首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A system is described for the measurement of fast transient responses of leaf gas exchange to lightflecks. Any chamber adulterates a true signal unless in the steady-state; therefore, a procedure for estimating an effective chamber volume is presented which is an essential parameter for correcting a measured transient signal. A common correction is critically commented on. With the system, responses of net photosynthesis to lightflecks as short as 1 s have been observed in leaves of seedlings of Fagus sylvatica L.  相似文献   

2.
A method for measuring whole plant photosynthesis in Arabidopsis thaliana   总被引:5,自引:0,他引:5  
Measurement of photosynthesis of intact leaves of Arabidopsis thaliana has been prohibitive due to the small leaf size and prostrate growth habit. Because of the widespread use of Arabidopsis for plant science research it is important to have a procedure for accurate, nondestructive measurement of its photosynthesis. We developed and tested a method for analysis of photosynthesis in whole plants of Arabidopsis. Net carbon assimilation and stomatal conductance were measured with an open gas exchange system and photosynthetic oxygen evolution was determined from chlorophyll fluorescence parameters. Individual plants were grown in 50 cubic centimeter tubes that were attached with an air tight seal to an enclosed gas exchange chamber for measurement of carbon dioxide and water exchange by the whole plant. Chlorophyll fluorescence from intact leaves was simultaneously measured with a pulse modulated fluorometer. Photosynthetic CO2 assimilation and stomatal conductance rates were calculated with established gas exchange procedures and O2 evolution was determined from chlorophyll fluorescence measurement of Photosystem II yield. Carbon assimilation and oxygen evolution in response to light intensity and ambient CO2 concentration was measured and is presented here to demonstrate the potential use of this method for investigation of photosynthesis of Arabidopsis plants in controlled environment conditions.  相似文献   

3.
An apparatus for measuring the rates of photosynthesis of leavesis described. In principle, the method consisted of interruptingthe flow of air over a leaf for 15sec, during which time aircontaining 14C dioxide was passed over it. The amount of14Cassimilated by the leaf was then measured. The results werecompared with those obtained using an infra-red gas analyser.The principal cause of the discrepancies between the resultsappeared to be preferential fixation of 12C by the leaves andloss of respiratory 12C at low light intensities. There wasa linear relation between the results obtained by the two methodsand thus, using the 14C method, the rates of net photosynthesiscould be estimated. By fitting a set of neutral-density filtersover the chamber that enclosed the leaf, the rates of net photosynthesiswere determined for several light intensities simultaneously.Examples are given of curves showing the relation between lightintensity and net photosynthesis for leaves of Beta and Phaseolusplants.  相似文献   

4.
5.
Pereira, J. S., Tenhunen, J. D. and Lange, O. L. 1987. Stomatalcontrol of photosynthesis of Eucalyptus globulus Labill. treesunder field conditions in Portugal.—J. exp. Bot. 38: 1678–1688. Stomatal behaviour of adult leaves of Eucalyptus globulus treeswas studied under field conditions in Portugal. In the absenceof severe plant water stress stomata were open when the summedtotal of photosynthetically active photon flux density incidenton both leaf surfaces was above 100 µmol m2s1 and leafconductance to water vapour reached 245 mmol m 2 s1 on a total(both epidermes) leaf area basis. The stomata of both leaf epidermesresponded similarly to changes in solar radiation and waterstress. Water stress resulted in decreasing daily maxima inleaf conductance as predawn leaf water potential decreased.Maximal leaf conductance decreased to less than 50 mmol m 2s 1 when predawn leaf water potential decreased below —1·0MPa. At similar values of predawn leaf water potential stomatawere more closed as the leaf to air water vapour partial pressuredifference increased. The effect of increasing air dryness onstomata was greatest at high predawn leaf water potential. Dailymaxima in photosynthetic rates and in leaf conductance werelinearly related to one another in spring and summer. Both decreasedwith increase in leaf water stress. In autumn and winter, increasesin leaf conductance occurring under natural conditions duringthe course of the day were not necessarily accompanied by increasesin net photosynthesis. Stomata were more closed in the afternoonthan in the morning at the same rates of net photosynthesis,temperature or leaf to air water vapour partial pressure difference. Key words: Eucalyptus globulus,, photosynthesis, stomata, water stress.  相似文献   

6.
Monje O  Stutte G  Chapman D 《Planta》2005,222(2):336-345
Plant stand gas exchange was measured nondestructively in microgravity during the Photosynthesis Experiment Subsystem Testing and Operations experiment conducted onboard the International Space Station. Rates of evapotranspiration and photosynthesis measured in space were compared with ground controls to determine if microgravity directly affects whole-stand gas exchange of Triticum aestivum. During six 21-day experiment cycles, evapotranspiration was determined continuously from water addition rates to the nutrient delivery system, and photosynthesis was determined from the amount of CO2 added to maintain the chamber CO2 concentration setpoint. Plant stand evapotranspiration, net photosynthesis, and water use efficiency were not altered by microgravity. Although leaf area was significantly reduced in microgravity-grown plants compared to ground control plants, leaf area distribution was not affected enough to cause significant differences in the amounts of light absorbed by the flight and ground control plant stands. Microgravity also did not affect the response of evapotranspiration to changes in chamber vapor pressure difference of 12-day-old wheat plant stands. These results suggest that gravity naïve plants grown at moderate light levels (300 mol m–2 s–1) behave the same as ground control plants. This implies that future plant-based regenerative life support systems can be sized using 1 g data because water purification and food production rates operate at nearly the same rates as in 1 g at moderate light levels. However, it remains to be verified whether the present results are reproducible in plants grown under stronger light levels.  相似文献   

7.
A system for measurement of leaf gas exchange while regulating leaf to air vapour pressure difference has been developed; it comprises an assimilation chamber, leaf temperature controller, mass flow controller, dew point controller and personal computer. A relative humidity sensor and air and leaf temperature sensors, which are all used for regulating the vapour pressure difference, are mounted into the chamber. During the experiments, the computer continuously monitored the photosynthetic parameters and measurement conditions, so that accurate and intenstive measurements could be made.When measuring the light-response curve of CO2 assimilation for single leaves, in order to regulate the vapour pressure difference, the leaf temperature and relative humidity in the chamber were separately and simultaneously controlled by changing the air temperature around the leaf and varying the air flow rate through the chamber, respectively. When the vapour pressure difference was regulated, net CO2 assimilation, transpiration and leaf conductance for leaves of rice plant increased at high quantum flux density as compared with those values obtained when it was not regulated.When measuring the temperature-response curve of CO2 assimilation, the regulation of vapour pressure difference was manipulated by the feed-forward control of the dew point temperature in the inlet air stream. As the vapour pressure difference was regulated at 12 mbar, the maximum rate of and the optimum temperature for CO2 assimilation in rice leaves increased 5 molCO2 m–2 s–1 and 5°C, respectively, as compared with those values obtained when the vapour pressure difference took its own course. This was reasoned to be due to the increase in leaf conductance and the decrease in transpiration rate. In addition, these results confirmed that stomatal conductance essentially increases with increasing leaf temperature under constant vapour pressure difference conditions, in other words, when the influence of the vapour pressure difference is removed.This system may be used successfully to measure inter- and intra-specific differences and characteristics of leaf gas exchange in plants with a high degree of accuracy.Abbreviations A CO2 assimilation rate - Amax Maximum rate of CO2 assimilation - Aopt Optimum teperature for CO2 assimilation - CTWB Controlled-temperature water bath - DPC Dew point controller - E Transpiration rate; gl, leaf conductance - HCC Humidity control circuit - IRGA Infrared gas analyzer - LT Leaf temperature - LTC Leaf temperature controller - MFC Mass flow controller - QFD Quantum flux density - RH Relative humidity - RHC Relative humidity controller - VPD Vapour pressure difference - CO2 Difference of CO2 concentration between inlet and outlet air  相似文献   

8.
Yeo, A. R., Caporn, S. J. M.and Flowers, T. J. 1985. The effectof salinity upon photosynthesis in rice (Oryza sativa L.): Gasexchange by individual leaves in relation to their salt content.—J.exp. Bot. 36: 1240–1248. The effect of salinity upon net photosynthesis and transpirationby individual leaves of rice has been investigated by gas exchangemeasurements in seedlings at the five to six leaf stage. Salinitydid not, initially, reduce net photosynthesis in the whole plantbut only in the older leaves in which sodium accumulated. Analysisof the course of events in leaf four following salinizationof the medium showed that net photosynthesis was inversely correlatedwith the sodium concentration in the leaf tissue. There wasno evidence of a threshold effect; net photosynthesis declinedlinearly with increasing leaf sodium concentration and was reducedby 50% at only 05 mmol sodium per gram dry weight. The relationshipbetween transpiration rate and leaf sodium concentration closelyparalleled that for photosynthesis; there was no effect of leafsodium concentration on the carbon dioxide concentration inthe intercellular spaces, showing that sodium accumulation inthe leaf affected stomatal aperture and carbon dioxide fixationsimultaneously. Photosynthesis was reduced by half at a sodiumconcentration in the leaf which did not reduce the concentrationof chlorophyll. The nature of the effect of salinity upon leafgas exchange is discussed. Key words: Salinity, rice, Oryza sativa L., photosynthesis, apoplastic salt load  相似文献   

9.
The principles and limitations of leaf gas exchange measurementsin portable gas exchange systems are described. Attention isgiven to the design and developments in infrared gas analysersused in portable systems, and the basic structure of singleand dual beam instruments is presented. The significance offlow measurement in these systems and the principles of thermalmass flow measurement are illustrated. Considerations of leafarea measurement, chamber design and choice of materials areoutlined. Two specific developments in field gas exchange systemsare described and their significance in field measurements isillustrated with examples. (1) An integrating sphere leaf chamberfor the determination of the quantum yield of photosynthesis,on the basis of absorbed light, is explained and equations forits use are developed. The significance of this approach isillustrated by a comparison of data for contrasting leaves plottedon an absorbed and incident light basis. This measurement oflight-limited photosynthesis is also critical in understandingthe contribution of shaded leaves to canopy photosynthesis.(2) A system for the measurement of canopy photosynthesis fromarable crops and low stature natural vegetation is described.Results from a season-long study of wheat CO2 exchange are shownto illustrate its application. Key words: Leaf gas exchange, photosynthetic quantum efficiency, infrared gas analysis, canopy photosynthesis, integrating sphere  相似文献   

10.
Herbivory alters plant gas exchange but the effects depend on the type of leaf damage. In contrast to ectophagous insects, leaf miners, by living inside the leaf tissues, do not affect the integrity of the leaf surface. Thus, the effect of leaf miners on CO2 uptake and water-use efficiency by leaves remains unclear. We explored the impacts of the leaf-mining moth Phyllonorycter blancardella (Lepidoptera: Gracillariidae) on light responses of the apple leaf gas exchanges to determine the balance between the negative effects of reduced photosynthesis and potential positive impacts of increased water-use efficiency (WUE). Gas exchange in intact and mined leaf tissues was measured using an infrared gas analyser. The maximal assimilation rate was slightly reduced but the light response of net photosynthesis was not affected in mined leaf tissues. The transpiration rate was far more affected than the assimilation rate in the mine integument as a result of stomatal closure from moderate to high irradiance level. The WUE was about 200% higher in the mined leaf tissues than in intact leaf portions. Our results illustrate a novel mechanism by which plants might minimize losses from herbivore attacks; via trade-offs between the negative impacts on photosynthesis and the positive effects of increased WUE.  相似文献   

11.
A CO2 assay circuit adapted to in vitro culture was designed to investigate CO2 exchanges in test tube-grown Vitis rupestris plantlets. The CO2 concentration of the air in culture tubes was measured by injection of samples in the open circuit. It was observed under the culture conditions used that the CO2 content stabilized during the light phase at 3 times the CO2 compensation point.Measurements of dark respiration under closed circuit conditions at every two-hour interval during the night did not reveal any limiting by lack of the substrate under mixotrophic culture conditions. A mathematical model of the influence of ambient CO2 concentration on net CO2 uptake rates under closed circuit conditions was devised and used to compare net photosynthesis at different lighting levels. Measurement of CO2 evolution into CO2-free air under open circuit conditions revealed a post-illumination burst characteristic of photorespiration which increased with the temperature.  相似文献   

12.
The relationships between photosynthesis, dry matter accumulationand translocation have been studied during the development ofthe first true leaf of cucumber. The leaf was grown in an irradianceof 50W m–2 photosynthetically active radiation for 10h–1 at 20 C and 2 g m–3 CO2. The maximum rate of net photosynthesis, on a leaf area basis,occured at full expansion. Photochemical efficiency, based onincident radiation, also increased up to this stage and wasrelated to the concentration of chlorophyll in the leaf. Darkrespiration and the light compensation point fell over the wholeperiod of leaf expansion. A carbon budget analysis showed that the rate of carbon accumulationin the leaf reached a peak at 70 percent expansion. The leafchanged from a net importer to a net exporter of carbon whenit was about 30 percent expanded. The rate of export increasedwith leaf expansion (and with net photosynthesis) and was twiceas high in the day an in the night at full expansion. At fullleaf expansion there was a reduction in the amount of starchlost overnight, and the carbon exported amounted to 80 per centof the daily net carbon fixed. Cucumber, Cumic satinu L., leaf development, photosynthesis, translocation, carbon budget, mineral content  相似文献   

13.
二回原始观音座莲蕨光合作用的生理生态学研究   总被引:8,自引:0,他引:8  
苏文华  张光飞 《广西植物》2002,22(5):449-452
利用 CO2 光合测定仪分析了引种栽培的二回原始观音座莲叶片的光合补偿点和光合饱和点及其日变化 ,通过控制叶室的光合有效辐射、CO2 浓度、温度和相对湿度 ,分析了叶片的羧化效率和 CO2 补偿点 ,并进行光合有效辐射 ,温度或相对湿度对光合速率的单因子影响研究。二回原始观音座莲的二回羽状复叶上午、中午和下午的光合补偿点分别为 6 .1、6 .4和 3.1μmol/m2 s,光合饱和点分别为 2 50、50 0和 2 50 μm ol/m2 s。最适光合有效辐射为 10 0~ 50 0μmol/m2 s。叶片的羧化效率为 0 .0 191,CO2 补偿点为 59.1μmol/m ol。光合速率在叶温 2 2~ 2 8°C范围内 ,随温度升高上升 ;2 8~ 33°C随温度升高下降 ,最适温度为 2 4~ 30°C。相对湿度 30 %~85%的试验范围内 ,叶片光合速率随湿度增加而增大 ,最适相对湿度条件在 75%以上。  相似文献   

14.
Abstract. A portable apparatus has been constructed to measure simultaneously the quantum yield of CO2 assimilation, light absorption, chlorophyll fluorescence emission and water vapour exchange of attached intact leaves in the field. The core of the instrument is a light-integrating spherical leaf chamber which includes ports for a light source, photosynthetically active radiation sensor, fluorescence probes and gas inlet and outlet manifolds. Measurement of the quantum flux inside the empty chamber and with a leaf present allows determination of leaf absorptance. An open gas exchange system is employed using an infra-red analyser to measure leaf CO2 exchange. Using a DC white light source the quantum yield of CO2 assimilation based on absorbed light (φabs) may be determined rapidly in either ambient air or artificial gas mixtures. Inclusion of capacitance humidity probes into the gas inlet and outlet ports allows simultaneous determination of water vapour exchange and subsequent estimation of stomatal conductance to CO2 and intercellular CO2 concentration. Measurement of fluorescence emission by the sample leaf exposed to white light is achieved by a modulated fluorescence detection system. In addition to determination of the minimal, maximal and variable fluorescence levels, a further analysis allows the photochemical and non-photochemical components of fluorescence quenching, to be estimated. The theory and design of this apparatus is described in detail. The use of the apparatus in the field is demonstrated through a study of the photosynthetic performance of a maize and bean crop during the growing season and by analysis of the photosynthetic performance of crops subjected to nitrogen-stress and a herbicide treatment.  相似文献   

15.
The partial pressure of CO2 inside leaves of several species was measured directly. Small gas exchange chambers were clamped above and below the same section of an amphistomatous leaf. A flowing gas stream through one chamber allowed normal CO2 and water vapor exchange. The other chamber was in a closed circuit consisting of the chamber, an infrared gas analyzer, and a peristaltic pump. The CO2 in the closed system rapidly reached a steady pressure which it is believed was identical to the CO2 pressure inside the leaf, because there was no flux of CO2 across the epidermis. This measured partial pressure was in close agreement with that estimated from a consideration of the fluxes of CO2 and vapor at the other surface.  相似文献   

16.
Photosynthetic characteristics of Cymbidium plantlet in vitro   总被引:17,自引:0,他引:17  
The photosynthetic characteristics of the Cymbidium plantlet in vitro cultured on Hyponex-agar medium with 2% sucrose were determined based on the measurements of CO2 concentration inside and outside of the culture vessels. The CO2 measurements were made with a gas chromatograph at a PPF (photosynthetic photon flux) of 35, 102 and 226 mol m-2 s-1, a chamber air temperature of 15, 25 and 35°C and a CO2 concentration outside the vessel of approximately 350, 1100 and 3000 ppm. The net photosynthetic rates were determined on individual plantlets and were expressed on a dry weight basis. The steady-state CO2 concentration during the photoperiod was lower inside the vessel than outside the vessel at any PPF greater than 35 mol m-2s-1 and at any chamber air temperature. The photosynthetic response curves relating the net photosynthetic rate, PPF, and CO2 concentration in the vessel and chamber air temperature were similar to those for Cymbidium plants grown outside and other C3 plants grown outside under shade. The results indicate that CO2 enrichment for the plantlets in vitro at a relatively high PPF would promote photosynthesis and hence the growth of chlorophyllous shoots/plantlets in vitro and that the plantlets in vitro would make photoautotrophic growth under environmental conditions favorable for photosynthesis.Abbreviations Cin CO2 concentration in the culture vessel - Cout CO2 concentration outside the vessel (in the culture room) - PPF photosynthetic photon flux  相似文献   

17.
The response of photosynthesis to irradiance and temperature during growth was investigated in two soybean genotypes. Soybean is a species that can modify its structure and metabolism so as to adapt to differing light conditions; its responses to rapid changes in irradiance are characterized by their flexibility. However, the temperature during growth can change the response to irradiance: moreover, there may be a marked interaction with genotype.The response of photosynthesis to irradiance consists of changes in leaf thickness, which bring about variations in the mesophyll resistance to CO2 transfer. The increase in net photosynthesis per unit of leaf area is due to the increase in the amount of assimilating material beneath unit of area, as corroborated by the stability of the net photosynthesis per unit volume. Moreover, the response of photosynthesis to temperature is due to the mesophyll diffusion constant which decreases with the growth temperature.  相似文献   

18.
Net photosynthesis and dark respiration (CO2 flux) of Antarctic mosses were measured at Langhovde, East Antarctica, from 9 to 17 January 1988. Moss blocks were taken from communities in the Yukidori Valley (69°14′30″S, 39°46′00″E) at Langhovde. Each block was composed ofCeratodon purpureus andBryum pseudotriquetrum, orB. pseudotriquetrum. The upper part of the block was used to measure net photosynthesis and dark respiration. The net photosynthesis of each sample was measured in the field for one or three days with two infrared CO2 gas analyzers and an assimilation chamber. The relationships of net photosynthetic rate and dark respiration rate, to the water content of the sample, the intensity of solar radiation and the moss temperature were estimated from the field data. The maximum rate of net photosynthesis was about 4 μmol CO2 m−2s−1 at saturating radiation intensity and at optimum temperature, about 10°C. Environmental features of moss habitats in the Yukidori Valley are discussed in relation to these results.  相似文献   

19.
The rates of net photosynthesis by closed canopies of tomatoplants were measured at three CO2 concentrations and three humiditiesover a range of natural light flux densities. The data havebeen analysed using a model of canopy photosynthesis which allowsfor variation in leaf area index and other leaf and canopy characteristics.The model also deals explicitly with the effects of CO2 concentration,leaf conductance, and photorespiration on the leaf photochemicalefficiency, . The leaves were found to have a photochemicalefficiency in the absence of photorespiration, m, of 12?6 ?10–9 kg (CO2) J–1. At a CO2 concentration of 0?73 ? 10–3 kg m–3 (400vpm) the leaf photochemical efficiency, , and canopy light utilizationefficiency, c, were 18 per cent greater at a vapour pressuredeficit of 0?5 kPa than at 1?0 kPa. At a CO2 concentration of2?2 ? 10–3 kg m–3 (1200 vpm) they were only 5 percent greater.  相似文献   

20.
Summary Schistidium antarctici is the commonest of five bryophytes known in the Windmill Islands area of Wilkes Land, Greater Antarctica. In moist habitats it forms closed carpets, but in dry sites it develops a short cushion growth form. Carbon dioxide exchange of both a mesic (Sm) and a xeric growth form (Sx) was investigated by means of an IRGA system in the field near Casey Station under natural light and simulated ambient or controlled temperature conditions in the plant chamber. The chlorophyll content in Sm was three times higher than in Sx. The light compensation point of Sm was lower than in Sx. The data for photosynthesis and dark respiration were computed by means of non-linear and linear regression analysis. Sm was more productive and had a wider temperature range of positive net photosynthesis than Sx under similar conditions. Dark respiration per gram of the whole moss sample was identical in both ecodemes. A decline of the photosynthesis curves at quantum flux densities above 500 mol m-2 s-1 PAR indicated a photoinhibitory effect in Sm. Sx was even more sensitive to high irradiance levels. Photoinhibition was not apparent in laboratory measurements under artificial light. According to our field measurements the photoinhibitory effect increases with increasing temperature. Moisture loss was avoided during the experiments by water supply from the bottom and frequently spraying the moss samples with water. In the natural habitat the desiccating effect of solar radiation is important, as it quickly causes photosynthesis to cease. The moss will dry out sooner in a xeric habitat than in one which is continuously moist. Consequently, the mesic Schistidium might particularly be subjected to photoinhibition by bright sunshine.Cordially dedicated to Professor Dr. O.H. Volk, Würzburg, on the event of his 85th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号