首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we explore the relationship between moments in the frontal and sagittal planes, generated by a lifting task, vs the electromyographic (EMG) activity of right and left trunk muscle groups. In particular, we postulate that the functional dependence between erector spinae muscle activity and the applied lifting moments about the spine is as follows: the sum of left and right erector spinae processed EMG depends on the sagittal plane moment, and the difference of left and right erector spinae processed EMG depends on the frontal plane moment. A simple out-of-sagittal plane physical model, treating the lumbar spine as a two degree-of-freedom pivot point is discussed to justify these hypotheses. To validate this model, we collected surface EMG and lifting moment data for ten males performing a grid of frontal and sagittal plane lifting tasks. A digital RMS-to-DC algorithm was developed for processing raw EMG. For these tests, we measured EMG for the left and right erector spinae and for the left and right external oblique muscles. The processed EMG signals of the left and right erector spinae muscles are summed and differenced for comparison to the measured sagittal and frontal plane moments. A linear correlation (r2) of 0.96 was obtained for the sum of erector spinae EMG vs the sagittal plane moment; a corresponding value of r2 = 0.95 was obtained for the difference vs the frontal plane moment. No correlations (r2 less than 0.004) was found for the sagittal plane moment and the difference of the left and right erector spinae EMG, and the frontal plane moment and the sum of the left and right erector spinae EMG.  相似文献   

2.
The purpose of this study was to examine how inducing fatigue of the 1) lumbar erector spinae and 2) cervical erector spinae (CES) muscles affected the ability to maintain head stability during walking. Triaxial accelerometers were attached to the head, upper trunk, and lower trunk to measure accelerations in the vertical, anterior-posterior, and mediolateral directions during walking. Using three accelerometers enabled two adjacent upper body segments to be defined: the neck segment and trunk segment. A transfer function was applied to root mean square acceleration, peak power, and harmonic data derived from spectral analysis of accelerations to quantify segmental gain. The structure of upper body accelerations were examined using measures of signal regularity and smoothness. The main findings were that head stability was only affected in the anterior-posterior direction, as accelerations of the head were less regular following CES fatigue. Furthermore, following CES fatigue, the central nervous system altered the attenuation properties of the trunk segment in the anterior-posterior direction, presumably to enhance head stability. Following lumbar erector spinae fatigue, the trunk segment had greater gain and increased regularity and smoothness of accelerations in the mediolateral direction. Overall, the results of this study suggest that erector spinae fatigue differentially altered segmental attenuation during walking, according to the level of the upper body that was fatigued and the direction that oscillations were attenuated. A compensatory postural response was not only elicited in the sagittal plane, where greater segmental attenuation occurred, but also in the frontal plane, where greater segmental gain occurred.  相似文献   

3.
Surface electromyograms (EMG) of back muscles are often corrupted by electrocardiogram (ECG) signals. This noise in the EMG signals does not allow to appreciate correctly the spectral content of the EMG signals and to follow its evolution during, for example, a fatigue process. Several methods have been proposed to reject the ECG noise from EMG recordings, but seldom taking into account the eventual changes in ECG characteristics during the experiment. In this paper we propose an adaptive filtering algorithm specifically developed for the rejection of the electrocardiogram corrupting surface electromyograms (SEMG). The first step of the study was to choose the ECG electrode position in order to record the ECG with a shape similar to that found in the noised SEMGs. Then, the efficiency of different algorithms were tested on 28 erector spinae SEMG recordings. The best algorithm belongs to the fast recursive least square family (FRLS). More precisely, the best results were obtained with the simplified formulation of a FRLS algorithm. As an application of the adaptive filtering, the paper compares the evolutions of spectral parameters of noised or denoised (after adaptive filtering) surface EMGs recorded on erector spinae muscles during a trunk extension. The fatigue test was analyzed on 16 EMG recordings. After adaptive filtering, mean initial values of energy and of mean power frequency (MPF) were significantly lower and higher respectively. The differences corresponded to the removal of the ECG components. Furthermore, classical fatigue criteria (increase in energy and decrease in MPF values over time during the fatigue test) were better observed on the denoised EMGs. The mean values of the slopes of the energy-time and MPF-time linear relationships differed significantly when established before and after adaptive filtering. These results account for the efficacy of the adaptive filtering method proposed here to denoise electrophysiological signals.  相似文献   

4.
We examined the influence of the application of postural taping on the kinematics of the lumbo–pelvic–hip complex, electromyographic (EMG) activity of back extensor muscles, and the rating of perceived exertion (RPE) in the low back during patient transfer. In total, 19 male physical therapists with chronic low back pain performed patient transfers with and without the application of postural taping on the low back. The kinematics of the lumbo–pelvic–hip complex and EMG activity of the erector spinae were recorded using a synchronized 3-D motion capture system and surface EMG. RPE was measured using Borg’s CR-10 scale. Differences in kinematic data, EMG activity, and RPE between the two conditions were analyzed using a paired t-test. Peak angle and range of motion (ROM) of lumbar flexion, EMG activity of the erector spinae, and RPE decreased significantly, while peak angle and ROM of pelvic anterior tilt and hip flexion increased significantly during patient transfer under the postural taping condition versus no taping (p < 0.05). These findings suggest that postural taping can change back extensor muscle activity and RPE as well as the kinematics of the lumbo–pelvic–hip complex in physical therapists with chronic low back pain during patient transfer.  相似文献   

5.
The purpose of this study was to objectively assess the response of car passengers to lateral accelerations. Surface EMG signals were collected bilaterally from the cervical erector spinae (CES), latissimus dorsi (LD), erector spinae (ES), external oblique (EO), and vastus lateralis (VL) muscles of 10 subjects. Lateral acceleration was also recorded. Three chassis-seat configurations AA, BA and BB were tested, with the first letter denoting the chassis and the second the seat. SEMG signals were often contaminated by noise, and were, therefore, denoised using the methods explained in part I. Reciprocal phasic activity was observed for all muscles except for the EO, and the reaction of passengers to lateral accelerations was interpreted as a bust torsion. The RMS of EMG segments was used as an indication of muscle activity. Muscle activation of VL and ES were significantly affected by the configuration tested (p < 0.05), with greater activation levels observed for the chassis A than for the chassis B. Such a finding implies that greater roll requires greater muscle activity, thus resulting in less comfortable vehicles. Therefore, SEMG can be used to provide an objective measure of discomfort in passengers subjected to lateral accelerations in a car seat.  相似文献   

6.
The purpose of the study was to compare the electromyographic (EMG) activity of the trunk muscles between normal subjects and chronic low back pain (CLBP) patients during standardized trunk movements. Thirty-three male subjects (18 normals, 15 suffering from non specific CLBP) aged between 35 and 45 yr participated. A biomechanical analysis involving the recording of EMG signals from 12 trunk muscles, the kinematics of trunk segments and the computation of L5/S1 moments was performed. The subjects performed flexion-extension and lateral bending (left and right) tasks (three complete cycles) with and without a 12 kg load. Between group comparisons were performed on the full cycle average pattern of all biomechanical variables for each task. The reliability of EMG variables was evaluated for 10 subjects (5 normals and 5 CLBP) who performed the tasks on three different days. The reliability of EMG amplitude values was generally excellent for agonist muscles but poor to moderate for antagonists. The EMG amplitude analysis revealed significant differences between groups for some muscles (left lumbar and thoracic erector spinae). The abnormal (asymmetric) EMG patterns detected among CLBP patients were not explained by postural asymmetries.  相似文献   

7.
The aim of the present study was to evaluate the viability of a relationship between the temporal activation pattern of parts of the erector spinae muscle and endurance. Seven subjects performed intermittent isometric contractions [4 s at 7007o maximal voluntary contraction (MVC), 2 s rest] until exhaustion, during which the electromyographical (EMG) activity of the multifidus, iliocostalis thoracis and longissimus muscle segments was recorded. Endurance was defined as the time until exhaustion. Subjects were divided into a high and a low endurance group. The high endurance group showed significantly more variability of EMG amplitude over succeeding contractions. This group demonstrated significantly more alternations of EMG activity between parts of the muscle also. Variability of the EMG amplitude within the contractions did not differ between the groups, nor did MVC. The results indicated that alternating activity between different parts of the erector spinae muscle may function to postpone exhaustion of this muscle as a whole.  相似文献   

8.
Ten normal subjects performed continuous trunk flexion/extensions (F/E) without any restraining apparatus at free, 3, 2.25 and 1.5 s periods and a fatiguing task of F/E at 1.5 s period during 45 s. Kinematics of the trunk was obtained with bilateral electromyographic (EMG) activity of the erector spinae (three levels), the abdominal oblique muscles and the rectus abdominis muscles. The free period chosen by the subjects was found to vary between 3.05 and 1.47 s. Lateral flexion of the spine was similar in each task but rotation about its longitudinal axis increased as the F/E period shortened. When left and right side EMG signals were grouped by level of recording, a significant difference in activity was found. Subjects who produced the slowest free F/E displayed larger fatigue indexes derived from the EMG signals for some of their back muscles than for other subjects. The flexion/relaxation phenomenon was considered present in a muscle if a level <10% of the maximum signal recorded during extension was detected. The phenomenon was found in >50% of the observations and occurred at a similar angle in each task. Kinematics and several characteristics of the EMG signals of the trunk were statistically independent of the speed of motion.  相似文献   

9.
Surface electromyograms(EMG) during test contractions (TCs) were studied to assess the muscle strain in simulated mushroom picking. Additionally, the duration of the TC for the effective assessment was investigated. Nine female subjects performed standardized shoulder abduction and a stooped posture for one minute as TCs. Each experiment consisted of a 60-min rest, three work periods (W1-W3), a 30-min rest, and two work periods (W4 and W5) separated by a 30-min rest period. The duration of each work period was about 20 min. A total of 18 TCs was performed between the work periods and every 10 minutes in the rest periods. EMGs were recorded from the trapezius, infraspinatus, deltoid, and erector spinae muscles. The amplitude of EMG (AEMG) and mean power frequency (MPF) of EMG were calculated. Each TC was divided equally into three parts. Ratings of perceived exertion (RPE) in the neck, shoulder and low-back were reported during TCs. The work increased RPE of all the parts. AEMG and RPE were increased and MPF was decreased by W1, W2 and W3 in the neck and shoulder muscles. MPF of the erector spinae was increased by the work. The results were not affected by the duration of TCs and the parts during the TCs. AEMG and MPF fluctuated before W1 although the changes of RPE were small. Averaging several TCs was recommended to get stable results from TCs. EMG changes and appropriate TC conditions were discussed in relation to the adaptation in fatiguing contractions.  相似文献   

10.
Head movements, ground reaction forces and electromyographic activity of selected muscles were recorded simultaneously from two subjects as they performed the sit-to-stand manouevre under a variety of conditions. The influence of initial leg posture on the magnitude of the various parameters under investigation was examined first. A preferred initial leg posture resulted in smaller magnitudes of head movement and ground reaction forces. EMG activity in some muscles, trapezius and erector spinae, decreased, while in others, quadriceps and hamstrings, it increased in the preferred leg posture. The decreases seen correlate with reductions in head movement observed. The effect of inhibiting habitual postural adjustments of the head and neck, by comparing "free" and "guided" movements was also examined. In guided movements there are significant reductions in head movement, ground reaction forces and EMG activity in trapezius, sternomastoid and erector spinae. It would appear that both initial leg posture and the abolition of habitual postural adjustment have a profound influence on the efficiency of the sit-to-stand manouevre. This preliminary study high-lights the practical importance of head posture in the diagnosis and treatment of movement disorders, as well as in movement education.  相似文献   

11.
The aim of this paper is to develop a method to extract relevant activities from surface electromyography (SEMG) recordings under difficult experimental conditions with a poor signal to noise ratio. High amplitude artifacts, the QRS complex, low frequency noise and white noise significantly alter EMG characteristics. The CEM algorithm proved to be useful for segmentation of SEMG signals into high amplitude artifacts (HAA), phasic activity (PA) and background postural activity (BA) classes. This segmentation was performed on signal energy, with classes belonging to a χ2 distribution. Ninety-five percent of HAA events and 96.25% of BA events were detected, and the remaining noise was then identified using AR modeling, a classification based upon the position of the coordinates of the pole of highest module. This method eliminated 91.5% of noise and misclassified only 3.3% of EMG events when applied to SEMG recorded on passengers subjected to lateral accelerations.  相似文献   

12.
The purpose of the study was to explore changes in the spatial distribution of erector spinae electromyography amplitude during static, sustained contractions and during contractions of increasing load. Surface electromyographic (EMG) signals were detected from nine healthy subjects using a grid of 13 × 5 electrodes placed unilaterally over the lumbar erector spinae musculature. Subjects stood in a 20° forward flexed position and performed: (1) six 20-s long contractions with loads ranging from 2.5 kg to 12.5 kg (2.5 kg increments) and (2) a 6 min sustained contraction with 7.5 kg load. Root mean square (RMS) and mean power spectral frequency (MNF) were computed from the recorded EMG signals. EMG RMS increased (P < 0.0001) and MNF remained constant during contractions of increased load. During the sustained contraction, MNF decreased (P < 0.0001) and RMS did not change over time. The centroid (center of activity) of the RMS map shifted caudally (P < 0.0001) with time during the sustained contraction but did not change with varying load. These results suggest a change in the distribution of erector spinae muscle activity with fatigue and a uniform distribution of muscle activation across loads.  相似文献   

13.
Electromyography of trunk muscles in isometric graded axial rotation.   总被引:2,自引:0,他引:2  
This study was conducted to determine the pattern, magnitude, and phasic inter-relationship of the trunk muscles in maximal isometric and graded isometric axial rotational contractions and compare them with those previously observed from the same subjects in the same experimental session in dynamic conditions. In 50 normal young healthy subjects (27 male and 23 female), after a suitable skin preparation, bipolar silver-silver chloride recessed pregelled surface electrodes were placed on external oblique, internal oblique, rectus abdominis, pectoralis major, latissimus dorsi, erector spinae at T(10) and L(3) levels bilaterally with 2 cm interelectrode distance. EMG signals from grounded subjects were suitably preamplified and amplified by a fully isolated system. These subjects were stabilized in an upright-seated posture in the Axial Rotation Tester (AROT), which was placed in isometric mode for force and rotation output from the AROT. The 14 channels of EMG, the force and the rotation were sampled at 1 kHz. The subjects initially registered their isometric maximal voluntary contraction (MVC) on both sides which was used for reference and then performed their 25%, 50% and 75% of MVC bilaterally in an isometric mode in a random order. The EMG magnitude, the slope of the rise of the EMG, and the phasic interrelationship of muscles were analyzed. The results showed that female sample generated only 65% of torque of their male counterparts. There were no significant differences between the male and the female samples in the EMG variables. Exertions to the left and to the right were not significantly different from each other for the measured variables. However, the magnitude contribution of the muscles and the slope of rise of EMG were significantly different in two directions (p<0.001). The phasic interrelationship of the external obliques, the latissimus dorsi and the erector spinae were different from other muscles (p<0.01). With the increasing grades of contraction the latissimus dorsi and the external obliques increased their magnitude significantly whereas that of the erectores spinae underwent a decrease in proportionate terms (but not in absolute magnitude) suggesting their role as stabilizers but not as rotators.  相似文献   

14.
Trunk muscle electromyography and whole body vibration   总被引:2,自引:0,他引:2  
By measuring the electromyographic (EMG) activity of the paraspinal muscles, we have estimated the average and peak-to-peak torque imposed on the spine during whole body vibration. Six subjects had surface electrodes placed on their erector spinae muscles at the L3 level. The EMG-torque relationship was estimated by having each subject perform isometric horizontal pulls in an upright seated posture. The subject was then vibrated vertically and sinusoidally in a controlled, flexed, slightly lordotic seated posture, in 1 Hz increments from 3 to 10 Hz at a 0.1 g RMS seat acceleration level. Between vibration readings taken at each frequency, a static reading was also taken with the subject maintaining the same posture. The entire vibration-static 3-10 Hz test was repeated for reliability purposes. Specialized digital signal processing techniques were developed for the EMG signals to enhance the measured cyclic muscle activity and to allow automatic measurement of the time relationship between the mechanical displacement and the estimated torque. We found significantly more average and peak-to-peak estimated torque at almost all frequencies for vibration vs static sitting.  相似文献   

15.
This study investigated the effects of age on upper erector spinae (UES), lower erector spinae (LES) and lower body (gluteus maximus; biceps femoris; and vastus lateralis) muscle activity during a repetitive lifting task. Twenty-four participants were assigned to two age groups: ‘younger’ (n = 12; mean age ± SD = 24.6 ± 3.6 yrs) and ‘older’ (n = 12; mean age = 46.5 ± 3.0 yrs). Participants lifted and lowered a box (13 kg) repetitively at a frequency of 10 lifts per minute for a maximum of 20 min. EMG signals were collected every minute and normalised to a maximum voluntary isometric contraction. A submaximal endurance test of UES and LES was used to assess fatigue. Older participants showed higher levels of UES and LES muscle activity (approximately 12–13%) throughout the task, but less fatigue compared to the younger group post-task completion. When lifting, lower-limb muscle activity was generally higher in older adults, although temporal changes were similar. While increased paraspinal muscle activity may increase the risk of back injury in older workers when repetitive lifting, younger workers may be more susceptible to fatigue-related effects. Education and training in manual materials handling should consider age-related differences when developing training programmes.  相似文献   

16.
Many low-back patients undergo electromyography (EMG)-based evaluations of muscle performance but present to the clinic after being prescribed muscle relaxants. The question that needed to be addressed was, do centrally acting muscle relaxants (methocarbamol; Robaxin®) affect the EMG spectral indices of muscle fatigue that are often used to assess muscle performance. Participants performed an isometric spine extension protocol involving a 30 s fatigue exertion trial, then 1 min rest, and finally a 10 s long repeat exertion trial, at a 60% maximum voluntary contraction (MVC) level of exertion. Seven men were tested on two separate days (approximately 3–7 days apart), one day while medicated (six doses) with Robaxin and on another while not medicated. Specifically, the following parameters were studied in the bilateral multifidus (L5), lower erector spinae (L3) and upper erector spinae (T9): the slope of median power frequencies (MPFs) over the duration of the trial and the initial y-intercept of the MPF. The results generally suggest that methocarbamol (Robaxin) does not have any significant affect on the EMG median power frequency of the extensors during a fatiguing contraction followed by a repeat exertion, at least in normal people (one exception was observed—one side of multifidus at L5). However, given that this appears to be the first study of its kind, and that a relatively small number of subjects were used in this study, further investigation is needed to make a definitive conclusion about the effects of this drug on the several features of the electromyogram, over a broad spectrum of the clinical population performing a wider variety of tasks.  相似文献   

17.

Background

Non-specific low back pain (LBP) has been one of the most frequently occurring musculoskeletal problems. Impairment in the mechanical stability of the lumbar spine has been known to lower the safety margin of the spine musculature and can result in the occurrence of pain symptoms of the low back area. Previously, changes in spinal stability have been identified by investigating recruitment patterns of low back and abdominal muscles in laboratory experiments with controlled postures and physical activities that were hard to conduct in daily life. The main objective of this study was to explore the possibility of developing a reliable spine stability assessment method using surface electromyography (EMG) of the low back and abdominal muscles in common physical activities.

Methods

Twenty asymptomatic young participants conducted normal walking, plank, and isometric back extension activities prior to and immediately after maintaining a 10-min static upper body deep flexion on a flat bed. EMG data of the erector spinae, external oblique, and rectus abdominals were collected bilaterally, and their mean normalized amplitude values were compared between before and after the static deep flexion. Changes in the amplitude and co-contraction ratio values were evaluated to understand how muscle recruitment patterns have changed after the static deep flexion.

Results

Mean normalized amplitude of antagonist muscles (erector spinae muscles while conducting plank; external oblique and rectus abdominal muscles while conducting isometric back extension) decreased significantly (P < 0.05) after the 10-min static deep flexion. Normalized amplitude of agonist muscles did not vary significantly after deep flexion.

Conclusions

Results of this study suggest the possibility of using surface EMG in the evaluation of spinal stability and low back health status in simple exercise postures that can be done in non-laboratory settings. Specifically, amplitude of antagonist muscles was found to be more sensitive than agonist muscles in identifying changes in the spinal stability associated with the 10-min static deep flexion. Further research with various loading conditions and physical activities need to be performed to improve the reliability and utility of the findings of the current study.  相似文献   

18.
BackgroundMovements in the lumbar spine, including flexion and extension are governed by a complex neuromuscular system involving both active and passive units. Several biomechanical and clinical studies have shown the myoelectric activity reduction of the lumbar extensor muscles (flexion–relaxation phenomenon) during lumbar flexion from the upright standing posture. The relationship between flexibility and EMG activity pattern of the erector spinae during dynamic trunk flexion–extension task has not yet been completely discovered.ObjectiveThe purpose of this study was to investigate the relationship between general and lumbar spine flexibility and EMG activity pattern of the erector spinae during the trunk flexion–extension task.MethodsThirty healthy female college students were recruited in this study. General and lumbar spine flexibilities were measured by toe-touch and modified schober tests, respectively. During trunk flexion–extension, the surface electromyography (EMG) from the lumbar erector spinae muscles as well as flexion angles of the trunk, hip, lumbar spine and lumbar curvature were simultaneously recorded using a digital camera. The angle at which muscle activity diminished during flexion and initiated during extension was determined and subjected to linear regression analysis to detect the relationship between flexibility and EMG activity pattern of the erector spinae during trunk flexion–extension.ResultsDuring flexion, the erector spinae muscles in individuals with higher toe-touch scores were relaxed in larger trunk and hip angles and reactivated earlier during extension according to these angles (P < 0.001) while in individuals with higher modified schober scores this muscle group was relaxed later and reactivated sooner in accordance with lumbar angle and curvature (P < 0.05). Toe-touch test were significantly correlated with trunk and hip angles while modified schober test showed a significant correlation with lumbar angle and curvature variables.ConclusionThe findings of this study indicate that flexibility plays an important role in trunk muscular recruitment pattern and the strategy of the CNS to provide stability. The results reinforce the possible role of flexibility alterations as a contributing factor to the motor control impairments. This study also shows that flexibility changes behavior is not unique among different regions of the body.  相似文献   

19.
The change in median frequency of the power spectrum of the electromyographic (EMG) signal may be used as a measure of muscle fatigue. The reliability of the median frequency parameters was investigated for EMG-recording sites at L1 and L5 right and left on the erector spinae. The reliability of subjective fatigue ratings of the back muscles (Borg CR-10 scale) and of maximal trunk extension torque (MVC) was also investigated. Eleven subjects with healthy backs performed a 45-s isometric trunk extension at 80% of MVC twice a day, on three different days. Two-factor analysis of variance was made to obtain the different variances from which the standard error of measurement (SEM) and the intra class correlation coefficient (ICC) were calculated. The SEM within-day was somewhat lower than that between-days. Both were about the same at all four electrode sites. The 95% confidence interval for the studied variables was for the initial median frequency +/- 10 Hz, for the slope +/- 0.4-0.5%/s, for the MVC +/- 36 Nm and for the Borg ratings +/- 1.6. We conclude that, with the presently used method, changes or differences within these limits should be regarded as normal variability. The slope may be of limited value because of its large variability. Whether the low intraclass correlation coefficient for the EMG parameters in the presently studied test group implies a low potential in discriminating subjects with back pain can not be decisively concluded.  相似文献   

20.
MVC techniques to normalize trunk muscle EMG in healthy women   总被引:1,自引:0,他引:1  
Normalization of the surface electromyogram (EMG) addresses some of the inherent inter-subject and inter-muscular variability of this signal to enable comparison between muscles and people. The aim of this study was to evaluate the effectiveness of several maximal voluntary isometric contraction (MVC) strategies, and identify maximum electromyographic reference values used for normalizing trunk muscle activity. Eight healthy women performed 11 MVC techniques, including trials in which thorax motion was resisted, trials in which pelvis motion was resisted, shoulder rotation and adduction, and un-resisted MVC maneuvers (maximal abdominal hollowing and maximal abdominal bracing). EMG signals were bilaterally collected from upper and lower rectus abdominis, lateral and medial aspects of external oblique, internal oblique, latissimus dorsi, and erector spinae at T9 and L5. A 0.5 s moving average window was used to calculate the maximum EMG amplitude of each muscle for each MVC technique. A great inter-subject variability between participants was observed as to which MVC strategy elicited the greatest muscular activity, especially for the oblique abdominals and latissimus dorsi. Since no single test was superior for obtaining maximum electrical activity, it appears that several upper and lower trunk MVC techniques should be performed for EMG normalization in healthy women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号