首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heme A, a prosthetic group of cytochrome c oxidase [EC 1.9.3.1], has been introduced into two de novo designed four helix bundle proteins, [H10A24](2) and [H10H24](2), known to bind 2-4 equiv of heme B, respectively [Robertson, D. E., Farid, R. S., Moser, C. C., Mulholland, S. E., Pidikiti, R., Lear, J. D., Wand, A., J., DeGrado, W. F., and Dutton, P. L. (1994) Nature 368, 425-432]. [H10A24](2), [Ac-CGGGELWKL x HEELLKK x FEELLKL x AEERLKK x L-CONH(2)](2)(2), binds two heme A molecules per four-helix unit via bis-histidine ligation at the 10,10' positions with measured K(d) values of <0.1 and 5 nM, values much lower than those measured for heme B (K(d) values of 50 and 800 nM). The heme A-protein complex, [heme A-H10A24](2), exhibits well-defined absorption spectra in both the ferric and ferrous states, and an electron paramagnetic resonance spectrum characteristic of a low spin heme in the ferric form. A single midpoint redox potential (E(m8)) was determined for [heme A-H10A24](2) at -45 mV (vs SHE), which is significantly higher than that of the protein bound heme B (-130 and -200 mV). The observation of a single midpoint redox potential for [heme A-H10A24](2) and a pair of midpoints for [heme B-H10A24](2) indicates that the di-alpha-helical monomers are oriented in an anti topology (disulfides on opposite sides of bundle) in the former (lacking heme-heme electrostatic interaction) and syn in the latter. A mixture of global topologies was indicated by the potentiometric titration of the related [heme A-H10H24](2) which possess two distinct reduction potentials of +41 (31%) and -65 mV (69%). Self-assembly of the mixed cofactor heme A-heme B-[H10A24](2) was accomplished by addition of a single equivalent of each heme A and heme B to [H10A24](2). The single midpoint redox potential of heme B, E(m8) = -200 mV, together with the split midpoint redox potential of heme A in heme A-heme B-[H10A24](2), E(m8) = +28 mV (33%) and -65 mV (67%), indicated the existence of both syn and anti topologies of the two di-alpha-helical monomers in this four helix bundle. Synthesis of the mixed cofactor [heme A-heme B-H10H24](2) was accomplished by addition of a 2 equiv of each heme A and heme B to [H10H24](2) and potentiometry indicated the pair of hemes B resided in the 10,10' sites and heme A occupied the 24,24' sites. The results indicate that heme peripheral structure controls the orientation of the di-alpha-helical monomers in the four-helix bundle which are interchangeable between syn and anti topologies. In the reduced form, [heme A-H10A24](2), reacts quantitatively to form [carbonmonoxy-heme A-H10A24](2) as evidenced by optical spectroscopy. The synthetic [heme A-H10A24](2) can be enzymatically reduced by NAD(P)H with natural reductases under anaerobic conditions, and reversibly oxidized by dioxygen to the ferric form.  相似文献   

2.
Shifman JM  Gibney BR  Sharp RE  Dutton PL 《Biochemistry》2000,39(48):14813-14821
The effects of various mechanisms of metalloporphyrin reduction potential modulation were investigated experimentally using a robust, well-characterized heme protein maquette, synthetic protein scaffold H10A24 [?CH(3)()CONH-CGGGELWKL.HEELLKK.FEELLKL.AEERLKK. L-CONH(2)()?(2)](2). Removal of the iron porphyrin macrocycle from the high dielectric aqueous environment and sequestration within the hydrophobic core of the H10A24 maquette raises the equilibrium reduction midpoint potential by 36-138 mV depending on the hydrophobicity of the metalloporphyrin structure. By incorporating various natural and synthetic metalloporphyrins into a single protein scaffold, we demonstrate a 300-mV range in reduction potential modulation due to the electron-donating/withdrawing character of the peripheral macrocycle substituents. Solution pH is used to modulate the metalloporphyrin reduction potential by 160 mV, regardless of the macrocycle architecture, by controlling the protonation state of the glutamate involved in partial charge compensation of the ferric heme. Attempts to control the reduction potential by inserting charged amino acids into the hydrophobic core at close proximity to the metalloporphyrin lead to varied success, with H10A24-L13E lowering the E(m8.5) by 40 mV, H10A24-E11Q raising it by 50 mV, and H10A24-L13R remaining surprisingly unaltered. Modifying the charge of the adjacent metalloporphyrin, +1 for iron(III) protoporphyrin IX or neutral for zinc(II) protoporphyrin IX resulted in a loss of 70 mV [Fe(III)PPIX](+) - [Fe(III)PPIX](+) interaction observed in maquettes. Using these factors in combination, we illustrate a 435-mV variation of the metalloporphyrin reduction midpoint potential in a simple heme maquette relative to the about 800-mV range observed for natural cytochromes. Comparison between the reduction potentials of the heme maquettes and other de novo designed heme proteins reveals global trends in the E(m) values of synthetic cytochromes.  相似文献   

3.
The effects of histidine residue placement in a de novo-designed four-alpha-helix bundle are investigated by placement of histidine residues at coiled coil heptad a positions in two distinct heptads and at each position within a single heptad repeat of our prototype heme protein maquette, [H10H24]2 [[Ac-CGGGELWKL x HEELLKK x FEELLKL x HEERLKK x L-CONH2]2]2 composed of a generic (alpha-SS-alpha)2 peptide architecture. The heme to peptide stoichiometry of variants of [H10H24]2 with either or both histidines on each helix replaced with noncoordinating alanine residues ([H10A24]2, [A10H24]2, and [A10A24]2) demonstrates the obligate requirement of histidine for biologically significant heme affinity. Variants of [A10A24]2, [[Ac-CGGGELWKL x AEELLKK x FEELLKL x AEERLKK x L-CONH2]2]2, containing a single histidine per helix in positions 9 to 15 were evaluated to verify the design based on molecular modeling. The bis-histidine site formed between heptad positions a at 10 and 10' bound ferric hemes with the highest affinity, Kd1 and Kd2 values of 1.5 and 800 nM, respectively. Placement of histidine at position 11 (heptad position b) resulted in a protein that bound a single heme with moderate affinity, Kd1 of 9.5 microM, whereas the other peptides had no measurable apparent affinity for ferric heme with Kd1 values >200 microM. The bis-histidine ligation of heme to [H10A24]2 and [H11A24]2 was confirmed by electron paramagnetic resonance spectroscopy. The protein design rules derived from this study, together with the narrow tolerances revealed, are applicable for improving future heme protein designs, for analyzing the results of randomized heme protein combinatorial libraries, as well as for implementation in automated protein design.  相似文献   

4.
Maquettes are de novo designed mimicries of nature used to test the construction and engineering criteria of oxidoreductases. One type of scaffold used in maquette construction is a four-alpha-helical bundle. The sequence of the four-alpha-helix bundle maquettes follows a heptad repeat pattern typical of left-handed coiled-coils. Initial designs were molten globular due partly to the minimalist approach taken by the designers. Subsequent iterative redesign generated several structured scaffolds with similar heme binding properties. Variant [I(6)F(13)](2), a structured scaffold, was partially resolved with NMR spectroscopy and found to have a set of mobile inter-helical packing interfaces. Here, the X-ray structure of a similar peptide ([I(6)F(13)M(31)](2) i.e. ([CGGG EIWKL HEEFLKK FEELLKL HEERLKKM](2))(2) which we call L31M), has been solved using MAD phasing and refined to 2.8A resolution. The structure shows that the maquette scaffold is an anti-parallel four-helix bundle with "up-up-down-down" topology. No pre-formed heme-binding pocket exists in the protein scaffold. We report unexpected inter-helical crossing angles, residue positions and translations between the helices. The crossing angles between the parallel helices are -5 degrees rather than the expected +20 degrees for typical left-handed coiled-coils. Deviation of the scaffold from the design is likely due to the distribution and size of hydrophobic residues. The structure of L31M points out that four identical helices may interact differently in a bundle and heptad repeats with an alternating [HPPHHPP]/[HPPHHPH] (H: hydrophobic, P: polar) pattern are not a sufficient design criterion to generate left-hand coiled-coils.  相似文献   

5.
Heme a is a redox cofactor unique to cytochrome c oxidases and vital to aerobic respiration. Heme a differs from the more common heme b by two chemical modifications, the C-8 formyl group and the C-2 hydroxyethylfarnesyl group. The effects of these porphyrin substituents on ferric and ferrous heme binding and electrochemistry were evaluated in a designed heme protein maquette. The maquette scaffold chosen, [Delta7-H3m](2), is a four-alpha-helix bundle that contains two bis(3-methyl-l-histidine) heme binding sites with known absolute ferric and ferrous heme b affinities. Hemes b, o, o+16, and heme a, those involved in the biosynthesis of heme a, were incorporated into the bis(3-methyl-l-histidine) heme binding sites in [Delta7-H3m](2). Spectroscopic analyses indicate that 2 equiv of each heme binds to [Delta7-H3m](2), as designed. Equilibrium binding studies of the hemes with the maquette demonstrate the tight affinity for hemes containing the C-2 hydroxyethylfarnesyl group in both the ferric and ferrous forms. Coupled with the measured equilibrium midpoint potentials, the data indicate that the hydroxyethylfarnesyl group stabilizes the binding of both ferrous and ferric heme by at least 6.3 kcal/mol via hydrophobic interactions. The data also demonstrate that the incorporation of the C-8 formyl substituent in heme a results in a 179 mV, or 4.1 kcal/mol, positive shift in the heme reduction potential relative to heme o due to the destabilization of ferric heme binding relative to ferrous heme binding. The two substituents appear to counterbalance each other to provide for tighter heme a affinity relative to heme b in both the ferrous and ferric forms by at least 6.3 and 2.1 kcal/mol, respectively. These results also provide a rationale for the reaction sequence observed in the biosynthesis of heme a.  相似文献   

6.
In the thermophilic cytochrome P450 from the thermoacidophilic crenarchaeon Sulfolobus tokodaii strain 7 (P450st), a phenylalanine residue at position 310 and an alanine residue at position 320 are located close to the heme thiolate ligand, Cys317. Single site-directed mutants F310A and A320Q and double mutant F310A/A320Q have been constructed. All mutant enzymes as well as wild-type (WT) P450st were expressed at high levels. The substitution of F310 with Ala and of A320 with Gln induced shifts in redox potential and blue shifts in Soret absorption of ferrous-CO forms, while spectral characterization showed that in the resting state, the mutants almost retained the structural integrity of the active site. The redox potential of the heme varied as follows: -481 mV (WT), -477 mV (A320Q), -453 mV (F310A), and -450 mV (F310A/A320Q). The trend in the Soret band of the ferrous-CO form was as follows: 450 nm (WT) < 449 nm (A320Q) < 446 nm (F310A) < 444 nm (F310A/A320Q). These results established that the reduction potential and electron density on the heme iron are modulated by the Phe310 and Ala320 residues in P450st. The electron density on the heme decreases in the following order: WT > A320Q > F310A > F310A/A320Q. The electron density on the heme iron infers an essential role in P450 activity. The decrease in electron density interferes with the formation of a high-valent oxo-ferryl species called Compound I. However, steady-state turnover rates of styrene epoxidation with H2O2 show the following trend: WT approximately equal to A320Q < F310A approximately equal to F310A/A320Q. The shunt pathway which can provide the two electrons and oxygen required for a P450 reaction instead of NAD(P)H and dioxygen can rule out the first and second heme reduction in the catalytic process. Because the electron density on the heme iron might be deeply involved in the k cat values in this system, the intermediate Compound 0 which is the precursor species of Compound I mainly appears to participate dominantly in epoxidation with H2O2.  相似文献   

7.
Site-directed mutants of the phylogenetically conserved phenylalanine residue F393 were constructed in flavocytochrome P450 BM3 from Bacillus megaterium. The high degree of conservation of this residue in the P450 superfamily and its proximity to the heme (and its ligand Cys400) infers an essential role in P450 activity. Extensive kinetic and thermodynamic characterization of mutant enzymes F393A, F393H, and F393Y highlighted significant differences from wild-type P450 BM3. All enzymes expressed to high levels and contained their full complement of heme. While the reduction and subsequent treatment of the mutant P450s with carbon monoxide led to the formation of the characteristic P450 spectra in all cases, the absolute position of the Soret absorption varied across the series WT/F393Y (449 nm), F393H (445 nm), and F393A (444 nm). Steady-state turnover rates with both laurate and arachidonate showed the trend WT > F393Y > F393H > F393A. Conversely, the trend in the pre-steady-state flavin-to-heme electron transfer was the reverse of the steady-state scenario, with rates varying F393A > F393H > F393Y approximately wild-type. These data are consistent with the more positive substrate-free [-312 mV (F393A), -332 mV (F393H)] and substrate-bound [-151 mV (F393A), -176 mV (F393H)] reduction potentials of F393A and F393H heme domains, favoring the stabilization of the ferrous-form in the mutant P450s relative to wild-type. Elevation of the heme iron reduction potential in the F393A and F393H mutants facilitates faster electron transfer to the heme. This results in a decrease in the driving force for oxygen reduction by the ferrous heme iron, so explaining lower overall turnover of the mutant P450s. We postulate that the nature of the residue at position 393 is important in controlling the delicate equilibrium observed in P450s, whereby a tradeoff is established between the rate of heme reduction and the rate at which the ferrous heme can bind and, subsequently, reduce molecular oxygen.  相似文献   

8.
Gibson HR  Mowat CG  Miles CS  Li BR  Leys D  Reid GA  Chapman SK 《Biochemistry》2006,45(20):6363-6371
The diheme cytochrome c (DHC) from Rhodobacter sphaeroides is a soluble protein with a mass of 16 kDa that represents a new class of c-type cytochrome [Vandenberghe, I., et al. (1998) Biochemistry 37, 13075-13081]. The gene encoding DHC is associated with another encoding a cytochrome known as SHP (sphaeroides heme protein). It is believed that DHC is the electron donor for SHP, which is known to bind oxygen. To gain further insight into the properties and role of DHC, we have carried out structure-function studies on the protein and examined its interaction with SHP. The crystal structures of native and recombinant DHC have been determined to resolutions of 1.85 and 2.0 A, respectively. The structures show that DHC folds into two distinct domains each containing one heme. While the N-terminal domain is a class I cytochrome c, the C-terminal domain shows no similarity to any existing structures and thus constitutes a novel cytochrome c structural motif. The shortest, edge-to-edge, distance between the heme groups is 10.2 A, and this distance is bridged by Tyr31, thus ensuring fast internal electron transfer. DHC binds strongly to its proposed physiological partner, SHP (K(d) = 0.26 microM in 10 mM HEPES at pH 7.2 and 25 degrees C). However, at higher salt concentrations, the binding becomes much weaker, indicating the importance of electrostatic interactions. DHC is also very efficient in electron transfer to SHP with a second-order rate constant of 1.8 x 10(7) M(-)(1) s(-)(1) (at pH 7.2, 10 degrees C, and I = 500 mM). The reduction potentials of DHC and SHP are also suitably ordered for a favorable reaction with the hemes of DHC showing potentials of -310 and -240 mV, respectively, and that for SHP being -105 mV. These potentials are unaltered upon complex formation.  相似文献   

9.
An EPR redox titration was performed on the tetraheme cytochrome c3 isolated from Desulfovibrio baculatus (strain 9974), a sulfate-reducer. Using spectral differences at different poised redox states of the protein, it was possible to individualize the EPR g-values of each of the four hemes and also to determine the mid-point redox potentials of each individual heme: heme 4 (-70 mV) at gmax = 2.93, gmed = 2.26 and gmin = 1.51; heme 3 (-280 mV) at gmax = 3.41; heme 2 (-300 mV) at gmax = 3.05, gmed = 2.24 and gmin = 1.34; and heme 1 (-355 mV) at gmx = 3.18. A previously described multi-redox equilibria model used for the interpretation of NMR data of D. gigas cytochrome c3 [Santos, H., Moura, J.J.G., Moura, I., LeGall, J. & Xavier, A. V. (1984) Eur. J. Biochem. 141, 283-296] is discussed in terms of the EPR results.  相似文献   

10.
Discher BM  Noy D  Strzalka J  Ye S  Moser CC  Lear JD  Blasie JK  Dutton PL 《Biochemistry》2005,44(37):12329-12343
We have designed polypeptides combining selected lipophilic (LP) and hydrophilic (HP) sequences that assemble into amphiphilic (AP) alpha-helical bundles to reproduce key structure characteristics and functional elements of natural membrane proteins. The principal AP maquette (AP1) developed here joins 14 residues of a heme binding sequence from a structured diheme-four-alpha-helical bundle (HP1), with 24 residues of a membrane-spanning LP domain from the natural four-alpha-helical M2 channel of the influenza virus, through a flexible linking sequence (GGNG) to make a 42 amino acid peptide. The individual AP1 helices (without connecting loops) assemble in detergent into four-alpha-helical bundles as observed by analytical ultracentrifugation. The helices are oriented parallel as indicated by interactions typical of adjacent hemes. AP1 orients vectorially at nonpolar-polar interfaces and readily incorporates into phospholipid vesicles with >97% efficiency, although most probably without vectorial bias. Mono- and diheme-AP1 in membranes enhance functional elements well established in related HP analogues. These include strong redox charge coupling of heme with interior glutamates and internal electric field effects eliciting a remarkable 160 mV splitting of the redox potentials of adjacent hemes that leads to differential heme binding affinities. The AP maquette variants, AP2 and AP3, removed heme-ligating histidines from the HP domain and included heme-ligating histidines in LP domains by selecting the b(H) heme binding sequence from the membrane-spanning d-helix of respiratory cytochrome bc(1). These represent the first examples of AP maquettes with heme and bacteriochlorophyll binding sites located within the LP domains.  相似文献   

11.
It has been reported that the R183E and R183D mutants of rat heme oxygenase-1 (r-HO-1) produce approximately 30% delta-biliverdin [Zhou, H., et al. (2000) J. Am. Chem. Soc. 122, 8311-8312]. Two plausible mechanisms were proposed to explain the observations. (a) Electrostatic repulsion between E183 (D183) and one of the heme propionates forces the heme to rotate, thereby placing the delta-meso carbon in a position that is susceptible to oxidation. (b) Rearrangement of the distal pocket structure is triggered by the formation of a hydrogen bond between E183 (D183) and K179. A change in the pK(a) for the Fe(III)-H(2)O to Fe(III)-OH transition of the mutants was interpreted to be consistent with rearrangement of the hydrogen bond network in the distal pocket. The large similarities between the high-frequency portion of the (1)H NMR spectra corresponding to the wild type and R183E and R183D mutants were interpreted to indicate that the heme in the mutants is not rotated to a significant extent. We have re-examined this issue by studying the corresponding R177 mutants in heme oxygenase from Corynebacterium diphtheriae (cd-HO). Replacing R177 with E or D results in the formation of approximately 55% alpha- and 45% delta-biliverdin, whereas the R177A mutant retains alpha-regioselectivity. In addition, the K13N/Y130F/R177A triple mutant catalyzed the formation of 60% delta- and 40% alpha-biliverdin, while single mutants K13N and Y130F did not appreciably change the regioselectivity of the reaction. The pK(a) of the Fe(III)-H(2)O to Fe(III)-OH transition in wild-type cd-HO is 9.1, and those of the R177E, R177D, R177A, and K13N/Y130F/R177A mutants are 9.4, 9.5, 9.2, and 8.0, respectively. Thus, no obvious correlation exists between the changes in pK(a) and the altered regioselectivity. NMR spectroscopic studies conducted with the R177D and R177E mutants of cd-HO revealed the presence of three heme isomers: a major (M) and a minor (m) heme orientational isomer related by a 180 degrees rotation about the alpha-gamma meso axis and an alternative seating (m') which is related to m by an 85 degrees in-plane rotation of the macrocycle. The in-plane rotation of m to acquire conformation m' is triggered by electrostatic repulsion between the side chains of D or E at position 177 and heme propionate-6. As a consequence, the delta-meso carbon in m' is placed in the position occupied by the alpha-meso carbon in m, where it is susceptible to hydroxylation and subsequent formation of delta-biliverdin.  相似文献   

12.
C J Kay  E W Lippay 《Biochemistry》1992,31(46):11376-11382
Kinetic and thermodynamic properties of yeast flavocytochrome b2 (EC 1.1.2.3) are modified by the product pyruvate, which binds to the flavosemiquinone (FSQ) form of the prosthetic flavin and decreases the thermodynamic driving force for electron transfer from FSQ to heme. Pyruvate inhibits flavocytochrome b2, but the catalytic competence of pyruvate-ligated FSQ in intramolecular electron transfer to heme is unclear; one kinetic study suggested pyruvate prevented this reaction [Tegoni, M, Janot J.-M., & Labeyrie, F. (1990) Eur. J. Biochem. 190, 329-342], while laser flash photolysis indicated pyruvate was essential [Walker, M. C., & Tollin, G. (1991) Biochemistry 30, 5546-5555]. To address this problem, wild-type (WT) and mutant (L36I) flavocytochromes b2 have been expressed in Escherichia coli. Both forms incorporated heme and FMN prosthetic groups and were catalytically active. The mutation L36I was a conservative substitution within the heme-binding crevice and was designed to alter the midpoint potential (Em) of the heme to alter the pyruvate-FSQ/heme equilibrium. Potentiometric titrations yielded Em values (pH 7.0, 25 degrees C) of +8 and -28 mV for WT and L36I forms, respectively. The FMN midpoint potentials in the absence of pyruvate (-58 mV, n = 2) were identical within experimental error in WT and L36I species and were also identical (+5 mV, n = 1) in the presence of pyruvate. These results indicated the absence of redox cooperativity between FMN and heme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Kinetics of hemoprotein reduction and interprotein heme transfer   总被引:2,自引:0,他引:2  
The transfer of hemin from one protein to another is an event biologically important for the conservation of heme iron. Hemin entering the circulation (or added to serum) is mainly bound by albumin and then transferred to hemopexin [Morgan, W.T., Liem, H.H., Sutor, R.P., & Muller-Eberhard, U. (1976) Biochim. Biophys. Acta 444, 435-445], and we are now investigating which mechanisms may be operative in enhancing this process. The presence of imidazole has been demonstrated to accelerate hemin transfer from albumin to hemopexin [Pasternack, R.F., Gibbs, E.J., Hoeflin, E., Kosar, W.P., Kubera, G., Skowronek, C. A., Wong, N.M., & Muller-Eberhard, U. (1983) Biochemistry 22, 1753-1758]. The present work is an examination of the effect of the reduction of albumin-bound hemin on the rate of its transfer to hemopexin. Hemin (HmIII., ferriprotoporphyrin IX) was reduced to HmII (ferroprotoporphyrin IX) by the addition of sodium dithionite under argon. The reduction kinetics of HmIII to HmII were studied separately in the two complexes: with human serum albumin (HSA), which binds up to 20 mol of heme/mol (the first mole with K congruent to 10(8)), and with hemopexin (HHx), which binds heme equimolarly (K congruent to 10(13)). The rate of reduction of HmIII to HmII on HSA was first order over several half-lives and linearly dependent on [S2O4(2-)]1/2. At [HSA]0/[HmIII] = 3, the kobsd was (5 X 10(-3) + 0.75[S2O4(2-)]1/2, and with [HSA]/[HmIII] approximately 25, the kobsd was (2 X 10(-3)) + 0.25[S2O4(2-)]1/2. The reduction of HmIII to HmII on human hemopexin (HHx) is much more rapid with kobsd = (2.5 X 10(3))[S2O4(2-)]1/2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The diheme enzyme MauG catalyzes the posttranslational modification of a precursor protein of methylamine dehydrogenase (preMADH) to complete the biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. It catalyzes three sequential two-electron oxidation reactions which proceed through a high-valent bis-Fe(IV) redox state. Tyr294, the unusual distal axial ligand of one c-type heme, was mutated to His, and the crystal structure of Y294H MauG in complex with preMADH reveals that this heme now has His-His axial ligation. Y294H MauG is able to interact with preMADH and participate in interprotein electron transfer, but it is unable to catalyze the TTQ biosynthesis reactions that require the bis-Fe(IV) state. This mutation affects not only the redox properties of the six-coordinate heme but also the redox and CO-binding properties of the five-coordinate heme, despite the 21 ? separation of the heme iron centers. This highlights the communication between the hemes which in wild-type MauG behave as a single diheme unit. Spectroscopic data suggest that Y294H MauG can stabilize a high-valent redox state equivalent to Fe(V), but it appears to be an Fe(IV)═O/π radical at the five-coordinate heme rather than the bis-Fe(IV) state. This compound I-like intermediate does not catalyze TTQ biosynthesis, demonstrating that the bis-Fe(IV) state, which is stabilized by Tyr294, is specifically required for this reaction. The TTQ biosynthetic reactions catalyzed by wild-type MauG do not occur via direct contact with the Fe(IV)═O heme but via long-range electron transfer through the six-coordinate heme. Thus, a critical feature of the bis-Fe(IV) species may be that it shortens the electron transfer distance from preMADH to a high-valent heme iron.  相似文献   

15.
We have exploited the intrinsic conformational flexibility of leghemoglobin to reengineer the heme active site architecture of the molecule by replacement of the mobile His61 residue with tyrosine (H61Y variant). The electronic absorption spectrum of the ferric derivative of H61Y is similar to that observed for the phenolate derivative of the recombinant wild-type protein (rLb), consistent with coordination of Tyr61 to (high-spin) iron. EXAFS data clearly indicate a 6-coordinate heme geometry and a Fe-O bond length of 185pm. MCD and EPR spectroscopies are consistent with this assignment and support ligation by an anionic (tyrosinate) group. The alteration in heme ligation leads to a 148mV decrease in the reduction potential for H61Y (-127+/-5mV) compared to rLb and destabilisation of the functional oxy-derivative. The results are discussed in terms of our wider understanding of other heme proteins with His-Tyr ligation.  相似文献   

16.
Reddi AR  Reedy CJ  Mui S  Gibney BR 《Biochemistry》2007,46(1):291-305
To study the engineering requirements for proton pumping in energy-converting enzymes such as cytochrome c oxidase, the thermodynamics and mechanisms of proton-coupled electron transfer in two designed heme proteins are elucidated. Both heme protein maquettes chosen, heme b-[H10A24]2 and heme b-[delta7-His]2, are four-alpha-helix bundles that display pH-dependent heme midpoint potential modulations, or redox-Bohr effects. Detailed equilibrium binding studies of ferric and ferrous heme b with these maquettes allow the individual contributions of heme-protein association, iron-histidine ligation, and heme-protein electrostatics to be elucidated. These data demonstrate that the larger, less well-structured [H10A24]2 binds heme b in both oxidation states tighter than the smaller and more well-structured [Delta7-His]2 due to a stronger porphyrin-protein hydrophobic interaction. The 66 mV (1.5 kcal/mol) difference in their heme reduction potentials observed at pH 8.0 is due mostly to stabilization of ferrous heme in [H10A24]2 relative to [delta7-His]2. The data indicate that porphyrin-protein hydrophobic interactions and heme iron coordination are responsible for the Kd value of 37 nM for the heme b-[delta7-His]2 scaffold, while the affinity of heme b for [H10A24]2 is 20-fold tighter due to a combination of porphyrin-protein hydrophobic interactions, iron coordination, and electrostatic effects. The data also illustrate that the contribution of bis-His coordination to ferrous heme protein affinity is limited, <3.0 kcal/mol. The 1H+/1e- redox-Bohr effect of heme b-[H10A24]2 is due to the greater absolute stabilization of the ferric heme (4.1 kcal/mol) compared to the ferrous heme (1.4 kcal/mol) binding upon glutamic acid deprotonation, i.e., an electrostatic response mechanism. The 2H+/1e- redox-Bohr effect observed for heme b-[delta7-His]2 is due to histidine protonation and histidine dissociation of ferrous heme b upon reduction, i.e., a ligand loss mechanism. These results indicate that the contribution of porphyrin-protein hydrophobic interactions to heme affinity is critical to maintaining the heme bound in both oxidation states and eliciting an electrostatic response from these designed heme protein scaffolds.  相似文献   

17.
Behr J  Michel H  Mäntele W  Hellwig P 《Biochemistry》2000,39(6):1356-1363
By specific (13)C labeling of the heme propionates, four bands in the reduced-minus-oxidized FTIR difference spectrum of cytochrome c oxidase from Paracoccus denitrificans have been assigned to the heme propionates [Behr, J., Hellwig, P., M?ntele, W., and Michel, H. (1998) Biochemistry 37, 7400-7406]. To attribute these signals to the individual propionates, we have constructed seven cytochrome coxidase variants using site-directed mutagenesis of subunit I. The mutant enzymes W87Y, W87F, W164F, H403A, Y406F, R473K, and R474K were characterized by measurement of enzymatic turnover, proton pumping activity, and Vis and FTIR spectroscopy. Whereas the mutant enzymes W164F and Y406F were found to be structurally altered, the other cytochrome c oxidase variants were suitable for band assignment in the infrared. Reduced-minus-oxidized FTIR difference spectra of the mutant enzymes were used to identify the ring D propionate of heme a as a likely proton acceptor upon reduction of cytochromic oxidase. The ring D propionate of heme a(3) might undergo conformational changes or, less likely, act as a proton donor.  相似文献   

18.
Femtosecond spectroscopy was performed on CO-liganded (fully reduced and mixed-valence states) and O(2)-liganded quinol oxidase bd from Escherichia coli. Substantial polarization effects, unprecedented for optical studies of heme proteins, were observed in the CO photodissociation spectra, implying interactions between heme d (the chlorin ligand binding site) and the close-lying heme b(595) on the picosecond time scale; this general result is fully consistent with previous work [Vos, M. H., Borisov, V. B., Liebl, U., Martin, J.-L., and Konstantinov, A. A. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 1554-1559]. Analysis of the data obtained under isotropic and anisotropic polarization conditions and additional flash photolysis nanosecond experiments on a mutant of cytochrome bd mostly lacking heme b(595) allow to attribute the features in the well-known but unusual CO dissociation spectrum of cytochrome bd to individual heme d and heme b(595) transitions. This renders it possible to compare the spectra of CO dissociation from reduced and mixed-valence cytochrome bd under static conditions and on a picosecond time scale in much more detail than previously possible. CO binding/dissociation from heme d is shown to perturb ferrous heme b(595), causing induction/loss of an absorption band centered at 435 nm. In addition, the CO photodissociation-induced absorption changes at 50 ps reveal a bathochromic shift of ferrous heme b(595) relative to the static spectrum. No evidence for transient binding of CO to heme b(595) after dissociation from heme d is found in the picosecond time range. The yield of CO photodissociation from heme d on a time scale of < 15 ps is found to be diminished more than 3-fold when heme b(595) is oxidized rather than reduced. In contrast to other known heme proteins, molecular oxygen cannot be photodissociated from the mixed-valence cytochrome bd at all, indicating a unique structural and electronic configuration of the diheme active site in the enzyme.  相似文献   

19.
CcmE is a heme chaperone that binds heme transiently in the periplasm of Escherichia coli and delivers it to newly synthesized and exported c-type cytochromes. The chemical nature of the covalent bond between heme and H130 is not known. We have purified soluble histidine-tagged CcmE and present its spectroscopic characteristics in the visible range. Alanine scanning mutagenesis of conserved amino acids revealed that H130 is the only residue found to be strictly required for heme binding and delivery. Mutation of the hydrophobic amino acids F37, F103, L127, and Y134 to alanine affected CcmE more than mutation of charged and polar residues. Our data are in agreement with the recently solved nuclear magnetic resonance structure of apo-CcmE (PDB code 1LIZ) and suggest that heme is bound to a hydrophobic platform at the surface of the protein and then attached to H130 by a covalent bond. Replacement of H130 with cysteine led to the formation of a covalent bond between heme and C130 at a low level. However, the H130C mutant CcmE was not active in cytochrome c maturation. Isolation and characterization of the heme-binding peptides obtained after a tryptic digest of wild-type and H130C CcmE support the hypothesis that heme is bound covalently at a vinyl group.  相似文献   

20.
Low frequency resonance Raman (RR) spectra are reported for deoxy hemoglobin (Hb), its isolated subunits, its analogue bearing methine-deuterated hemes in all four subunits (Hb-d(4)), and the hybrids bearing the deuterated heme in only one type of subunit, which are [alpha(d4)beta(h4)](2) and [alpha(h4)beta(d4)](2). Analyzed collectively, the spectra reveal subunit-specific modes that conclusively document subtle differences in structure for the heme prosthetic groups in the two types of subunits within the intact tetramer. Not surprisingly, the most significant spectral differences are observed in the gamma(7) mode that has a major contribution from out of plane bending of the methine carbons, a distortion that is believed to relieve strain in the high-spin heme prosthetic groups. The results provide convincing evidence for the utility of selectively labeled hemoglobin hybrids in unraveling the separate subunit contributions to the RR spectra of Hb and its various derivatives and for thereby detecting slight structural differences in the subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号