共查询到20条相似文献,搜索用时 17 毫秒
1.
A. M. Kudryavtsev 《Russian Journal of Genetics》2006,42(10):1208-1210
Sixty-four durum wheat varieties of the domestic breeding (USSR and Russia) were studied for herogeneity using various genetic markers: storage proteins (gliadins), RAPD, and microsatellite (SSR) markers. About a third of the studied varieties (24) were shown to be heterogeneous at the protein markers. These varieties contained from two to six biotypes. Using the molecular markers, the biotypes were found to differ not only in the gliadin-coding genes as determined with the protein markers, but also in other chromosome regions. Moreover, using SSR markers, some additional subbiotypes were detected within the biotypes defined with the gliadin markers. Thus, the intravarietal durum wheat heterogeneity is an important component of general biodiversity of the species. 相似文献
2.
3.
Christensen AB Thordal-Christensen H Zimmermann G Gjetting T Lyngkjaer MF Dudler R Schweizer P 《Molecular plant-microbe interactions : MPMI》2004,17(1):109-117
Germinlike proteins (GLP) are encoded in plants by a gene family with proposed functions in plant development and defense. Genes of GLP subfamily 4 of barley (HvGLP4, formerly referred to as HvOxOLP) and the wheat orthologue TaGLP4 (formerly referred to as TaGLP2a) were previously found to be expressed in pathogen-attacked epidermal tissue of barley and wheat leaves, and the corresponding proteins are proposed to accumulate in the apoplast. Here, the role of HvGLP4 and TaGLP4 in the defense of barley and wheat against Blumeria graminis (DC.) E. O. Speer, the cereal powdery mildew fungus, was examined in an epidermal transient expression system and in transgenic Arabidopsis thaliana plants overexpressing His-tagged HvGLP4. Leaf extracts of transgenic Arabidopsis overexpressing HvGLP4 contained a novel His-tagged protein with superoxide dismutase activity and HvGLP4 epitopes. Transient overexpression of TaGLP4 and HvGLP4 enhanced resistance against B. graminis in wheat and barley, whereas transient silencing by RNA interference reduced basal resistance in both cereals. The effect of GLP4 overexpression or silencing was strongly influenced by the genotype of the plant. The data suggest that members of GLP subfamily 4 are components of quantitative resistance in both barley and wheat, acting together with other, as yet unknown, plant components. 相似文献
4.
5.
The compatibility-inducing action of the scs(ti) (species cytoplasm-specific gene derived from Triticum timopheevii) and Vi (vitality) genes can be observed when a durum (T. turgidum) nucleus is placed in T. longissimum cytoplasm. These two genes restore compatibility between an otherwise incompatible nucleus and cytoplasm. The objective of this study was to localize the scs(ti) gene on a linkage map of chromosome 1A, which could eventually be used to clone the gene. The mapping population consisted of 110 F2 individuals derived from crossing a Langdon-T. dicoccoides chromosome 1A substitution line with a euplasmic (normal cytoplasm) line homozygous for the scs(ti) gene. Through a series of testcrosses the genotypes of the 110 individuals were determined: 22 had two copies, 59 had one copy, and 29 had no copy of the scs(ti) gene. Data from RFLP, AFLP, and microsatellite analysis were used to create a linkage map. The flanking marker loci found for the scs(ti) gene were Xbcd12 and Xbcd1449-1A.2 with distances of 2.3 and 0.6 cM, respectively. Nearly 10% of individuals in this population were double recombinant for a genetic interval of <3 cM. A blistering phenotype reminiscent of the phenotype observed in maize brittle-1 mutable was also evident in these individuals. The higher frequency of double recombination within this region and seed-blistering phenotype could be an indication of a transposable element(s) in this locus. 相似文献
6.
Deamination of 5-methylcytosines within cyclobutane pyrimidine dimers is an important component of UVB mutagenesis 总被引:6,自引:0,他引:6
UVB mutagenesis is characterized by an abundance of C --> T and 5-methylcytosine --> T transitions at dipyrimidine sequences. It is not known how these mutations might arise. One hypothesis is that UV-induced mutations occur only after deamination of the cytosine or 5-methylcytosine within the pyrimidine dimer. It is not clear how methylation of cytosines at the 5-position influences deamination and how this affects mutagenesis. We have now conducted experiments with a CpG-methylated supF shuttle vector that was irradiated with UVB and then incubated at 37 degrees C to allow time for deamination before passage through a human cell line to establish mutations. This led to a significantly increased frequency of CC --> TT mutations and of transition mutations at 5'-PymCG-3' sequences. A spectrum of deaminated cis-syn cyclobutane pyrimidine dimers in the supF gene was determined using the mismatch glycosylase activities of MBD4 protein in combination with ligation-mediated PCR. Methylation at the C-5 position promoted the deamination of cytosines within cis-syn cyclobutane pyrimidine dimers, and these two events combined led to a significantly increased frequency of UVB-induced transition mutations at 5'-PymCG-3' sequences. Under these conditions, the majority of all supF mutations were transition mutations at 5'-PymCG-3', and they clustered at several mutational hot spots. Exactly these types of mutations are frequently observed in the p53 gene of nonmelanoma skin tumors. This particular mutagenic pathway may become prevalent under conditions of inefficient DNA repair and slow proliferation of cells in the human epidermis. 相似文献
7.
We address the neglected issue of ecological and evolutionary significance of root sprouting (RS) in plants. RS has been considered a sort of morphological curiosity. However, existing data of the Central European flora show that it occurs in about 10% of species. These species are therefore independent of a stem-derived bud bank in their resprouting. As sprouting from roots has been hypothesised to help plants survive disturbance, we used a large data set (2914 species with data on presence/absence of RS from Central Europe) to perform comparative analyses of its occurrence in disturbed habitats, evolution of RS in response to disturbance, and its distribution among individual plant lineages. To address these questions, we linked the data with species-level indicator values for disturbance, data on additional functional traits and phylogenetic data. We confirmed that RS ability is more frequent in plants growing in habitats subjected to disturbance, especially in annuals and clonal species. This contrasts with clonality via stem-based organs, which does not promote occurrence in disturbed habitats. Disturbance severity is the most important factor determining RS species distribution, whereas disturbance frequency plays a smaller role. RS is phylogenetically less conservative than sprouting from the stem-based belowground bud bank and thus can be easily acquired or lost in evolution, although these rates strongly differ between individual lineages. Evolution of RS seems to be driven largely by occurrence in disturbed habitats, and has appeared/disappeared independently of the presence of a stem-derived bud bank. Importantly, the data support the scenario in which colonisation of such habitats occurs prior to acquiring the RS ability, which develops only later. RS is hence a more important ecological trait than hitherto assumed. It constitutes an independent route of response to severe disturbance and its ecological effects and evolutionary patterns differ from stem-based clonality. 相似文献
8.
Newly established ponds, which are highly dynamic systems with changing levels of biological interactions among species, are common larval mosquito habitats. We investigated the impact of crustacean abundance and taxa diversity on mosquito oviposition and larval development. The effects of the biological larvicide Bacillus thuringiensis israelensis (Bti) on mosquito larvae were monitored according to fluctuations in crustacean communities. Populations of the mosquito Culex pipiens colonized artificial ponds that contained crustacean communities at different time points of colonization by crustaceans: 1) ‘no colonization’ (no crustaceans), 2) ‘simultaneous colonization’ by crustaceans and mosquitoes, and 3) ‘head‐start colonization’ by crustaceans (preceding colonization by mosquitoes). All types of ponds were treated with three concentrations of Bti (10, 100, or 1,000 µg/liter). Colonization of all ponds by Cx. pipiens (in terms of oviposition, larval abundance, and larval development) decreased significantly with increasing diversity of crustacean taxa. The total abundance of crustaceans had a minor effect on colonization by Cx. pipiens. The presence of crustaceans increased the sensitivity of Cx. pipiens larvae to Bti treatment by a factor of 10 and delayed the time of recolonization. This effect of Bti was relevant in the short term. In the long term, the presence of Cx. pipiens was determined by crustacean biodiversity. 相似文献
9.
A genetic linkage map of durum wheat 总被引:14,自引:6,他引:14
A. Blanco M. P. Bellomo A. Cenci C. De Giovanni R. D’Ovidio E. Iacono B. Laddomada M. A. Pagnotta E. Porceddu A. Sciancalepore R. Simeone O. A. Tanzarella 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1998,97(5-6):721-728
A genetic linkage map of tetraploid wheat [Triticum turgidum (L.) Thell.] was constructed using segregation data from a population of 65 recombinant inbred lines (RILs) derived from
a cross between the durum wheat cultivar Messapia and accession MG4343 of T. turgidum (L.) Thell. ssp dicoccoides (Korn.) Thell. A total of 259 loci were analysed, including 244 restriction fragment length polymorphisms (RFLPs), one PCR
(polymerase chain reaction) marker (a sequence coding for a LMW (low-molecular-weight) glutenin subunit gene located at the
Glu-B3 locus), seven biochemical (six seed-storage protein loci and one isozyme locus) and seven morphological markers. A total
of 213 loci were mapped at a LOD≥3 on all 14 chromosomes of the A and B genomes. The total length of the map is 1352 cM and
the average distance between adjacent markers is 6.3 cM. Forty six loci could not be mapped at a LOD≥3. A fraction (18.6%)
of the markers deviated significantly from the expected Mendelian ratios; clusters of loci showing distorted segregation were
found on chromosomes 1B, 3AL, 4AL, 6AL and 7AL. The durum wheat map was compared with the published maps of bread wheat using
several common RFLP markers and general features are discussed. The markers detected the known structural rearrangements involving
chromosomes 4A, 5A and 7B as well as the translocation between 2B-6B, but not the deletion on 2BS. This map provides a useful
tool for analysing and breeding economically important quantitative traits and for marker-assisted selection, as well as for
studies of genome organisation in small grain cereal species.
Received: 5 January 1998 / Accepted: 31 March 1998 相似文献
10.
In many species, salt sensitivity is associated with the accumulation of sodium (Na(+)) in photosynthetic tissues. Na(+) uptake to leaves involves a series of transport steps and so far very few candidate genes have been implicated in the control of these processes. In this study, Na(+) transport was compared in two varieties of durum wheat (Triticum turgidum) L. subsp. durum known to differ in salt tolerance and Na(+) accumulation; the relatively salt tolerant landrace line 149 and the salt sensitive cultivar Tamaroi. Genetic studies indicated that these genotypes differed at two major loci controlling leaf blade Na(+) accumulation (R. Munns, G.J. Rebetzke, S. Husain, R.A. James, R.A. Hare [2003] Aust J Agric Res 54: 627-635). The physiological traits determined by these genetic differences were investigated using measurements of unidirectional (22)Na(+) transport and net Na(+) accumulation. The major differences in Na(+) transport between the genotypes were (1) the rate of transfer from the root to the shoot (xylem loading), which was much lower in the salt tolerant genotype, and (2) the capacity of the leaf sheath to extract and sequester Na(+) as it entered the leaf. The genotypes did not differ significantly in unidirectional root uptake of Na(+) and there was no evidence for recirculation of Na(+) from shoots to roots. It is likely that xylem loading and leaf sheath sequestration are separate genetic traits that interact to control leaf blade Na(+). 相似文献
11.
Andrzej K Noyszewski Farhad Ghavami Loai M Alnemer Ali Soltani Yong Q Gu Naxin Huo Steven Meinhardt Penny MA Kianian Shahryar F Kianian 《BMC genomics》2014,15(1)
Background
Wheat is an excellent plant species for nuclear mitochondrial interaction studies due to availability of large collection of alloplasmic lines. These lines exhibit different vegetative and physiological properties than their parents. To investigate the level of sequence changes introduced into the mitochondrial genome under the alloplasmic condition, three mitochondrial genomes of the Triticum-Aegilops species were sequenced: 1) durum alloplasmic line with the Ae. longissima cytoplasm that carries the T. turgidum nucleus designated as (lo) durum, 2) the cytoplasmic donor line, and 3) the nuclear donor line.Results
The mitochondrial genome of the T. turgidum was 451,678 bp in length with high structural and nucleotide identity to the previously characterized T. aestivum genome. The assembled mitochondrial genome of the (lo) durum and the Ae. longissima were 431,959 bp and 399,005 bp in size, respectively. The high sequence coverage for all three genomes allowed analysis of heteroplasmy within each genome. The mitochondrial genome structure in the alloplasmic line was genetically distant from both maternal and paternal genomes. The alloplasmic durum and the Ae. longissima carry the same versions of atp6, nad6, rps19-p, cob and cox2 exon 2 which are different from the T. turgidum parent. Evidence of paternal leakage was also observed by analyzing nad9 and orf359 among all three lines. Nucleotide search identified a number of open reading frames, of which 27 were specific to the (lo) durum line.Conclusions
Several heteroplasmic regions were observed within genes and intergenic regions of the mitochondrial genomes of all three lines. The number of rearrangements and nucleotide changes in the mitochondrial genome of the alloplasmic line that have occurred in less than half a century was significant considering the high sequence conservation between the T. turgidum and the T. aestivum that diverged from each other 10,000 years ago. We showed that the changes in genes were not limited to paternal leakage but were sufficiently significant to suggest that other mechanisms, such as recombination and mutation, were responsible. The newly formed ORFs, differences in gene sequences and copy numbers, heteroplasmy, and substoichiometric changes show the potential of the alloplasmic condition to accelerate evolution towards forming new mitochondrial genomes.Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-67) contains supplementary material, which is available to authorized users. 相似文献12.
The core of the VS ribozyme comprises five helices, that act either in cis or in trans on a stem-loop substrate to catalyse site-specific cleavage. The structure of the 2-3-6 helical junction indicates that a cleft is formed between helices II and VI that is likely to serve as a receptor for the substrate. Detailed analysis of sequence variants suggests that the base bulges of helices II and VI play an architectural role. By contrast, the identity of the nucleotides in the A730 loop is very important for ribozyme activity. The base of A756 is particularly vital, and substitution by any other nucleotide or ablation of the base leads to a major reduction in cleavage rate. However, variants of A756 bind substrate efficiently, and are not defective in global folding. These results suggest that the A730 loop is an important component of the active site of the ribozyme, and that A756 could play a key role in catalysis. 相似文献
13.
Fungal spores are an important component of library air 总被引:4,自引:0,他引:4
The airborne fungal spore types were studied in different libraries in Delhi, using an Andersen sampler and a Burkard personal
sampler, for culturable and non-culturable fungi respectively. The concentration inside the libraries, before and after the
agitation of books, were compared with outside air. The major contributors to the library air areCladosporium, aspergilli/penicillia, smuts andAlternaria, varying from 50 to 14%. Some fungi (Cladosporium, Alternaria, smut,Penicillium chrysogenum andnigricans) showed seasonal occurrence, corresponding to their occurrence in the extramural environment. Aspergilli/penicillia,Drechslera, Curvularia andAspergillus flavus had a significantly higher concentration (P<0.01) inside the library, and recorded a significant increase in concentration after agitation of books. Air-conditioned
libraries have low fungal spore concentrations, as compared to naturally ventilated libraries. 相似文献
14.
Westerberg R Månsson JE Golozoubova V Shabalina IG Backlund EC Tvrdik P Retterstøl K Capecchi MR Jacobsson A 《The Journal of biological chemistry》2006,281(8):4958-4968
During the recruitment process of brown adipose tissue, the mRNA level of the fatty acyl chain elongase Elovl3 is elevated more than 200-fold in cold-stressed mice. We have obtained Elovl3-ablated mice and report here that, although cold-acclimated Elovl3-ablated mice experienced an increased heat loss due to impaired skin barrier, they were unable to hyperrecruit their brown adipose tissue. Instead, they used muscle shivering in order to maintain body temperature. Lack of Elovl3 resulted in a transient decrease in the capacity to elongate saturated fatty acyl-CoAs into very long chain fatty acids, concomitantly with the occurrence of reduced levels of arachidic acid (C20:0) and behenic acid (C22:0) in brown adipose tissue during the initial cold stress. This effect on very long chain fatty acid synthesis could be illustrated as a decrease in the condensation activity of the elongation enzyme. In addition, warm-acclimated Elovl3-ablated mice showed diminished ability to accumulate fat and reduced metabolic capacity within the brown fat cells. This points to ELOVL3 as an important regulator of endogenous synthesis of saturated very long chain fatty acids and triglyceride formation in brown adipose tissue during the early phase of the tissue recruitment. 相似文献
15.
16.
The action of species cytoplasm specific (scs) gene(s) can be observed when a durum (Triticum turgidum L.) nucleus is placed in the Aegilops longissimum S. & M. cytoplasm. This alloplasmic combination, (lo) durum, results in nonviable progeny. A scs gene derived from T. timopheevii Zhuk. (scs(ti)) produced compatibility with the (lo) cytoplasm. The resulting hemizygous (lo) scs(ti)- durum line was male sterile and when crossed to normal durum produced a 1:1 ratio of plump, viable (PV) seeds with scs(ti) and shriveled inviable (SIV) seeds without scs(ti). In a systematic characterization of durum lines an unusual line was identified that when crossed to (lo) scs(ti)- produced all PV seeds. When planted these PV seeds segregated at a 1:1 ratio of normal vigor plants (NVPs) and low vigor plants (LVPs). The LVP senescence before full maturity. The NVPs were male sterile and when crossed to common durum lines resulted in all plump seeds that again segregated at a 1:1 ratio of NVPs to LVPs. The crosses of these NVPs to common durum lines resulted in a 1:1 ratio of PV to SIV seeds. This study was extended to 317 individuals segregating for scs(ti) and the new locus, derived from durum wheat (scs(d)), establishing the allelic relationship of these two genes. 相似文献
17.
Gliadins are seed storage proteins which are characterized by high intervarietal polymorphism and can be used as genetic markers. As a result of our work, a considerably extended catalogue of allelic variants of gliadin component blocks was compiled for durum wheat; 74 allelic variants for four gliadin-coding loci were identified for the first time. The extended catalogue includes a total of 131 allelic variants: 16 for locus Gli-A1(d), 19 for locus Gli-B1(d), 41 for locus Gli-A2(d), and 55 for locus Gli-B2(d). The electrophoretic pattern of the standard cultivar and a diagram are provided for every block identified. The number of alleles per family is quite small for loci Gli-A1(d) and Gli-B1(d) of durum wheat, as contrasted to loci Gli-A2(d) and Gli-B2(d) that are characterized by large families including many alleles. The presence of large block families determines a higher diversity of durum wheat for loci Gli-A2(d) and Gli-B2(d) as compared to Gli-A1(d) and Gli-B1(d). The catalogue of allelic variants of gliadin component blocks can be used by seed farmers to identify durum wheat cultivars and evaluate their purity; by breeders, to obtain homogenous cultivars and control the initial stages of selection; by gene bank experts, to preserve native varieties and the original biotypic composition of cultivars. 相似文献
18.
N. V. Melnikova O. P. Mitrofanova O. A. Liapounova A. M. Kudryavtsev 《Russian Journal of Genetics》2010,46(1):43-49
Genetic diversity for the alleles of gliadin-coding loci was studied with 465 durum wheat accessions from 42 countries. A total of 108 alleles were identified for four loci; 60 alleles were described for the first time. Broad diversity of rare gliadin-coding alleles was observed. The highest genetic diversity was characteristic of durum wheat accessions from the Middle East, Trans-Caucasia, the Pyrenean Peninsula, and the Balkans. Two genetically isolated ancient branches of durum wheat were isolated. A “southern” branch included mostly accessions from the Mediterranean region, the Middle East, and Trans-Caucasia. A “northern” branch included Russian and Ukrainian durum wheat accessions and varieties obtained on their basis. An additional group included durum wheat accessions that had been obtained in several past decades on the basis of the material of international breeding centers (CIMMYT and ICARDA) and had low genetic diversity. 相似文献
19.