseal cartilage hydrolyzes a variety of phosphate esters as well as ATP and inorganic pyrophosphate. Optimal activities for p-nitrophenyl phosphate, ATP and inorganic pyrophosphate are found at pH 10.5, 10.0 and 8.5, respectively. The latter two substrates exhibit substrate inhibition at high concentrations. p-Nitrophenyl phosphate demonstrates decreasing pH optima with decreasng substrate concentration. Heat inactivation studies indicate that both phosphorolytic and pyrophosphorolytic cleavage occur at the same site on the enzyme. Mg2+ (0.1-10.0 mM) and Mn2+ (0.01-0.1 mM) show a small stimulation of p-nitrophenyl phosphate-splitting activity at pH 10.5. Levamisole, Pi, CN-, Zn2+ and L-phenylalanine are all reversible inhibitors of the phosphomonoesterase activity. Pi is a competitive inhibitor with a Ki of 10.0 mM. Levamisole and Zn2+ are potent non-competitive inhibitors with inhibition constants of 0.05 and 0.04 mM, respectively. The chondrocytic alkaline phosphatase is inhibited irreversibly by Be2+, EDTA, EGTA, ethane-1-hydroxydiphosphonate, dichloromethane diphosphonate, L-cysteine, phenyl-methylsulfonyl fluoride, N-ethylmaleimide and iodoacetamide. NaCL, KCL and Na2SO4 at 0.5-1.0 M inhibit the enzyme. At pH 8.5, the cleavage of inorganic pyrophosphate (pyrophosphate phosphohydrolase, EC 3.6.1.1) by the chondrocytic enzyme is slightly enhanced by low levels of Mg2+ and depressed by concentrations higher than 1mM. Ca2+ show only inhibition. Similar effects of Mg2+ and Ca2+ on the associated ATPase (ATP phosphohydrolase, EC 3.1.6.3) activity were observed. Arrhenius studies using p-nitrophenyl phosphate and AMP as substrates have accounted for the ten-fold difference in V in terms of small differences in both the enthalpies and entropies of activation which are 700 cal/mol and 2.3 cal/degree per mol, respectively.  相似文献   

17.
ATP and the divalent cations Mg2+ and Ca2+ regulated K+ stimulation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum vesicles. Millimolar concentrations of total ATP increased the K+-stimulated ATPase activity of the Ca2+ pump by two mechanisms. First, ATP chelated free Mg2+ and, at low ionized Mg2+ concentrations, K+ was shown to be a potent activator of ATP hydrolysis. In the absence of K+ ionized Mg2+ activated the enzyme half-maximally at approximately 1 mM, whereas in the presence of K+ the concentration of ionized Mg2+ required for half-maximal activation was reduced at least 20-fold. Second MgATP apparently interacted directly with the enzyme at a low affinity nucleotide site to facilitate K+-stimulation. With a saturating concentration of ionized Mg2+, stimulation by K+ was 2-fold, but only when the MgATP concentration was greater than 2 mM. Hill plots showed that K+ increased the concentration of MgATP required for half-maximal enzymic activation approx. 3-fold. Activation of K+-stimulated ATPase activity by Ca2+ was maximal at an ionized Ca2+ concentration of approx. 1 microM. At very high concentrations of either Ca2+ or Mg2+, basal Ca2+-dependent ATPase activity persisted, but the enzymic response to K+ was completely inhibited. The results provide further evidence that the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum has distinct sites for monovalent cations, which in turn interact allosterically with other regulatory sites on the enzyme.  相似文献   

18.
The hydrogenosomal enzyme ATP:AMP phosphotransferase (adenylate kinase) (EC 2.7.4.3) was purified to apparent homogeneity from the bovine parasite Tritrichomonas foetus. A fraction enriched for hydrogenosomes was obtained from cell homogenates which had been subjected to differential and isopycnic centrifugation. Adenylate kinase was solubilized in 50 mM Tris-HCl, pH 7.3, containing 0.8% Triton X-100, and purified by sequential Affi-Gel blue affinity chromatography and high-performance liquid chromatography gel filtration. The purified enzyme, a monomer of Mr 29,000, exhibited Km values of 100, 195, and 83 microM for ADP, ATP, and AMP, respectively. Substituting other mono-, di-, and trinucleotides for AMP, ADP, and ATP gave less than half the maximal activity. Full enzyme activity requires Mg2+, but Mn2+ and Co2+ yield half maximal activity. The enzyme has a broad optimal pH range between pH 6 and 9. The enzyme was competitively inhibited by P1,P5-di(adenosine-5')pentaphosphate, a specific adenylate kinase inhibitor: the Ki was 150 nM. The enzyme was also inhibited with 5,5'-dithiobis(2-nitrobenzoic acid), and this inhibition could be reversed by the addition of 2 mM dithiothreitol. T. foetus adenylate kinase has similar catalytic and physical properties to that of the biologically closely related human parasite Trichomonas vaginalis.  相似文献   

19.
Showdomycin inhibited pig brain (Na+ + K+)-ATPase with pseudo first-order kinetics. The rate of inhibition by showdomycin was examined in the presence of 16 combinations of four ligands, i.e., Na+, K+, Mg2+ and ATP, and was found to depend on the ligands added. Combinations of ligands were divided into five groups in terms of the magnitude of the rate constant; in the order of decreasing rate constants these were: (1) Na+ + Mg2+ + ATP, (2) Mg2+, Mg2+ + K+, K+ and none, (3) Na+ + Mg2+, Na+, K+ + Na+ and Na+ + K+ + Mg2+, (4) Mg2+ + K+ + ATP, K+ + ATP and Mg2+ + ATP, (5) K+ + Na + + ATP, Na+ + ATP, Na+ + K+ + Mg2+ + ATP and ATP. The highest rate was obtained in the presence of Na+, Mg2+ and ATP. The apparent concentrations of Na+, Mg2+ and ATP for half-maximum stimulation of inhibition (KS0.5) were 3 mM, 0.13 mM and 4 MicroM, respectively. The rate was unchanged upon further increase in Na+ concentration from 140 to 1000 mM. The rates of inhibition could be explained on the basis of the enzyme forms present, including E1, E2, ES, E1-P and E2-P, i. e., E2 has higher reactivity with showdomycin than E1, while E2-P has almost the same reactivity as E1-P. We conclude that the reaction of (Na+ + K+)- ATPase proceeds via at least four kinds of enzyme form (E1, E2, E1 . nucleotide and EP), which all have different conformations.  相似文献   

20.
A new fast assay procedure for increasing deoxyuridine triphosphate nucleotidohydrolase activity was developed. With this assay procedure, this enzyme derived from blast cells of patients with acute lymphocytic leukemia was purified at least 1218-fold. The molecular weight was estimated by gel filtration to be 43,000. The enzyme exhibited optimal activity over a pH range of 7 to 8 and the activation energy was estimated to be 6.5 kcal/mol at pH 7.5. While the enzyme had activity in the absence of added divalent cations, the activity could be inhibited by EDTA but not by phenanthroline. The inhibition caused by EDTA could be reversed by Mg2+ or Zn2+. The enzyme had maximal activity in the presence of Mg2+ (40 muM) and Mg2+ (4 mM) stabilized the enzyme at 37 degrees C. Cupric ion (0.5 mM) inhibited (50%) enzyme activity in the presence or absence of Mg2+. The substrate for the enzyme was dUTP and the apparent Km was 1 muM. No other deoxyribonucleoside or ribonucleoside triphosphate served as a substrate for the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号