首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Until recently, the settlement of the Americas seemed largely divorced from the out‐of‐Africa dispersal of anatomically modern humans, which began at least 50,000 years ago. Native Americans were thought to represent a small subset of the Eurasian population that migrated to the Western Hemisphere less than 15,000 years ago. Archeological discoveries since 2000 reveal, however, that Homo sapiens occupied the high‐latitude region between Northeast Asia and northwest North America (that is, Beringia) before 30,000 years ago and the Last Glacial Maximum (LGM). The settlement of Beringia now appears to have been part of modern human dispersal in northern Eurasia. A 2007 model, the Beringian Standstill Hypothesis, which is based on analysis of mitochondrial DNA (mtDNA) in living people, derives Native Americans from a population that occupied Beringia during the LGM. The model suggests a parallel between ancestral Native Americans and modern human populations that retreated to refugia in other parts of the world during the arid LGM. It is supported by evidence of comparatively mild climates and rich biota in south‐central Beringia at this time (30,000‐15,000 years ago). These and other developments suggest that the settlement of the Americas may be integrated with the global dispersal of modern humans.  相似文献   

2.
Yufa Luo  Shuqiang Li 《Ecography》2015,38(11):1080-1089
The dispersal of modern humans from their African origins to the rest of the occupied world is a topic of lively debate centering principally on single versus multiple dispersals. The Mediterranean recluse spider Loxosceles rufescens, a significant pest, has gained much of its current distribution through commensalism with humans. Therefore, the matrilineal history of this spider should reflect dispersal patterns of human females. Here, an assessment of genetic variation at mitochondrial markers in 347 colonies of L. rufescens from 104 geographic sites worldwide reveals a north African origin of the global populations of L. rufescens. This involves at least three separate events among which two involve coincidental dispersals, including one to north Africa, Europe, Asia, North America, and Australia and the other to north Africa, Europe, and Asia only. North African L. rufescens appear to have expanded initially into Israel and subsequently spread into Greece, where a subset of these populations went eastward into Iran and southeastern Asia. This corresponds to the modern human southern dispersal theory. Chinese populations appear to have expanded approximately 42 710–46 008 yr ago. The initial split between the Greek and Chinese populations dates to 41 412–44 444 yr ago, which coincides with the expansion of modern humans into Southeast and East Asia. Thus, the matrilineal history of Asian L. rufescens tracks the history of human dispersals over tens of thousands of years.  相似文献   

3.
The emergence of more refined chronologies for climate change and archaeology in prehistoric Africa, and for the evolution of human mitochondrial DNA (mtDNA), now make it feasible to test more sophisticated models of early modern human dispersals suggested by mtDNA distributions. Here we have generated 42 novel whole-mtDNA genomes belonging to haplogroup L0, the most divergent clade in the maternal line of descent, and analysed them alongside the growing database of African lineages belonging to L0’s sister clade, L1’6. We propose that the last common ancestor of modern human mtDNAs (carried by “mitochondrial Eve”) possibly arose in central Africa ~180 ka, at a time of low population size. By ~130 ka two distinct groups of anatomically modern humans co-existed in Africa: broadly, the ancestors of many modern-day Khoe and San populations in the south and a second central/eastern African group that includes the ancestors of most extant worldwide populations. Early modern human dispersals correlate with climate changes, particularly the tropical African “megadroughts” of MIS 5 (marine isotope stage 5, 135–75 ka) which paradoxically may have facilitated expansions in central and eastern Africa, ultimately triggering the dispersal out of Africa of people carrying haplogroup L3 ~60 ka. Two south to east migrations are discernible within haplogroup LO. One, between 120 and 75 ka, represents the first unambiguous long-range modern human dispersal detected by mtDNA and might have allowed the dispersal of several markers of modernity. A second one, within the last 20 ka signalled by L0d, may have been responsible for the spread of southern click-consonant languages to eastern Africa, contrary to the view that these eastern examples constitute relicts of an ancient, much wider distribution.  相似文献   

4.
Few would now dispute the reality of a major dispersal of anatomically and genetically modern human populations across Europe and western Asia centered broadly within the period from ca. 45,000 to 35,000 BP in terms of conventional radiocarbon dating, or between ca. 47,000 and 41,000 BP in terms of the most recent calibration of the radiocarbon timescale. 1 This can be supported equally from the direct skeletal evidence recovered from European and Near Eastern sites and from the closely similar conclusions drawn from studies of both the mitochondrial and Y‐chromosome DNA evidence in modern European populations. 2 - 4 How far these new anatomically and genetically modern populations may or may not have interbred with the preceding Neanderthal populations in the different regions of Europe remains a matter of lively debate. 2 , 5 , 6 But the reality of this modern human population dispersal itself is now almost universally accepted.  相似文献   

5.
Mitochondrial DNA variation in human evolution and disease   总被引:37,自引:0,他引:37  
Wallace DC  Brown MD  Lott MT 《Gene》1999,238(1):211-230
Analysis of mitochondrial DNA (mtDNA) variation has permitted the reconstruction of the ancient migrations of women. This has provided evidence that our species arose in Africa about 150000 years before present (YBP), migrated out of Africa into Asia about 60000 to 70000 YBP and into Europe about 40000 to 50000 YBP, and migrated from Asia and possibly Europe to the Americas about 20000 to 30000 YBP. Although much of the mtDNA variation that exists in modern populations may be selectively neutral, studies of the mildly deleterious mtDNA mutations causing Leber's hereditary optic neuropathy (LHON) have demonstrated that some continent-specific mtDNA lineages are more prone to manifest the clinical symptoms of LHON than others. Hence, all mtDNA lineages are not equal, which may provide insights into the extreme environments that were encountered by our ancient ancestor, and which may be of great importance in understanding the pathophysiology of mitochondrial disease.  相似文献   

6.
We describe aspects of genetic diversity in several ethnic populations of the Caucasus Mountains of Daghestan using mitochondrial DNA sequences and a sample of 100 polymorphic Alu insertion loci. The mitochondrial DNA (mtDNA) sequences are like those of Europe. Principal coordinates and nearest neighbor statistics show that there is little detectable structure in the distances among populations computed from mtDNA. The Alu frequencies of the Caucasus populations suggest that they have undergone more genetic drift than most other groups since the dispersal of modern humans. Genetic differences among these populations are not large; instead, they are of the same order as distances among populations of Europe. We compare two methods of inference about the demography of ancient colonizing populations from Africa, one based on conventional FST statistics and one based on mean Alu insertion frequencies. The two approaches agree reasonably well if we assume that there was demographic growth in Africa before the diaspora of ancestors of contemporary regional human groups outside Africa.  相似文献   

7.
East Asia is one of the few regions in the world where a relatively large number of human fossils have been unearthed--a discovery that has been taken as evidence for an independent local origin of modern humans outside of Africa. However, genetic studies conducted in the past ten years, especially using Y chromosomes, have provided unequivocal evidence for an African origin of East Asian populations. The genetic signatures present in diverse East Asian populations mark the footsteps of prehistoric migrations that occurred tens of thousands of years ago.  相似文献   

8.
倪喜军 《人类学学报》2022,41(4):576-592
解剖结构上的现代人是指具有近圆球形头骨、短而平的面颅、纤细的骨骼等特征的区别于其他古老人类的化石和现今的人群。支持多地区演化模型和支持近期非洲起源模型的学者,在“解剖结构上的现代人”的应用范围方面是不同的,前者以连续演化为基本思想,认为这一名词只包括智人中较进步的类群;而后者以分支系统学思想为基础,认为包括所有智人。分子古生物学研究显示,尼人、丹人和智人在遗传学水平上属于不同的人种。新近的以标本-种群为单元的系统分析,因为不是以属、种等分类学阶元进行的,因此与分类学的阶元划分无关。该系统分析的结果显示智人属于单系类群,哈尔滨人、大荔人等组成其姊妹群。尼人与智人的分异早于1百万年,与基因组水平的谱系分析相符合。多次多向的穿梭扩散是统计学上符合系统关系的模型。  相似文献   

9.
There is general agreement among scientists about a recent (less than 200,000 yrs ago) African origin of anatomically modern humans, whereas there is still uncertainty about whether, and to what extent, they admixed with archaic populations, which thus may have contributed to the modern populations' gene pools. Data on cranial morphology have been interpreted as suggesting that, before the main expansion from Africa through the Near East, anatomically modern humans may also have taken a Southern route from the Horn of Africa through the Arabian peninsula to India, Melanesia and Australia, about 100,000 yrs ago. This view was recently supported by archaeological findings demonstrating human presence in Eastern Arabia >90,000 yrs ago. In this study we analyzed genetic variation at 111,197 nuclear SNPs in nine populations (Kurumba, Chenchu, Kamsali, Madiga, Mala, Irula, Dalit, Chinese, Japanese), chosen because their genealogical relationships are expected to differ under the alternative models of expansion (single vs. multiple dispersals). We calculated correlations between genomic distances, and geographic distances estimated under the alternative assumptions of a single dispersal, or multiple dispersals, and found a significantly stronger association for the multiple dispersal model. If confirmed, this result would cast doubts on the possibility that some non-African populations (i.e., those whose ancestors expanded through the Southern route) may have had any contacts with Neandertals.  相似文献   

10.
To reconstruct the phylogenetic position of the extinct cave lion (Panthera leo spelaea), we sequenced 1 kb of the mitochondrial cytochrome b gene from two Pleistocene cave lion DNA samples (47 and 32 ky B.P.). Phylogenetic analysis shows that the ancient sequences form a clade that is most closely related to the extant lions from Africa and Asia; at the same time, cave lions appear to be highly distinct from their living relatives. Our data show that these cave lion sequences represent lineages that were isolated from lions in Africa and Asia since their dispersal over Europe about 600 ky B.P., as they are not found among our sample of extant populations. The cave lion lineages presented here went extinct without mitochondrial descendants on other continents. The high sequence divergence in the cytochrome b gene between cave and modern lions is notable.  相似文献   

11.
The “Weak Garden of Eden” model for the origin and dispersal of modern humans (Harpendinget al., 1993) posits that modern humans spread into separate regions from a restricted source, around 100 ka (thousand years ago), then passed through population bottlenecks. Around 50 ka, dramatic growth occurred within dispersed populations that were genetically isolated from each other. Population growth began earliest in Africa and later in Eurasia and is hypothesized to have been caused by the invention and spread of a more efficient Later Stone Age/Upper Paleolithic technology, which developed in equatorial Africa.Climatic and geological evidence suggest an alternative hypothesis for Late Pleistocene population bottlenecks and releases. The last glacial period was preceded by one thousand years of the coldest temperatures of the Later Pleistocene (∼71–70 ka), apparently caused by the eruption of Toba, Sumatra. Toba was the largest known explosive eruption of the Quaternary. Toba's volcanic winter could have decimated most modern human populations, especially outside of isolated tropical refugia. Release from the bottleneck could have occurred either at the end of this hypercold phase, or 10,000 years later, at the transition from cold oxygen isotope stage 4 to warmer stage 3. The largest populations surviving through the bottleneck should have been found in the largest tropical refugia, and thus in equatorial Africa. High genetic diversity in modern Africans may thus reflect a less severe bottleneck rather than earlier population growth.Volcanic winter may have reduced populations to levels low enough for founder effects, genetic drift and local adaptations to produce rapid population differentiation. If Toba caused the bottlenecks, then modern human races may have differentiated abruptly, only 70 thousand years ago.  相似文献   

12.
Relethford JH 《Heredity》2008,100(6):555-563
A continued debate in anthropology concerns the evolutionary origin of 'anatomically modern humans' (Homo sapiens sapiens). Different models have been proposed to examine the related questions of (1) where and when anatomically modern humans first appeared and (2) the genetic and evolutionary relationship between modern humans and earlier human populations. Genetic data have been increasingly used to address these questions. Genetic data on living human populations have been used to reconstruct the evolutionary history of the human species by considering how global patterns of human variation could be produced given different evolutionary scenarios. Of particular interest are gene trees that reconstruct the time and place of the most recent common ancestor of humanity for a given haplotype and the analysis of regional differences in genetic diversity. Ancient DNA has also allowed a direct assessment of genetic variation in European Neandertals. Together with the fossil record, genetic data provide insight into the origin of modern humans. The evidence points to an African origin of modern humans dating back to 200,000 years followed by later expansions of moderns out of Africa across the Old World. What is less clear is what happened when these early modern humans met preexisting 'archaic human' populations outside of Africa. At present, it is difficult to distinguish between a model of total genetic replacement and a model that includes some degree of genetic mixture.  相似文献   

13.
The COL3A1 Alu insertion is a member of the AluY subfamily. It has been found to be absent in non-human primates and polymorphic in worldwide human populations. The integration of the element into the human genome seems to have preceded the initial migration(s) of anatomically modern humans out of the African continent. Although the insertion has been detected in populations from all the continents, its highest frequency values are located within sub-Saharan Africa. The sequence alignment of the COL3A1 insertion from several African individuals revealed a bi-allelic single nucleotide polymorphism (SNP) at the downstream terminus of the element's poly-A tract. Once discovered, a selective PCR procedure was designed to determine the frequency of both alleles in 19 worldwide populations. The A-allele in this binary SNP experiences a clinal increase in the eastward direction from Africa to Southeast Asia and Mongolia, reaching fixation in the two latter regions. The T variant, on the other hand, exhibits a westward clinal increase outside of Africa, with its lowest frequency in Asia and achieving fixation in northern Europe. The presence of this internal SNP extends the usefulness provided by the polymorphic Alu insertion (PAI). It is possible that superimposing polymorphisms like this one found in the COL3A1 locus may accentuate signals from genetic drift events allowing for visualization of recent dispersal patterns.  相似文献   

14.
Genetic differentiation may exist among sympatric populations of a species due to long‐term associations with alternative hosts (i.e. host‐associated differentiation). While host‐associated differentiation has been documented in several phytophagus insects, there are far fewer cases known in animal parasites. The bed bug, Cimex lectularius, a wingless insect, represents a potential model organism for elucidating the processes involved in host‐associated differentiation in animal parasites with relatively limited mobility. In conjunction with the expansion of modern humans from Africa into Eurasia, it has been speculated that bed bugs extended their host range from bats to humans in their shared cave domiciles throughout Eurasia. C. lectularius that associate with humans have a cosmopolitan distribution, whereas those associated with bats occur across Europe, often in human‐built structures. We assessed genetic structure and gene flow within and among populations collected in association with each host using mtDNA, microsatellite loci and knock‐down resistance gene variants. Both nuclear and mitochondrial data support a lack of significant contemporary gene flow between host‐specific populations. Within locations human‐associated bed bug populations exhibit limited genetic diversity and elevated levels of inbreeding, likely due to human‐mediated movement, infrequent additional introduction events per infestation, and pest control. In contrast, populations within bat roosts exhibit higher genetic diversity and lower levels of relatedness, suggesting populations are stable with temporal fluctuations due to host dispersal and bug mortality. In concert with previously published evidence of morphological and behavioural differentiation, the genetic data presented here suggest C. lectularius is currently undergoing lineage divergence through host association.  相似文献   

15.
We extend the continuity of microblade technology in the Indian Subcontinent to 45 ka, on the basis of optical dating of microblade assemblages from the site of Mehtakheri, (22° 13'' 44″ N Lat 76° 01'' 36″ E Long) in Madhya Pradesh, India. Microblade technology in the Indian Subcontinent is continuously present from its first appearance until the Iron Age (~3 ka), making its association with modern humans undisputed. It has been suggested that microblade technology in the Indian Subcontinent was developed locally by modern humans after 35 ka. The dates reported here from Mehtakheri show this inference to be untenable and suggest alternatively that this technology arrived in the Indian Subcontinent with the earliest modern humans. It also shows that modern humans in Indian Subcontinent and SE Asia were associated with differing technologies and this calls into question the “southern dispersal” route of modern humans from Africa through India to SE Asia and then to Australia. We suggest that modern humans dispersed from Africa in two stages coinciding with the warmer interglacial conditions of MIS 5 and MIS 3. Competitive interactions between African modern humans and Indian archaics who shared an adaptation to tropical environments differed from that between modern humans and archaics like Neanderthals and Denisovans, who were adapted to temperate environments. Thus, while modern humans expanded into temperate regions during warmer climates, their expansion into tropical regions, like the Indian Subcontinent, in competition with similarly adapted populations, occurred during arid climates. Thus modern humans probably entered the Indian Subcontinent during the arid climate of MIS 4 coinciding with their disappearance from the Middle East and Northern Africa. The out of phase expansion of modern humans into tropical versus temperate regions has been one of the factors affecting the dispersal of modern humans from Africa during the period 200–40 ka.  相似文献   

16.
Although fossil remains show that anatomically modern humans dispersed out of Africa into the Near East ~100 to 130 ka, genetic evidence from extant populations has suggested that non-Africans descend primarily from a single successful later migration. Within the human mitochondrial DNA (mtDNA) tree, haplogroup L3 encompasses not only many sub-Saharan Africans but also all ancient non-African lineages, and its age therefore provides an upper bound for the dispersal out of Africa. An analysis of 369 complete African L3 sequences places this maximum at ~70 ka, virtually ruling out a successful exit before 74 ka, the date of the Toba volcanic supereruption in Sumatra. The similarity of the age of L3 to its two non-African daughter haplogroups, M and N, suggests that the same process was likely responsible for both the L3 expansion in Eastern Africa and the dispersal of a small group of modern humans out of Africa to settle the rest of the world. The timing of the expansion of L3 suggests a link to improved climatic conditions after ~70 ka in Eastern and Central Africa rather than to symbolically mediated behavior, which evidently arose considerably earlier. The L3 mtDNA pool within Africa suggests a migration from Eastern Africa to Central Africa ~60 to 35 ka and major migrations in the immediate postglacial again linked to climate. The largest population size increase seen in the L3 data is 3-4 ka in Central Africa, corresponding to Bantu expansions, leading diverse L3 lineages to spread into Eastern and Southern Africa in the last 3-2 ka.  相似文献   

17.
The Soqotra archipelago is one of the most isolated landmasses in the world, situated at the mouth of the Gulf of Aden between the Horn of Africa and southern Arabia. The main island of Soqotra lies not far from the proposed southern migration route of anatomically modern humans out of Africa ~60,000 years ago (kya), suggesting the island may harbor traces of that first dispersal. Nothing is known about the timing and origin of the first Soqotri settlers. The oldest historical visitors to the island in the 15th century reported only the presence of an ancient population. We collected samples throughout the island and analyzed mitochondrial DNA and Y‐chromosomal variation. We found little African influence among the indigenous people of the island. Although the island population likely experienced founder effects, links to the Arabian Peninsula or southwestern Asia can still be found. In comparison with datasets from neighboring regions, the Soqotri population shows evidence of long‐term isolation and autochthonous evolution of several mitochondrial haplogroups. Specifically, we identified two high‐frequency founder lineages that have not been detected in any other populations and classified them as a new R0a1a1 subclade. Recent expansion of the novel lineages is consistent with a Holocene settlement of the island ~6 kya. Am J Phys Anthropol, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

18.
DNA polymorphism in a worldwide sample of human X chromosomes   总被引:5,自引:0,他引:5  
DNA sequence data from humans can provide insight into the history of modern humans and the genetic variability in human populations. We report here a study of human DNA sequence variation at an X-linked noncoding region of 10,346 bp. The sample consists of 62 X chromosomes from Africa, Europe, and Asia. Forty-four polymorphic sites were found among the 62 sequences, resulting in 23 different haplotypes. Statistical analyses of the data led to the following inferences. (1) There is strong evidence of human population expansion in the relatively recent past, and this population expansion has had a significant effect on the pattern of polymorphism at this locus. (2) Non-African populations were unlikely to have been derived from a very small number of African lineages. (3) There was considerable geographic subdivision in the ancient human population, which could be an important reason why many studies failed to detect population expansion. (4) The long-term effective population size of humans is between 12,000 and 15,000. And (5) a non-African specific variant was found at a frequency of 35% in non-Africans, an estimate supported by the genotyping of additional 80 non-African and 106 African X chromosomes. This variant could have arisen in Eurasia more than 140,000 years ago, predating the emergence of modern humans. Moreover, this haplotype and all other haplotypes coalesced to the most recent common ancestor of the sample, which was estimated to be older than 490,000 years. Therefore, this region may have a long history in Eurasia.  相似文献   

19.
Unravelling the genetic history of any livestock species is central to understanding the origin, development and expansion of agricultural societies and economies. Domestic village chickens are widespread in Africa. Their close association with, and reliance on, humans for long‐range dispersal makes the species an important biological marker in tracking cultural and trading contacts between human societies and civilizations across time. Archaezoological and linguistic evidence suggest a complex history of arrival and dispersion of the species on the continent, with mitochondrial DNA (mtDNA) D‐loop analysis revealing the presence of five distinct haplogroups in East African village chickens. It supports the importance of the region in understanding the history of the species and indirectly of human interactions. Here, through a detailed analysis of 30 autosomal microsatellite markers genotyped in 657 village chickens from four East African countries (Kenya, Uganda, Ethiopia and Sudan), we identify three distinct autosomal gene pools (I, II and III). Gene pool I is predominantly found in Ethiopia and Sudan, while II and III occur in both Kenya and Uganda. A gradient of admixture for gene pools II and III between the Kenyan coast and Uganda's hinterland (= 0.001) is observed, while gene pool I is clearly separated from the other two. We propose that these three gene pools represent genetic signatures of separate events in the history of the continent that relate to the arrival and dispersal of village chickens and humans across the region. Our results provide new insights on the history of chicken husbandry which has been shaped by terrestrial and maritime contacts between ancient and modern civilizations in Asia and East Africa.  相似文献   

20.
Little is known about the timing of modern human emergence and occupation in Eastern Eurasia. However a rapid migration out of Africa into Southeast Asia by at least 60 ka is supported by archaeological, paleogenetic and paleoanthropological data. Recent discoveries in Laos, a modern human cranium (TPL1) from Tam Pa Ling‘s cave, provided the first evidence for the presence of early modern humans in mainland Southeast Asia by 63-46 ka. In the current study, a complete human mandible representing a second individual, TPL 2, is described using discrete traits and geometric morphometrics with an emphasis on determining its population affinity. The TPL2 mandible has a chin and other discrete traits consistent with early modern humans, but it retains a robust lateral corpus and internal corporal morphology typical of archaic humans across the Old World. The mosaic morphology of TPL2 and the fully modern human morphology of TPL1 suggest that a large range of morphological variation was present in early modern human populations residing in the eastern Eurasia by MIS 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号