首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Recent investigations have demonstrated a modulatory action of glucagon on shivering via the central nervous system in ducklings. Such an action could be mediated by glucagon receptors that have been recently detected in several brain areas involved in the central control of the involuntary motricity in this avian species. The present study using des-His1 (Glu9) glucagon amide, was performed to investigate the central mechanisms of glucagon on shivering. This glucagon analog was found to be an antagonist of glucagon devoid of adenylate cyclase activity (GR2) by triggering the breakdown of inositol phosphate (GR1) in mammals hepatocytes. The intracerebroventricular administration of des-His1 (Glu9) glucagon amide or glucagon induced a marked inhibition of shivering in ducklings exposed to cold. It seems likely that GR1 receptors contribute to decreased shivering in ducklings exposed to cold. Central glucagon or des-His1 (Glu9) glucagon amide were devoid of thermogenic effect at thermoneutrality.  相似文献   

2.
Glucagon and secretin and some of their hybrid analogs potentiate glucose-induced release of insulin from isolated mouse pancreatic islets. It was recently shown that the synthetic glucagon analog, desHis1[Glu9]glucagon amide, does not stimulate the formation of cyclic adenosine monophosphate in the rat hepatocyte membrane, but binds well to the glucagon receptor and is a good competitive antagonist of glucagon. In the present study the effect of this analog on isolated islets was examined. desHis1-[Glu9]glucagon amide at 3 x 10(-7) M, in the presence of 0.01 M D-glucose, increased the release of insulin by 30% and maintained that level for the full 30-min test period. The rate of insulin release returned to the glucose-induced base line after removal of the peptide. The same insulin level was produced by 3 x 10(-9) M glucagon, and at 3 x 10(-7) M glucagon insulin release was enhanced 290% above the glucose base line.  相似文献   

3.
Glucagon-like peptide-1 (GLP-1), a member of glucagon superfamily, is synthesized from a large precursor, preproglucagon, and has been postulated to be a novel incretin. Recently, it was reported that central administration of GLP-1 (7-36) amide decreased food intake in rats and chickens. Generally, the amino acid sequences of the glucagon superfamily members except for gastric inhibitory peptide and growth hormone-releasing factor are identical at N-terminal histidine. It is well known that the GLP-1 receptor is highly specific for GLP-1 and does not bind other peptides of the glucagon superfamily. The aim of this study was to elucidate whether central injection of substituted GLP-1 in which N-terminal histidine of mammalian GLP-1 (7-36) amide was replaced with tyrosine, inhibits food intake in the chick. Intracerebroventricular administration of substituted GLP-1 inhibits food intake in the chick, although the effect of substituted GLP-1 was 11 to 13 fold less than that of mammalian GLP-1 (7-36) amide. These results indicate that N-terminal histidine of GLP-1 (7-36) amide is important for efficacy, but not essential for its bioactivity.  相似文献   

4.
Glucagon has been postulated as an important physiological regulator of histidase (Hal) gene expression; however, it has not been demonstrated whether serum glucagon concentration is associated with the type and amount of protein ingested. The purpose of the present work was to study the association between hepatic Hal activity and mRNA concentration in rats fed 18 or 50% casein, isolated soy protein, or zein diets in a restricted schedule of 6 h for 10 days, and plasma glucagon and insulin concentrations. On day 10, five rats of each group were killed at 0900 (fasting), and then five rats were killed after being given the experimental diet for 1 h (1000). Rats fed 50% casein or soy diets showed higher Hal activity than the other groups studied. Rats fed 50% zein diets had higher Hal activity than rats fed 18% casein, soy, or zein diets, but lower activity than rats fed 50% casein or soy diets. Hal mRNA concentration followed a similar pattern. Hal activity showed a significant association with serum concentrations of glucagon. Serum glucagon concentration was significantly correlated with protein intake. Thus the type and amount of protein consumed affect Hal activity and expression through changes in serum glucagon concentrations.  相似文献   

5.
Normal and hypophysectomized (hypox) rats, fed ad libitum, received intraperitoneal injections of tolbutamide (75 mg/kg/day) or of saline for 6 weeks. 24 h after the last injection, blood samples were taken for glucose, insulin and glucagon determinations. In normal rats, tolbutamide treatment did not alter serum glucose, insulin and glucagon, although it suppressed the secretion of insulin and glucagon by the pancreatic islets. In hypox rats, tolbutamide decreased serum glucose and insulin, elevated serum glucagon and stimulated the secretion of glucagon, but not that of insulin by the pancreatic islets. In addition, tolbutamide treatment increased the glucagon response to arginine in normal, but not in hypox rats. The serum glucose response to arginine was decreased by tolbutamide treatment and by hypophysectomy and, thus, appeared independent of the glucagon rise or preexisting glucagon level. We conclude that tolbutamide treatment decreased the secretion of glucagon and insulin in normal rats and stimulated that of glucagon in hypox rats, perhaps because of the low levels of insulin in the serum and in the pancreas of the latter. Our results are compatible with the hypothesis that the pancreatic action of tolbutamide is influenced by the pituitary.  相似文献   

6.
The effects of glucagon-like peptide 1 (7-36) amide [GLP-1 (7-36) amide] and glucagon on the release of islet amyloid polypeptide (IAPP), or amylin, from the isolated perfused rat pancreas were studied. In the presence of 5.6 mM glucose, GLP-1 (7-36) amide and glucagon stimulated the release of amylin from the perfused pancreas. The infusion of GLP-1 (7-36) amide at a concentration of 10(-9) M elicited a biphasic release of amylin similar to that of insulin. The cumulative output of amylin induced by 10(-9)M GLP-1 (7-36) amide was significantly higher than that by 10(-9)M glucagon (p less than 0.01). The amylin/insulin molar ratios induced by GLP-1 (7-36) amide and glucagon were about 1% and did not differ significantly. These findings suggest that GLP-1 (7-36) amide and glucagon stimulate the release of amylin from the pancreas and that the concomitant secretion of amylin and insulin might contribute to glucose homeostasis.  相似文献   

7.
1. The effects of subcutaneous injection of cysteamine (2-mercaptoethylamine, 300 mg/kg) were investigated in 5-6 week-old chickens. 2. In the short term (1 hr), cysteamine increased plasma levels of glucose, free fatty acids and insulin, and decreased that of alpha-amino non protein nitrogen. 3. In a longer term (17-24 hr), cysteamine increased the plasma level of glucose, did not modify those of alpha-amino non protein nitrogen, insulin and glucagon and decreased that of free fatty acids. 4. The disposal of an oral glucose load was impaired and the glucose-induced inhibition of pancreatic glucagon and stimulation of insulin release were blunted 17 hr after cysteamine administration. 5. Therefore, cysteamine exerts multiple effects on chicken pancreatic islet cells.  相似文献   

8.
To assess glucagon receptor compartmentalization and signal transduction in liver parenchyma, we have studied the functional relationship between glucagon receptor endocytosis, phosphorylation and coupling to the adenylate cyclase system. Following administration of a saturating dose of glucagon to rats, a rapid internalization of glucagon receptor was observed coincident with its serine phosphorylation both at the plasma membrane and within endosomes. Co-incident with glucagon receptor endocytosis, a massive internalization of both the 45- and 47-kDa Gsalpha proteins was also observed. In contrast, no change in the subcellular distribution of adenylate cyclase or beta-arrestin 1 and 2 was observed. In response to des-His(1)-[Glu(9)]glucagon amide, a glucagon receptor antagonist, the extent and rate of glucagon receptor endocytosis and Gsalpha shift were markedly reduced compared with wild-type glucagon. However, while the glucagon analog exhibited a wild-type affinity for endosomal acidic glucagonase activity and was processed at low pH with similar kinetics and rates, its proteolysis at neutral pH was 3-fold lower. In response to tetraiodoglucagon, a glucagon receptor agonist of enhanced biological potency, glucagon receptor endocytosis and Gsalpha shift were of higher magnitude and of longer duration, and a marked and prolonged activation of adenylate cyclase both at the plasma membrane and in endosomes was observed. The subsequent post-endosomal fate of internalized Gsalpha was evaluated in a cell-free rat liver endosome-lysosome fusion system following glucagon injection. A sustained endo-lysosomal transfer of the two 45- and 47-kDa Gsalpha isoforms was observed. Therefore, these results reveal that within hepatic target cells and consequent to glucagon-mediated internalization of the serine-phosphorylated glucagon receptor and the Gsalpha protein, extended signal transduction may occur in vivo at the locus of the endo-lysosomal apparatus.  相似文献   

9.
Zinc deficiency induces a striking reduction of food intake in animals. To elucidate the mechanisms for this effect, two studies were connectedly conducted to determine the effects of peripheral administration of zinc on food intake in rats fed the zinc-adequate or zinc-deficient diets for a 3-week period. In study 1, two groups of male Sprague-Dawley rats were provided diets made either adequate (ZA; 38.89 mg/kg) or deficient (ZD; 3.30 mg/kg) in zinc. In study 2, after feeding for 3 weeks, both ZA and ZD groups received intraperitoneal (IP) injection of zinc solution with three levels (0.5, 1.0, and 2.0 mug zinc/g body weight, respectively) and cumulative food intake at 0.5, 1, 2, 4, and 24 h, and plasma hormones concentrations were measured. The results in study 1 showed rats fed the ZD diets revealed symptoms of zinc deficiency, such as sparse and coarse hair, poor appetite, susceptibility to surroundings, lethargy, and small movements. Zinc concentrations in serum, femur, and skeletal muscle of rats fed the ZD diets declined by 26.58% (P < 0.01), 27.32% (P < 0.01), and 24.22% (P < 0.05), respectively, as compared with ZA control group. These findings demonstrated that rat models with zinc deficiency and zinc adequacy had been fully established. The results in study 2 showed that IP administration of zinc in both ZA and ZD rats did not influence food intake at each time points (P > 0.05), although zinc deficiency suppressed food intake. Plasma neuropeptide Y (NPY) was higher, but insulin and glucagon were lower in response to zinc deficiency or zinc administration by contrast with their respective controls (P < 0.05). Leptin, T3, and T4 concentrations were uniformly decreased (P < 0.05) in rats fed the ZD diets in contrast to ZA diets; however, no differences (P > 0.05) were observed during zinc injection. Calcitonin gene-related peptide was unaffected (P > 0.05) by either zinc deficiency or zinc administration. The present studies suggested that zinc administration did not affect short-term food intake in rats even in the zinc-deficient ones; the reduced food intake induced by zinc deficiency was fprobably associated with the depression in thyroid hormones. The results also indicated that NPY and insulin varied conversely during the control of food intake.  相似文献   

10.
The effect of somatostatin (SRIF) on glucagon and insulin secretion was examined in fed and fasted sheep. This was related to changes in glucose production. Infusion of SRIF at 80 micrograms/h caused a marked reduction in plasma glucagon concentrations. However, the insulin response to SRIF infusion was not consistent; its concentrations decreased occasionally, but often did not change. The depression of glucagon was not associated with a significant reduction in blood glucose concentrations in either fed or fasted sheep, but was associated with a reduction in glucose production by 12--15%. The inhibitory effect of insulin on glucose production was not markedly increased by glucagon deficiency. Infusion of insulin at 1.17 U/h with SRIF decreased glucose production only an additional 10%. Thus, it appears that under basal conditions pancreatic hormonal influences on hepatic glucose production were relatively small in sheep. This implies that under normal conditions in sheep, substrate supply has a much greater impact on hepatic glucogenesis than do hormones.  相似文献   

11.
Insulin, glucagon, and somatostatin concentrations were measured in 7 lean and 7 obese non-diabetic subjects over 7 days of fasting. In addition each subject was given a 75 g oral glucose tolerance test after fasts of 12 h and 7 days. In lean subjects complete food deprivation induced a significant decrease in the circulating levels of both insulin and somatostatin, while glucagon nearly doubled by 48 h and then remained constant for the duration of starvation. Refeeding with oral glucose suppressed the increased plasma glucagon, but insulin and somatostatin responses were enhanced in comparison with the prefast values, as assessed by the integrated areas of change. In obese subjects peripheral insulin and somatostatin levels were significantly lowered, but plasma glucagon level was unchanged at the end of the starvation period. In the same group glucose-induced insulin and somatostatin release were greater than in the fed state. Suppression of plasma glucagon by glucose appeared less complete in obese than in lean subjects. It is concluded that prolonged starvation enhances D-cell responsiveness to glucose in lean and obese subjects.  相似文献   

12.
Intestinal nutrient infusions result in variable decreases in food intake and body weight based on the nutrient type and the specific intestinal infusion site. Only intrajejunal infusions of fatty acids decrease food intake beyond the calories infused. To test whether this extra‐compensatory decrease in food intake is specific to fatty acids, small volume intrajejunal infusions of glucose (Glu) and casein hydrolysate (Cas), as well as linoleic acid (LA) were administered to male Sprague–Dawley rats. Equal kilocalorie (kcal) loads of these nutrients (11.4) or vehicle were infused into the jejunum over 7 h/day for five consecutive days. Food intake was continuously monitored and body weight was measured daily. After the infusion on the final day, rats were killed and plasma collected. Intrajejunal infusions of LA and Glu, but not Cas, suppressed food intake beyond the caloric load of the infusate with no compensatory increase in food intake after the infusion period. Rats receiving LA and Glu infusions also lost significant body weight across the infusion days. Plasma glucagon‐like peptide‐1 (GLP‐1) was increased in both the LA and Glu rats compared with control animals, with no significant change in the Cas‐infused animals. Peptide YY (PYY) levels increased in response to LA and Cas infusions. These results suggest that intrajejunal infusions of LA and Glu may decrease food intake and body weight via alterations in GLP‐1 signaling. Thus, particular nutrients are more effective at producing decreases in food intake, body weight, and inducing changes in peptide levels and could lead to a novel therapy for obesity.  相似文献   

13.
Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted by endocrine K-cells in response to nutrient absorption. In this study we have utilized a specific and enzymatically stable GIP receptor antagonist, (Pro3)GIP, to evaluate the contribution of endogenous GIP to insulin secretion and glucose homeostasis in mice. Daily injection of (Pro3)GIP (25 nmol/kg body weight) for 11 days had no effect on food intake or body weight. Non-fasting plasma glucose concentrations were significantly raised (p<0.05) by day 11, while plasma insulin concentrations were not significantly different from saline treated controls. After 11 days, intraperitoneal glucose tolerance was significantly impaired in the (Pro3)GIP treated mice compared to control (p<0.01). Glucose-mediated insulin secretion was not significantly different between the two groups. Insulin sensitivity of 11-day (Pro3)GIP treated mice was slightly impaired 60 min post injection compared with controls. Following a 15 min refeeding period in 18 h fasted mice, food intake was not significantly different in (Pro3)GIP treated mice and controls. However, (Pro3)GIP treated mice displayed significantly elevated plasma glucose levels 30 and 60 min post feeding (p<0.05, in both cases). Postprandial insulin secretion was not significantly different and no changes in pancreatic insulin content or islet morphology were observed in (Pro3)GIP treated mice. The observed biological effects of (Pro3)GIP were reversed following cessation of treatment for 9 days. These data indicate that ablation of GIP signaling causes a readily reversible glucose intolerance without appreciable change of insulin secretion.  相似文献   

14.
Normal male rats were made chronically diabetic by injection of alloxan or acutely diabetic by injection of anti-insulin serum. The concentration of cyclic AMP in epididymal adipose tissue was increased approximately 2 1/2-fold 24 h after alloxan administration and up to 7-fold 72 h post-alloxan. Treatment of alloxan-diabetic rats with insulin for 4 h completely suppressed lipolysis but only partially suppressed cyclic AMP levels; 6 h following insulin treatment cyclic AMP levels were normal. When segments of the epididymal fat bodies were incubated in vitro the high cyclic AMP levels were not maintained but instead decreased spontaneously. Addition of insulin to the incubation media decreased lipolysis in tissues of diabetic rats to levels measured in tissues of normal rats and accelerated the decline in cyclic AMP levels but did not return cyclic AMP levels to normal. Rats rendered acutely insulin deficient by injection of anti-insulin serum showed increased plasma glucose and free fatty acid levels and increased adipose tissue free fatty acid, and cyclic AMP levels 30 min following injection of the antiserum. Plasma glucagon levels increased but not until 2 h following anti-insulin serum, thereby excluding the possibility that an increment in plasma glucagon is the primary stimulus for the acceleration of lipolysis in diabetes. These data are consistent with the view that control of adipose tissue cyclic AMP levels in situ is an important physiologic action of insulin.  相似文献   

15.
Recent studies on the glucagon antagonist des-His1-[Glu9]glucagon amide have resulted in pure inhibitors of the hormone, suggesting that the inhibitory properties may be centered around position 9. The present study was designed to investigate the chemical characteristics of substitutions in position 9 of glucagon that determine binding affinity and biological activity. Twenty replacement analogs of position 9 of glucagon were synthesized and assessed for their ability to bind to the glucagon receptor in rat hepatocyte membranes and to activate adenylate cyclase. Any substitution of aspartic acid 9 was accompanied by a severely diminished capacity to transmit the biological signal, while retaining receptor binding affinity. These results are an indication of an uncoupling of receptor binding and biological activity at this locus and define a central role of aspartic acid 9 in glucagon activity. Single replacement or deletion of either His1 or Asp9 in glucagon caused a 20- to 50-fold decrease in cyclase activity, whereas these same changes made in tandem caused virtually complete loss of activity, with decreases of 10(4)-to 10(6)-fold. These observations have led us to speculate that, at the molecular level, the region of glucagon required for transduction of the biological response may be distinct from the binding region and is mediated by a coupled interaction between His1 and Asp9 of the hormone and a complementary functional site of the glucagon receptor.  相似文献   

16.
B Metzger  S Pek  J Hare  N Freinkel 《Life sciences》1974,15(2):301-308
Plasma glucose, insulin and glucagon were measured in pregnant and age-matched virgin rats in the fed state and after fasting 6, 48 or 120 hours during day 16–21 of gestation. The fed state in pregnancy was characterized by a metabolic setting favoring anabolism. The lower plasma glucose in the fed pregnant rats was associated with higher insulin, slightly lower glucagon and higher insulin/glucose and insulin/glucagon ratios than in virgin rats. During fasting, glucose fell to sustained hypoglycemic levels in the pregnant animals whereas glucose declined but did not achieve hypoglycemia at any point in the virgins. Despite the hypoglycemia, greater levels of plasma insulin persisted in the pregnant throughout the 120 hours of fasting and insulin/glucagon ratios did not differ significantly from the euglycemic virgins. Thus, “accelerated starvation” in pregnancy cannot be ascribed to relative glucagon excess. Rather, the preservation of normal insulin/glucagon ratios despite prevailing hypoglycemia, may provide a mechanism during fasting in pregnancy for restraining maternal protein catabolism in the face of the added fuel demands of the conceptus.  相似文献   

17.
Four adult sheep fed twice daily were given daily subcutaneous injections of saline for four weeks, followed by a similar period of daily L-thyroxine (T4) injection (1 mg/day). T4 treatment increased basal plasma concentrations of T4, triiodothyronine (T3), insulin and glucose, together with T3-uptake and the free thyroxine index, while cholesterol and urea concentrations decreased. T4 treatment reduced the rise in prolactin levels after the morning meal. Thyrotrophin releasing hormone (TRH) injection increased plasma T3 only in the control period and T3-uptake only in the T4 treatment period. T4 treatment did not affect the prolactin response to TRH injection or the insulin and glucose responses to glucagon injection. The increase in insulin concentrations after insulin injection and the secondary hyperglycaemia following initial insulin-induced hypoglycaemia were reduced by T4 treatment.  相似文献   

18.
The aim of this study was to investigate the effects of limited food intake (LFI) (24, 48 and 120 h) and a single i.p. dose of vitamin C supplementation (500 mg/kg) on serum glucose and C-peptide levels, and pancreatic insulin and glucagon levels in guinea pigs. The highest serum glucose levels were found after vitamin C supplementation plus LFI for 48 h (LFI 48). Serum C-peptide levels were not significantly affected by food limitation (LFI 24, LFI 48, or LFI 120) as compared with controls, but when vitamin C was supplemented, the C-peptide levels were moderately enhanced. Immunohistochemical findings on pancreatic islets showed increased staining intensity for both insulin and glucagon when vitamin C was supplemented. In addition, the alpha and beta cells were stimulated, particularly by vitamin C supplementation plus LFI 120. Based on these findings, vitamin C supplementation may have a beneficial effect on the alpha and beta cells.  相似文献   

19.
Subcutaneous implantation of small fragments of a radiation-induced transplantable rat insulinoma into the subscapular region of 16- to 17-week-old male NEDH rats resulted, over a 22-day period, in the progressive development of marked hyperinsulinaemia and severe hypoglycaemia, despite a compensatory increase in food intake. Diurnal changes were examined at 3-hourly intervals for 24 h in control rats and tumour-bearing rats at 20-21 days after transplantation. The control animals exhibited distinct diurnal changes of food intake, glucose and insulin concentrations. Food intake was greatest between 17.00 and 23.00 h; plasma insulin was greatest between 20.00 and 23.00 h, and plasma glucose was raised at 20.00, 02.00 and 05.00 h, compared with the other times. In contrast, insulinoma-bearing rats displayed no diurnal changes other than a small decrease in food intake between 05.00 and 11.00 h. Plasma glucose and insulin concentrations were significantly different from control rats at all times, and food intake was significantly increased between 23.00 and 17.00 h. These observations demonstrate that the transplantable insulinoma not only causes hyperinsulinaemia and hypoglycaemia but results in hyperphagia and defective diurnal changes of food intake, plasma glucose and insulin concentrations. Interruption of nutrient intake by withdrawal of food for 6 h exacerbated the hypoglycaemia of insulinoma-bearing rats leading to coma.  相似文献   

20.
Hepatic glycogen metabolism was studied in rats during the period of transition from the fed to fasted states. Glycogenic activity was measured in vivo based on the incorporation of [14C]glucose into liver glycogen. Its changes were almost parallel to the changes in glucogen synthase activity. Progressive accumulation of liver glycogen that occurred in the fed state was associated with a proportional increase in glycogenic activity. Within 4 h after the cessation of food intake, glycogenic activity showd a precipitous fall from the peak to its nadir without significant changes in glycogen content. Meanwhile, the glucose concentration in the portal vein decreased. Upon further development of fasting, glycogenic activity displayed a progressive regain, reciprocally as glycogen contents gradually decreased. The precipitous fall of glycogenic activity during the transition from the fed to fasted states was associated with a transient increase in plasma glucagon, and was partly overcome by the injection of anti-glucagon serum. It is concluded that the fall of portal venous concentration of glucose and secretion of glucagon act as a signal to initiate liver glycogen metabolism characteristics of the fasted or postabsorptive state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号