首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transfer of metal resistance plasmids into two pseudomonad recipients, Pseudomonas aureofaciens and Ps. putida , from soil bacteria donor populations, was investigated in agricultural soil contaminated predominantly with Zn and Cu. The putative donor and recipient numbers on selective agar were not affected by the concentration of metals in the soils, nor were the number of transconjugants. However, there were differences in transfer frequencies of Hg and Cu resistance from the different soil samples. This is the first time that transfer of Cu resistance has been observed from native bacteria present in agricultural soils.  相似文献   

2.
重金属与农药污染的农业土壤脱毒过程研究进展   总被引:2,自引:0,他引:2  
于颖  周启星 《生态科学》2005,24(1):84-89
农业土壤环境自身脱毒过程是极其复杂的生态化学过程,对于土壤健康质量的维持和改善具有重要意义。然而,一直以来,人们对污染物的致毒过程研究得较多,对农业土壤自身脱毒能力及机制未给予足够重视。本文就农业土壤环境中,重金属与农药污染物的吸附脱毒、非生物降解(水解、光解)脱毒、微生物降解脱毒、土壤酶学脱毒、根际环境中的降解和转化脱毒以及植物富集固定进行了综述,并分析了各脱毒过程中所涉及到的反应机理。  相似文献   

3.
A site in central Taiwan with an area of 1.3 ha and contaminated with Cr, Cu, Ni, and Zn was selected to examine the feasibility of phytoextraction. Based on the results of a preexperiment at this site, a total of approximately 20,000 plants of 12 species were selected from plants of 33 tested species to be used in a large-area phytoextraction experiment at this site. A comparison with the initial metal concentration of 12 plant species before planting demonstrated that most species accumulated significant amounts of Cr, Cu, Ni, and Zn in their shoots after growing in this contaminated site for 31 d. Among the 12 plant species, the following accumulated higher concentrations of metals in their shoots; Garden canna and Garden verbena (45-60 mg Cr kg(-1)), Chinese ixora and Kalanchoe (30 mg Cu kg(-1)), Rainbow pink and Sunflower (30 mg Ni kg(-1)), French marigold and Sunflower (300-470 mg Zn kg(-1)). The roots of the plants of most of the 12 plant species can accumulate higher concentrations of metals than the shoots and extending the growth period promotes accumulation in the shoots. Large-area experiments demonstrated that phytoextraction is a feasible method to enable metal-contaminated soil in central Taiwan to be reused.  相似文献   

4.
重金属污染土壤原位化学固定修复研究进展   总被引:41,自引:0,他引:41  
重金属污染土壤原位化学固定修复是通过添加不同外源物质固定土壤中重金属元素,达到降低重金属迁移性和生物有效性的一种重要方法.由于操作方便和效果快速,使其在污染土壤治理过程中有着不可代替的作用,尤其对于耕作土壤中的面源污染.许多具有俘获土壤中重金属离子能力的自然物质和工业副产品如磷矿石、泥炭土、石灰和有机肥等都可用在实地的固定修复中.采用实验室评价和实地应用评价,一方面可以评估这些固定物质在土壤中对重金属离子的固定效率;另一方面可以评估重金属的溶出、释放和生物毒性等生态风险.本文对原位修复过程中采用的不同固定物质的来源和分类进行了概述,对化学固定过程的机理进行了探讨,同时阐述了重金属污染土壤化学固定修复应用过程中的实验室评价和实地应用评价方法,分析了化学固定修复的局限性并提出了今后的发展方向.  相似文献   

5.
《农业工程》2022,42(4):392-397
Phytoremediation is a low-cost but highly efficient and environmentally friendly technology for heavy metal soil remediation. However, its success in soils is dependent on the chosen plant and microbes. Moreover, the effect of mycorrhizal fungi and bacteria on CO2 release, mineralization rate, and metal translocation in cadmium and lead-contaminated cattails plant is unknown. The goal of the research was to look into the effects of bacteria, mycorrhiza, and cattails on CO2 release, mineralization rate, lead (Pb), and cadmium (Cd) removal from soil. The experiment used six different combinations (mycorrhiza, bacillus 10 mL, bacillus 100 mL, mycorrhiza + bacillus 10 mL, mycorrhiza + bacillus 100 mL, and control). The results showed that combining mycorrhiza with bacillus 100 mL resulted in greater increases in CO2 release, polysaccharides content and mineralization rate (2.84 mg CO2 g?1 in dry soil, 0.90 mg, 0.021 mg C g?1 dry soil day?1). More crucially, mycorrhiza + bacillus 100 mL roots had the greatest quantities of Cd and Pb (18.26 mg kg?1 and 155.22 mg kg?1), showing that bacteria had a prominent part in the phytoextraction process. Regarding Cd, the bacillus 100 mL had the highest translocation factor (TF) (3.99) and biological accumulation factor (BAF) (75.54), indicating effective translocation and excessive Cd accumulation in the plant. Bacillus 100 and mycorrhiza + bacillus 100 had the highest Pb TF (0.49) and BAF (6.08). Ultimately, the elimination of Cd and Pb was linked to the maximum bacterial cell density, mycorrhizal activity, and CO2 emission, resulting in a unique phytoremediation in Pb-Cd contaminated cattails rhizosphere soils.  相似文献   

6.
铅锌矿区土壤和植物重金属污染调查分析   总被引:25,自引:0,他引:25  
对有色金属矿区土壤和植物重金属污染状况调查结果表明,由于遭受尾矿砂及矿毒水污染,矿区土壤极端贫瘠,土壤中Pb、Cd、Zn和Cu含量分别达764.74、4.10、372.75和95.57 mg.kg-1,重金属污染较为严重。在矿区周边有9种优势植物能够在污染土壤上定居,对Cu、Cd、Pb和Zn 4种重金属元素均有不同程度的积累,积累量均未达到超累积植物所规定的临界含量。其中的野菊花〔Dendranthema indicum(L.)Des Mou l.〕、旋鳞莎草〔Cyperusm ichelianus(L.)L ink〕、五节芒〔M iscanthus floridulus(Lab ill.)W arb.ex Schum.et Laut.〕3种植物地上部生物量较大且对某些重金属向地上部转运能力较强,对重金属污染土壤有一定的修复潜力。  相似文献   

7.
Products of the reaction between dialdehyde starch and Y-NH2 compounds (e.g. semicarbazide or hydrazine) are effective ligands for metal ions. The usefulness of these derivatives was tested in the experiment, both in terms of the immobilization of heavy metal ions in soil and the potential application in phytoextraction processes. The experimental model comprised maize and the ions of such metals as: Zn(II), Pb(II), Cu(II), Cd(II), and Ni(II). The amount of maize yield, as well as heavy metal content and uptake by the aboveground parts and roots of maize, were studied during a three-year pot experiment. The results of the study indicate the significant impact of heavy metals on reduced yield and increased heavy metal content in maize. Soil-applied dialdehyde starch derivatives resulted in lower yields, particularly disemicarbazone (DASS), but in heavy metal-contaminated soils they largely limited the negative impact of these metals both on yielding and heavy metal content in plants, particularly dihydrazone (DASH). It was demonstrated that the application of dihydrazone (DASH) to a soil polluted with heavy metals boosted the uptake of Zn, Pb, Cu, and Cd from the soil, hence there is a possibility to use this compound in the phytoextraction of these metals from the soil. Decreased Ni uptake was also determined, hence the possibility of using this compound in the immobilization of this metal. The study showed that dialdehyde starch disemicarbazone was ineffective in the discussed processes.  相似文献   

8.
Interactions of lichens with heavy metals   总被引:1,自引:0,他引:1  
Recent developments in knowledge about the interactions between lichens and heavy metals at different levels, from populations to cells and from ecology to molecular biology are reviewed. Sources of heavy metals, mechanisms of heavy metal accumulation and detoxification by lichens are discussed. Special emphasis is placed on ultrastructural changes as well as physiological parameters such as membrane integrity, pigment composition, chlorophyll a fluorescence, photosynthesis, respiration, contents of ATP, amino acids, ergosterol, ethylene, non-protein thiols, activity of antioxidant enzymes and expression of stress proteins.  相似文献   

9.
重金属污染土壤修复技术研究的现状与展望   总被引:149,自引:4,他引:149  
目前重金属污染土壤的修复主要采用物理化学技术和植物修复技术,根据其作用和过程和机物,物理化学技术主要包括化学固化,土壤淋洗和动电修复;植物修复技术包括植物稳定,植物挥发和植物提取,本文就各种修复技术的原理,优缺点,实用性及其国际研究与发展动态作一简述。  相似文献   

10.
Abstract

The accumulation of heavy metals in soil is a serious environmental problem. The risk of metals in soil is associated critically with their species. Operationally determined speciation analysis of Cr, Mn, Ni, Cu, Zn, Sb, Cd and Pb was carried out in the area of non-ferrous metals-smelting in the North China Plain, using inductively coupled plasma-mass spectroscopy after sequential chemical extraction. The average potential mobility fraction was calculated. The average potential mobility of the metals had the following order: Cd(44.7%) > Pb(29.6%) > Mn(14.8%) > Zn(12.5%) > Cu(5.9%) > Sb(5.0%) > Ni(2.1%) > Cr(0.8%). It is concluded that there is a distinct spatial heterogeneity in the concentration of heavy metals in the studied area. The results indicate that the polluting heavy metals, in particular Cd and Pb, have high potential mobility.  相似文献   

11.
CaSO3 is a by-product formed by several of the processes used for scrubbing SO2 from flue gas produced by coal-burning power generators. Using CaSO3 to improve the calcium status of acid soils would be a beneficial alternative to disposal in landfills. CaSO3 has biocidal properties and is used as a disinfectant and food and drink preservative. It is important to evaluate under what conditions application to soils would not harm plant growth. Laboratory experiments confirmed that two transformations of CaSO3 occurred in soil systems: (1) decomposition to produce SO2 gas, and (2) oxidation to calcium sulfate. Conversion to SO2 occurred in solution and soil at low pH, and acid soils treated with CaSO3 were initially toxic to seedling root growth. The degree of toxicity was time-dependent, with reduction in toxicity occurring as CaSO3 oxidized to calcium sulfate. Soil reaction also influenced toxicity, and at soil pH levels above 6, little seedling toxicity was evident.  相似文献   

12.
The potential of wetland plants as an onsite biosorbent and a biomonitor for combined pollution of arsenic and four heavy metals from non‐point sources was investigated in this study. Ceratophyllum demersum, Hydrilla verticillata, Hydrocharis dubia, and Salvinia natans were exposed to a water containing mixture of As, Cr, Cu, Pb, and Zn. Growth inhibition and biosorption potential of the wetland plants in artificially contaminated conditions were studied. These contaminants significantly reduced the growth of the plants. The tested wetland plants accumulated appreciable amounts of the contaminants in the following order: Pb>Cr>Cu>Zn>As. H. verticillata showed distinct visual change and a high biosorption factor (BSF) rank for As and heavy metals among the plants used in the study. As an unspecific collector of contaminants, it might be useful as a biomonitor and biosorbent in the As and heavy metal‐contaminated aquatic system.  相似文献   

13.
The aim of this work was to study the colonization of indigenous arbuscular mycorrhizal fungi (AMF) species in fine-roots of poplar clones. Roots of 7 poplar clones were sampled from a 1-year-old trial established at an industrial site strongly polluted with heavy metals at Balatonfuzfo, Hungary. The poplar clones have shown variable degrees of colonization by AMF, suggesting differential host susceptibility or mycorrhizal dependency. After outplanting the percentage of poplar survival was strongly correlated with the frequency of AMF infection. Two clones that survived at the lowest ratio after outplanting had not been colonized by AMF in contrast to those which survived to a much higher extent.  相似文献   

14.
铜尾矿库区土壤与植物中重金属形态分析   总被引:23,自引:2,他引:21  
对铜陵铜尾矿区土壤和植物中重金属形态进行了研究.结果表明,尾矿库区种植地极端贫瘠,有机质含量仅2.6~.8 g·kg-1,而土壤Cu、Cd、Pb、Zn含量皆高于对照土壤,其中Cu含量达809.30~1 39.4 mg·kg-1,Cd含量达3.2~6.3 mg·kg-1,达到对照土壤30~60倍.结缕草和三叶草体内重金属含量与土壤重金属交换态及有机结合态含量成正相关,与碳酸盐结合态、铁锰氧化物结合态成显著或极显著负相关,与矿物态含量相关性不显著.在两种优势植物中,Cu、Zn、Pb均以活性较低的醋酸提取态、盐酸提取态和残渣态为主;Zn在根系和茎叶中,NaCl提取态占有较大比例,而Cd均以NaCl提取态为主.  相似文献   

15.
重金属污染土壤植物修复基本原理及强化措施探讨   总被引:88,自引:11,他引:88  
阐述了植物修复的基本概念及主要作用方式 ,并从土壤中重金属存在形态 ,植物对重金属吸收、排泄和积累以及植物生物学特性与植物修复的关系等方面讨论了重金属污染土壤植物修复的基本原理及局限性和限制性因素 ,从超富集植物性能强化和技术强化两方面探讨了植物修复的强化措施 ,并指出与现代化农业技术相结合是植物修复重金属污染土壤大规模商业应用的一条捷径  相似文献   

16.
Abstract

We present a novel constructed wetland called a vegetable depuration module (VDM) as a pilot test of a bioremediation system (BS) for decontaminating water and soil polluted with heavy metals. The VDM consisted of a pool filled with stones of different granulometry and a substrate top layer composed of a mixture of soil and volcanic ash (50:50, v/v) supplemented with 350?ppm Zn. The BS of sunflower plants colonized by the arbuscular mycorrhizal fungus Rhizophagus intraradices was planted in the VDM. Initially, the substrate registered high concentrations of Zn, Cr, Mn, Cu, and Sr, and had Eh > +500?mV and pH 8.4. Irrigation with a Cu solution by vertical flow was carried out. After 3?months, bioaccumulation factors ranged from 1.00 to 8.90, and translocation rates were >1 for Sr and Cu. Total metals extracted by the BS and percolation were 31%, 34%, 50%, 45%, and 57% for Zn, Cu, Mn, Cr, and Sr, respectively. Only the BS was capable of extracting 94% of Cu and 38% of Zn. VDM allowed us to calibrate the extractive performance of the studied elements in BS. This biotechnological development holds great potential for phytoremediation of polluted areas.  相似文献   

17.
For the sake of cost and potential environmental risk, it is necessary to minimize the amount of chelants used in chemically enhanced phytoextraction. In the present study, a biodegradable chelating agent, EDDS was added in a hot solution at 90°C to the soil in which garland chrysanthemum (Chrysanthemum coronarium L.) and beans (Phaseolus vulgaris L., white bean) were growing. The application of hot chelant solutions was much more efficient than the application of normal chelant solutions (25°C) in improving the uptake of heavy metals by plants. When 1 mmol kg−1 of EDDS as a hot solution was applied to soil, the concentrations of Cu, Zn and Cd and the total phytoextraction by the shoots of the two plant species exceeded or approximated those in the shoots of plants treated with 5 mmol kg−1 of normal EDTA solution. The concentrations of metals in the shoots of beans were significantly correlated with the relative electrolyte leakage rate of root cells, indicating that the root damage resulting from the hot solution might play an important role in the process of chelant-enhanced metal uptake. The soil leaching study demonstrated that decreasing the dosage of chelant resulted in decreased concentrations of soluble metals in soils. On the 28th day following the application of chelant, the concentrations of soluble metals in the EDDS treated soil were not significantly different from the concentrations in the control soil to which chelants had not been applied. The application of biodegradable EDDS in hot solutions to soil may be an efficient alternative in chemically-enhanced phytoextraction to increase metal removal and to reduce possible leaching.Section Editor: J. Barcelo  相似文献   

18.
Phytoextraction of metals and metalloids from contaminated soils   总被引:63,自引:0,他引:63  
The removal of inorganic contaminants by plants is termed phytoextraction. Recent studies have looked at the feasibility of phytoextraction, and demonstrate that both good biomass yields and metal hyperaccumulation are required to make the process efficient. Adding chelating agents to soil to increase the bioavailability of contaminants can sometimes induce hyperaccumulation in normal plants, but may produce undesirable environmental risks. Thus, it is necessary to investigate the mechanisms responsible for hyperaccumulation, using natural hyperaccumulators as model plant species. Recent advances have been made in understanding the mechanisms responsible for hyperaccumulation of Zn, Cd, Ni and As by plants. Attempts to engineer metal tolerance and accumulation have so far been limited to Hg, As and Cd, and although promising results have been obtained they may be some way from practical application. More fundamental understanding of the traits and mechanisms involved in hyperaccumulation are needed so that phytoextraction can be optimised.  相似文献   

19.
  1. Download : Download high-res image (166KB)
  2. Download : Download full-size image
  相似文献   

20.
入侵植物与重金属胁迫的相互作用研究进展 全球变化改变了植物群落的分布格局,包括入侵植物,而人为污染可能降低本地植物对入侵植物的抗性。因此,本文总结了近几十年本地植物、入侵植物和植物-土壤生态系统中重金属生物地球化学行为的研究,以加深我们对入侵植物与环境胁迫因子相互作用的认识。我们的研究结合已有文献报道表明:(i)入侵物种对环境胁迫的影响具有异质性, (ii)影响的大小是多变的, (iii)即使在同一影响类型内,影响类型也具有多向性。然而,入侵植物暴露在重金属环境中表现出更强的自我保护机制,对重金属的生物可利用性和毒性有正向或负向的影响。另一方面,由于入侵植物普遍具有较高的耐受性,加之本地植物暴露于有毒重金属污染时具有“逃逸行为”,重金属胁迫环境更有利于植物的成功入侵。但是,对于入侵植物的重金属等元素组成是否与污染地区的本地植物不同,目前尚无共识。因此,在全球范围内对外来入侵植物与本土植物的植物体内、凋落物和土壤污染物含量进行定量比较是今后研究的一个重要方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号