首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study concerns the relation between hydrocarbon biodegradation in the presence of natural surfactants and cell hydrophobicity resulting from the use of these surfactants. The relative capabilities of two bacterial strains (Pseudomonas aeruginosa and Bacillus subtilis) and two yeast strains (Candida maltosa, Yarrowia lipolytica) were investigated. The selected microorganisms were tested separately and in combination in order to achieve the optimal degrading performance. The surface cell hydrophobicity of microorganisms and the degree of hydrocarbon biodegradation were measured. The microbial adhesion to the hydrocarbon (MATH) test was used to denote the surface cell hydrophobicity of the microbial species. The results indicate the correlation between the modification of the surface cell and the degree of hydrocarbon biodegradation; however results for bacteria differ from that obtained for yeast strains. Saponins, as the surfactant, was more effective than rhamnolipides during hydrocarbon biodegradation, though the concentration of this surfactant has no significant influence on the surface cell hydrophobicity.  相似文献   

2.
Biodegradation and hydrophobicity of Pseudomonas spp. and Bacillus spp. strains were tested at different concentrations of the biosurfactant Quillaya saponin. A model mixture of hydrocarbon (dodecane and hexadecane) was used for estimating the influence of surfactants on biodegradation. The bacterial adhesion to hydrocarbon method for determination of bacterial cell surface hydrophobicity was exploited. Among the tested bacterial strains the higher hydrophobicity was noticed for Pseudomonas aeruginosa TK. The hydrophobicity of this strain was 84%. The highest hydrocarbon biodegradation was observed for P. aeruginosa TK (49%) and Bacillus subtilis (35%) strains after 7 days of experiments. Generally the addition of Quillaya saponin increased hydrocarbon biodegradation remarkably. The optimal concentration proved to be 80 mg l−1. The degree of hydrocarbon biodegradation was 75% for P. aeruginosa TK after the addition of saponin. However the most significant increase in biodegradation after addition of Quillaya saponin was in the case of P. aeruginosa 25 and Pseudomonas putida (the increase of biodegradation from 21 to 52% and from 31 to 66%, respectively). It is worth mentioning that decrease of hydrophobicity is correlated with the best biodegradation by P. aeruginosa strain. For the remaining strains, no significant hydrophobicity changes in relation to the system without surfactant were noticed.  相似文献   

3.
4.
Biodegradation of water insoluble hydrocarbons can be significantly increased by the addition of natural surfactants one. Very promising option is the use of saponins. The obtained results indicated that in this system, after 21 days, 92% biodegradation of diesel oil could be achieved using Pseudomonas alcaligenes. No positive effect on the biodegradation process was observed using synthetic surfactant Triton X-100. The kind of carbon source influences the cell surface properties of microorganisms. Modification of the surface cell could be observed by control of the sedimentation profile. This analytical method is a new approach in microbiological analysis.  相似文献   

5.
Nonionic surfactants increase the rate of selective hydrocarbon utilization by Acinetobacter SL1. Within an homologus series of nonionic surfactants, growth on and utilization of a model oil by Acinetobacter SL1 is dependent upon the surfactant hydrophile‐lipophile balance (HLB). Biological effectiveness of the surfactants apparently is related to the degree of micelle formation by the surfactant in the aqueous phase. A simple algebraic expression describing the response of Acinetobacter SL1 to surfactant concentration gives a measure of the biological effectiveness of an individual surfactant. A cationic and an anionic surfactant inhibited the growth of Acinetobacter SL1 and Pseudomonas SL6 on hydrocarbon substrates. These results are discussed in relation to the selection of suitable detergents for increasing the effective biodegradation of pollutant oil in aquatic habitats.  相似文献   

6.
An alkane-biodegrading bacterium identified as Rhodococcus erythropolis (NTU-1 strain) was isolated from petroleum contaminated soil. The major purpose of the current research was to study the issues regarding biofloccules formation and cell surface hydrophobicity of NTU-1. When long-chain alkanes are supplied as the carbon source, NTU-1 tends to form biofloccules and remove significant amount of alkanes by biodegradation and physical trapping. Approximately, more than 95% of each alkane could be efficiently removed within 40–68 h. The bioremediation process was accompanied by formation of biofloccules with size ranging from 0.1 to 2 cm in diameter. The MATH test and the hydrophobic slide experiment suggested that NTU-1 might possess a hydrophobic cell surface which is one of the important factors in the formation of biofloccules. It provides the interaction of cells with hydrocarbon droplets effectively and further aggregate into larger clumps. Besides, when grown on n-hexadecane, experimental results revealed that there were at least 11 different growth-associated fatty acids produced, with carbon chain length ranging from 12 to 24, and cell surface hydrophobicity was enhanced via accumulation at the cell surface.  相似文献   

7.
Abstract A biphasic increase in surface hydrophobicity of the surfactant-biodegrading bacterium Pseudomonas C12B has been correlated with biodegradation of the primary alkyl sulphate, sodium dodecyl sulphate. Using both hydrophobic interaction chromatography and microbial adhesion to hydrocarbon to measure surface hydrophobicity, it was shown that the first phase coincides with production of the primary metabolite dodecan-1-ol. The direct addition of dodecan-1-ol to Pseudomonas C12B resulted in the instantaneous increase in surface hydrophobicity, with a subsequent decrease which coincided with dodecan-1-ol biodegradation. In contrast, incubation of Pseudomonas C12B with sodium dodecane sulphonate, a non-metabolizable surfactant analogue of SDS, or the growth-supporting carbon source sodium pyruvate did not alter the surface hydrophobicity. These data are interpreted in terms of a model in which the hydrophobic metabolite dodecan-1-ol enters the bacterial membranes, thus increasing surface hydrophobicity and that these surfactant-biodegradation-dependent changes in bacterial surface hydrophobicity are correlated with reversible attachment of the bacteria to sediment surfaces.  相似文献   

8.
多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)的强疏水性是阻止其在土壤和水环境中微生物降解的主要因素.表面活性剂由于能够提高PAHs的表观溶解度而在PAHs的微生物降解中得到了广泛研究.截至目前,有关化学或生物表面活性剂促进PAHs的微生物降解已有大量报道,然而也有学者发现了表面...  相似文献   

9.
This study was focused on the role of two types of diametrically different carbon sources, n-alkanes represented by a mixture of dodecane–hexadecane, and phenol on modification of the cell surface hydrophobicity. Capabilities of using either solely hydrocarbons or hydrocarbons in the mixture with phenol as well as phenol itself by yeast species Candida maltosa, Yarrowia lipolytica and Pichia guilliermondii were investigated. Studies were complemented by cell biomass formation measurements. The corresponding cell surface hydrophobicity was assessed by microbial adhesion to the hydrocarbon test (MATH). Degradation of phenol was examined using GC-SPE technique, whereas hydrocarbons were extracted prior to gravimetric determination. Results obtained indicated that the hydrophobic or hydrophilic nature of the carbon source had significant influence on the cell surface hydrophobicity. Although the results differed for some individual yeast strains, the generalization can be made that there is the correlation between the best hydrocarbon and phenol degradation and corresponding cell wall properties of the yeast examined.  相似文献   

10.
Chemical surfactants may impact microbial cell surface properties, i.e., cell surface hydrophobicity (CSH) and cell surface charge, and may thus affect the uptake of components from non-aqueous phase liquids (NAPLs). This work explored the impact of Triton X-100, Igepal CA 630, and Tween 80 (at twice the critical micelle concentration, CMC) on the cell surface characteristics of Burkholderia cultures, Burkholderia cepacia (ES1, aliphatic degrader) and Burkholderia multivorans (NG1, aromatic degrader), when grown on a six-component model NAPL. In the presence of Triton X-100, NAPL biodegradation was enhanced from 21% to 60% in B. cepacia and from 18% to 53% in B. multivorans. CSH based on water contact angle (50–52°) was in the same range for both strains while zeta potential at neutral pH was −38 and −31 mV for B. cepacia and B. multivorans, respectively. In the presence of Triton X-100, their CSH increased to greater than 75° and the zeta potential decreased. This induced a change in the mode of uptake and initiated aliphatic hydrocarbon degradation by B. multivorans and increased the rate of aliphatic hydrocarbon degradation in B. cepacia. Igepal CA 630 and Tween 80 also altered the cell surface properties. For B. cepacia grown in the presence of Triton X-100 at two and five times its CMC, CSH increased significantly in the log growth phase. Growth in the presence of the chemical surfactants also affected the abundance of chemical functional groups on the cell surface. Cell surface changes had maximum impact on NAPL degradation in the presence of emulsifying surfactants, Triton X-100 and Igepal CA630.  相似文献   

11.
The hydrophobicity of the bacterial cell surface was determined by using nonionic surfactants. The method is based on the adsorption of nonionic surfactants at the hydrophobic sites of the cell surface. Among many nonionic surfactants, C18H37O(CH2CH2O)13H was preferred. The surfactant was added in excess to a bacterial suspension, and the suspension was mixed by sonication or mechanical stirring. The amount of surfactant remaining in the supernatant after centrifugation was determined spectrophotometrically by measuring the absorbance of tetrabromophenolphthalein ethylester. Effective dispersion of bacterial cells such as Staphylococcus aureus and Mycobacterium smegmatis was achieved by sonication in the presence of the nonionic surfactant. Adsorption measurements coincided with Langmuir's equation, indicative of monolayer adsorption. The method is useful for the determination of the hydrophobicity of various bacterial cell surfaces.  相似文献   

12.
The low water solubility of polycyclic aromatic hydrocarbons is believed to limit their availability to microorganisms, which is a potential problem for bioremediation of polycyclic aromatic hydrocarbon-contaminated sites. Surfactants have been suggested to enhance the bioavailability of hydrophobic compounds, but both negative and positive effects of surfactants on biodegradation have been reported in the literature. Earlier, we presented mechanistic models of the effects of surfactants on phenanthrene dissolution and on the biodegradation kinetics of phenanthrene solubilized in surfactant micelles. In this study, we combined the biodegradation and dissolution models to quantify the influence of the surfactant Tergitol NP-10 on biodegradation of solid-phase phenanthrene by Pseudomonas stutzeri P16. Although micellized phenanthrene does not appear to be available directly to the bacterium, the ability of the surfactant to increase the phenanthrene dissolution rate resulted in an overall increase in bacterial growth rate in the presence of the surfactant. Experimental observations could be predicted well by the derived model with measured biokinetic and dissolution parameters. The proposed model therefore can serve as a base case for understanding the physical-chemical effects of surfactants on nonaqueous hydrocarbon bioavailability.  相似文献   

13.
The cell surface engineering system, in which functional proteins are genetically displayed on microbial cell surfaces, has recently become a powerful tool for applied biotechnology. Here, we report on the surfactant modification of surface-displayed lipase to improve its performance for enzymatic synthesis reactions. The lipase activities of the surfactant-modified yeast displaying Rhizopus oryzae lipase (ROL) were evaluated in both aqueous and nonaqueous systems. Despite the similar lipase activities of control and surfactant-modified cells in aqueous media, the treatment with nonionic surfactants increased the specific lipase activity of the ROL-displaying yeast in n-hexane. In particular, the Tween 20-modified cells increased the cell surface hydrophobicity significantly among a series of Tween surfactants tested, resulting in 8–30 times higher specific activity in organic solvents with relatively high log P values. The developed cells were successfully used for the enzymatic synthesis of phospholipids and fatty acid methyl esters in n-hexane, whereas the nontreated cells produced a significantly low yield. Our results thus indicate that surfactant modification of the cell surface can enhance the potential of the surface-displayed lipase for bioconversion.  相似文献   

14.
15.
The effects of surfactant physicochemical properties, such as the hydrophile-lipophile balance (HLB) and molecular structure, on the biodegradation of 2% w/v Bow River crude oil by a mixed-bacterial culture were examined. Viable counts increased 4.6-fold and total petroleum hydrocarbon (TPH) biodegradation increased 57% in the presence of Igepal CO-630, a nonylphenol ethoxylate (HLB 13, 0.625 g/L). Only the nonylphenol ethoxylate with an HLB value of 13 substantially enhanced biodegradation. The surfactants from other chemical classes with HLB values of 13 (0.625 g/L) had no effect or were inhibitory. TPH biodegradation enhancement by Igepal CO-630 occurred at concentrations above the critical micelle concentration. When the effect of surfactant on individual oil fractions was examined, the biodegradation enhancement for the saturate and aromatic fractions was the same. In all cases, biodegradation resulted in increased resin and asphaltene concentrations. Optimal surfactant concentrations for TPH biodegradation reduced resin and asphaltene formation. Chemical surfactants have the potential to improve crude oil biodegradation in complex microbial systems, and surfactant selection should consider factors such as molecular structure, HLB, and surfactant concentration.  相似文献   

16.
In this study, the effect of a purified rhamnolipid biosurfactant on the hydrophobicity of octadecane-degrading cells was investigated to determine whether differences in rates of octadecane biodegradation resulting from the addition of rhamnolipid to four strains of Pseudomonas aeruginosa could be related to measured differences in hydrophobicity. Cell hydrophobicity was determined by a modified bacterial adherence to hydrocarbon (BATH) assay. Bacterial adherence to hydrocarbon quantitates the preference of cell surfaces for the aqueous phase or the aqueous-hexadecane interface in a two-phase system of water and hexadecane. On the basis of octadecane biodegradation in the absence of rhamnolipid, the four bacterial strains were divided into two groups: the fast degraders (ATCC 15442 and ATCC 27853), which had high cell hydrophobicities (74 and 55% adherence to hexadecane, respectively), and the slow degraders (ATCC 9027 and NRRL 3198), which had low cell hydrophobicities (27 and 40%, respectively). Although in all cases rhamnolipid increased the aqueous dispersion of octadecane at least 10(4)-fold, at low rhamnolipid concentrations (0.6 mM), biodegradation by all four strains was initially inhibited for at least 100 h relative to controls. At high rhamnolipid concentrations (6 mM), biodegradation by the fast degraders was slightly inhibited relative to controls, but the biodegradation by the slow degraders was enhanced relative to controls. Measurement of cell hydrophobicity showed that rhamnolipids increased the cell hydrophobicity of the slow degraders but had no effect on the cell hydrophobicity of the fast degraders. The rate at which the cells became hydrophobic was found to depend on the rhamnolipid concentration and was directly related to the rate of octadecane biodegradation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Surfactant-Enhanced Biodegradation of a PAH in Soil Slurry Reactors   总被引:2,自引:0,他引:2  
This study focuses on finding operational regimes for surfactant-enhanced biodegradation. Biodegradation of phenanthrene as a model poly cyclic aromatic hydrocarbon (PAH) was studied in soil slurry reactors in the presence and absence of a Triton N-101 surfactant solution. Results showed that the presence of surfactant slowed the initial biodegradation rate of phenanthrene, but increased the total mass of phenanthrene degraded over a four day period by 30%. A mathematical model was developed which simulates the biodegradation of low solubility hydrocarbons in the presence of soils and surfactants by accounting for the hydrocarbon bioavailability in different phases of the system. The model was able to simulate the experimental results using parameters and rate coefficients that were obtained through independent experiments.

The model was used to investigate the effect of different operating conditions on the overall biodegradation of phenanthrene. Simulation results showed that there is a system-specific optimum surfactant concentration range, beyond which bioremediation is hindered. The results also indicate that for a given system, the optimal surfactant concentration can be determined from simple sorption and solubility equilibrium experiments. Finally, a metric is presented for determining the potential effectiveness of surfactant-enhanced bioremediation based on the Monod and bioavailability parameters for a given system.  相似文献   

18.
Response of fluoranthene-degrading bacteria to surfactants   总被引:1,自引:0,他引:1  
A prerequisite for surfactant-enhanced biodegradation is that the microorganisms survive, take up substrate and degrade it in the presence of the surfactant. Two Mycobacterium and two Sphingomonas strains, degrading fluoranthene, were investigated for their sensitivity towards non-ionic chemical surfactants. The effect of Triton X-100 and Tween 80 above their critical micelle concentration on mineralization of [14C]-glucose and [14C]-fluoranthene was measured in shaker cultures. Tween 80 had no toxic effect on any of the tested strains. The surfactant inhibited fluoranthene mineralization by the hydrophobic Mycobacterium spp. slightly, but more than doubled that by the two less hydrophobic Sphingomonas strains. Triton X-100 inhibited fluoranthene mineralization by all strains, yet this was more pronounced for the Sphingomonas spp. Both surfactants caused cell wall permeabilization, as shown by transient colouring of surfactant-containing media. Inhibition of glucose mineralization, indicating non-specific toxic effects of Triton X-100, was observed only for the Sphingomonas strains and the toxicity was caused by micelle-to-cell interactions. These strains, however, appeared to recover from initial Triton X-100 toxicity within 50–500 h of exposure. The ratio of surfactant concentration to initial cell density was found to determine critically the bacterial response to surfactants. For both Sphingomonas and Mycobacterium strains, this work indicates that fluoranthene solubilized in surfactant micelles is only partially available for mineralization by the bacteria tested. However, our results suggest that optimal conditions for polycyclic aromatic hydrocarbon mineralization can be developed by selection of the proper surfactant, bacterial strains, cell density and incubation conditions. Received: 6 February 1998 / Received revision: 19 June 1998 / Accepted: 19 June 1998  相似文献   

19.
The subjects of the article are investigations concerning the ability of both Rhodococcus opacus 1CP and mixed bacterial cultures to use selected surfactants as sole carbon and energy source. In a comparative manner the biosurfactants rhamnolipid, sophorolipid and trehalose tetraester, and the synthetic surfactant Tween 80 were examined. Particular emphasis was put on a combinatorial approach to determine quantitatively the degree of surfactant degradation by applying calorimetry, thermodynamic calculations and mass spectrometry, HPLC as well as determination of biomass. The pure bacterial strain R. opacus was only able to metabolize a part of the synthetic surfactant Tween 80, whereas the mixed bacterial cultures degraded all of the applied surfactants. Exclusive for the biosurfactant rhamnolipid a complete microbial degradation could be demonstrated. In the case of the other surfactants only primary degradation was observed.  相似文献   

20.
A two-step enrichment procedure led to the isolation of a strain of Rhodococcus ruber (C208) that utilized polyethylene films as sole carbon source. In liquid culture, C208 formed a biofilm on the polyethylene surface and degraded up to 8% (gravimetrically) of the polyolefin within 30 days of incubation. The bacterial adhesion to hydrocarbon assay and the salt aggregation test both showed that the cell-surface hydrophobicity of C208 was higher than that of three other isolates which were obtained from the same consortium but were less efficient than C208 in the degradation of polyethylene. Mineral oil, but not nonionic surfactants, enhanced the colonization of polyethylene and increased biodegradation by about 50%. Fluorescein diacetate (FDA) hydrolysis and protein content analysis were used to test the viability and biomass density of the C208 biofilm on the polyethylene, respectively. Both FDA activity and protein content of the biofilm in a medium containing mineral oil peaked 48–72 h after inoculation and then decreased sharply. This finding apparently reflected rapid utilization of the mineral oil adhering to the polyethylene. The remaining biofilm population continued to proliferate moderately and presumably played a major role in biodegradation of the polyethylene. Fourier transform infrared spectra of UV-photooxidized polyethylene incubated with C208 indicated that biodegradation was initiated by utilization of the carbonyl residues formed in the photooxidized polyethylene  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号