首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The membrane-impermeant bis-mannose photolabel 2-N-4-(1-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis-(D-mannos- 4-yloxy)-2- propylamine (ATB-BMPA) has been used to study the development of an intracellular pool of glucose transporters in 3T3-L1 cells. The subcellular distributions of the transporter isoforms GLUT1 and GLUT4 were determined by comparing the labeling obtained in cells in which the impermeant reagent only had access to the cell surface and the labeling obtained in digitonin-permeabilized cells. ATB-BMPA labeling showed that only GLUT1 was present in preconfluent fibroblasts and that most of the transporters were distributed to the cell surface. In preconfluent fibroblasts, the 2-deoxy-D-glucose transport activity was approximately 5 times higher than in confluent fibroblasts. ATB-BMPA labeling showed that the decrease in transport as cells reached confluence was associated with a decrease in the proportion of GLUT1 distributed to the cell surface. The sequestration of these transporters was associated with the development of an insulin-responsive transport activity which increased by approximately 2.5-fold compared with unstimulated confluent cells. ATB-BMPA labeling showed that insulin stimulation resulted in an approximately 2-fold increase in surface GLUT1 so that about one-half of the available transporters became recruited to the cell surface. Measurements of the changes in the distribution of both GLUT1 and GLUT4 throughout the differentiation of confluent fibroblasts into adipocytes showed that both transporters were sequestered in parallel. Basal levels of transport and photolabeling remained low throughout the differentiation period when the total pool of transporters (GLUT1 plus GLUT4) was increased by approximately 5-fold. These results suggest that the sequestration process was present before new transporters were synthesized. Thus, the sequestration mechanism develops in confluent growth-arrested fibroblasts although the capacity to sequester additional transporters may increase as differentiation proceeds.  相似文献   

2.
The purpose of this study was to simultaneously isolate skeletal muscle plasma and microsomal membranes from the hind limbs of male Sprague-Dawley rats perfused either in the absence or presence of 20 milliunits/ml insulin and to determine the effect of insulin on the number and distribution of glucose transporters in these membrane fractions. Insulin increased hind limb glucose uptake greater than 3-fold (2.4 +/- 0.7 versus 9.2 +/- 1.0 mumol/g x h, p less than 0.001). Plasma membrane glucose transporter number, measured by cytochalasin B binding, increased 2-fold (9.1 +/- 1.0 to 20.4 +/- 3.1 pmol/mg protein, p less than 0.005) in insulin-stimulated muscle while microsomal membrane transporters decreased significantly (14.8 +/- 1.6 to 9.8 +/- 1.4 pmol/mg protein, p less than 0.05). No change in the dissociation constant (Kd approximately 120 nm) was observed. K+-stimulated-p-nitrophenol phosphatase, 5'-nucleotidase, and galactosyltransferase specific activity, enrichment, and recovery in the plasma and microsomal membrane fractions were not altered by insulin treatment. Western blot analysis using the monoclonal antibody mAb 1F8 (specific for the insulin-regulatable glucose transporter) demonstrated increased glucose transporter densities in plasma membranes from insulin-treated hind limb skeletal muscle compared with untreated tissues, while microsomal membranes from the insulin-treated hind limb skeletal muscle had a concomitant decrease in transporter density. We conclude that the increase in plasma membrane glucose transporters explains, at least in part, the increase in glucose uptake associated with insulin stimulation of hind limb skeletal muscle. Our data further suggest that these recruited transporters originate from an intracellular microsomal pool, consistent with the translocation hypothesis.  相似文献   

3.
4.
5.
B Christ  K Jungermann 《FEBS letters》1987,221(2):375-380
[14C]Glucose release either from endogenous 14C-prelabelled glycogen or from added 14C-labelled glucose 6-phosphate was measured in filipin-treated, permeabilized hepatocytes in 48 h culture. [14C]Glucose output from prelabelled glycogen was not altered by the addition of 5 mM glucose 6-phosphate to the incubation medium. Conversely, [14C]glucose release from 5 mM labelled glucose 6-phosphate was not influenced by different glycogen concentrations in the cells. Moreover, in the permeabilized cells the anion transport inhibitor DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid) inhibited only the liberation of [14C]glucose from labelled glucose 6-phosphate but not from glycogen. It is therefore concluded that there exist at least 2 separate, mutually non-accessible glucose 6-phosphate pools in cultured rat hepatocytes, one linked to glycogenolysis and the other to gluconeogenesis.  相似文献   

6.
The effect of insulin on glucose transport and glucose transporters was studied in perfused rat heart. Glucose transport was measured by the efflux of labelled 3-O-methylglucose from hearts preloaded with this hexose. Insulin stimulated 3-O-methylglucose transport by: (a) doubling the maximal velocity (Vmax); (b) decreasing the Kd from 6.9 to 2.7 mM; (c) increasing the Hill coefficient toward 3-O-methylglucose from 1.9 to 3.1; (d) increasing the efficiency of the transport process (k constant). Glucose transporters in enriched plasma and microsomal membranes from heart were quantified by the [3H]cytochalasin-B-binding assay. When added to normal hearts, insulin produced the following changes in the glucose transporters: (a) it increased the translocation of transporters from an intracellular pool to the plasma membranes; (b) it increased (from 1.6 to 2.7) the Hill coefficient of the transporters translocated into the plasma membranes toward cytochalasin B, suggesting the existence of a positive co-operativity among the transporters appearing in these membranes; (c) it increased the affinity of the transporters (and hence, possibly, of glucose) for cytochalasin B. The data provide evidence that the stimulatory effect of insulin on glucose transport may be due not to the sole translocation of intracellular glucose transporters to the plasma membrane, but to changes in the functional properties thereof.  相似文献   

7.
We have studied the effect of brefeldin A (BFA) on the intracellular transport of the envelope proteins of vesicular stomatitis virus (VSV) and sindbis virus in primary cultured rat hepatocytes. BFA (2.5 micrograms/ml) inhibited not only the secretion of plasma proteins into the medium, but also the assembly of both G protein of VSV and E1 and E2 proteins (envelope proteins) of sindbis virus into respective virions. Concomitantly, both the acquisition of endo-beta-N-acetylglucosaminidase H resistance by the G protein and the proteolytic conversion of PE2 to E2 were found to be inhibited in the BFA-treated cells, suggesting that the intracellular transport of the envelope proteins was arrested in the endoplasmic reticulum. Such inhibitory effects of the drug were variable depending upon the culture conditions of the hepatocytes. In the 1-day-cultured cells, even in the presence of the drug, newly synthesized envelope proteins were assembled into the virions after a 3 h chase period, at the same time as secretion of plasma proteins into the medium resumes. In contrast, in 4-day-cultured hepatocytes, BFA continuously blocked the entry of the envelope proteins into the virions and the release of plasma proteins into the medium for at least 5 h. BFA also completely inhibited the exocytotic pathway in HepG2 cells. These results indicate that the duration time of the effect of BFA is different from one cell to another and may change depending upon the culture conditions of the cells.  相似文献   

8.
Complementary DNA encoding a facilitative glucose transporter was isolated from a human hepatoma cell line (HepG2) cDNA library and subcloned into a metal-inducible mammalian expression vector, pLEN (California Biotechnology) containing human metallothionein gene II promoter sequences. Chinese hamster ovary (CHO) cells transfected with this transporter expression vector, pLENGT, exhibited a 2-17-fold increase in immunoreactive HepG2-type glucose transporter protein, as measured by protein immunoblotting with antipeptide antibodies directed against the HepG2-type glucose transporter C-terminal domain. Expression of the human glucose transporter was verified by protein immunoblotting with a mouse polyclonal antiserum that recognizes the human but not the rodent HepG2-type transporter. 2-Deoxy-D-glucose uptake was increased 2-7-fold in transfected cell lines. Polyclonal antisera directed against purified red blood cell glucose transporter were raised in several rabbits. Antiserum from one rabbit, delta, was found to bind to the surface of intact red cells but not to inside-out red cell ghosts. Using this delta-antiserum in intact cell-binding assays, 1.6-9-fold increases in cell surface expression of the human glucose transporter were measured in CHO-K1 cell lines transfected with the transporter expression vector. Measurements of total cellular glucose transporter immunoreactive protein using anti-HepG2 transporter C-terminal peptide serum, cell surface glucose transporter protein using delta-antiserum and 2-deoxyglucose uptake revealed proportional relationships among these parameters in transfected cell lines expressing different levels of transporter protein. Insulin increased 2-deoxyglucose uptake 40% in control CHO-K1 cells and in CHO-K1 cells expressing modest levels of the human glucose transporter protein. However, stimulation of sugar-uptake by insulin was only 10% in cells overexpressing human glucose transporter protein 9-fold, and no effect of insulin on sugar uptake was detected in several cell lines expressing very high levels (12-17-fold over controls) of human HepG2 glucose transporter protein. No insulin stimulation of anti-cell surface glucose transporter antibody binding was detected in any control or transfected CHO-K1 cell lines. These data indicate that a glucose transporter protein that is insensitive to insulin in HepG2 cells is regulated by insulin when expressed at low but not at high levels in insulin-response CHO-K1 cells. Additionally, the results suggest that insulin does not increase 2-deoxyglucose uptake by increasing the number of cell surface HepG2-type glucose transporters in CHO-K1 fibroblasts.  相似文献   

9.
10.
The mechanism for hyperresponsive insulin-mediated glucose transport in adipose cells from 30-day-old obese Zucker rats was examined. Glucose transport was assayed by measuring 3-O-methylglucose transport, and the concentration of glucose transporters was estimated by measuring specific D-glucose-inhibitable cytochalasin B binding. Insulin increased glucose transport activity by approximately 17 fmol/cell/min in cells from obese rats compared to 3 fmol/cell/min in lean littermates. Insulin increased the concentration of glucose transporters in the plasma membrane fraction by about 15 pmol/mg of membrane protein in both groups. The insulin-mediated decrease in the concentration of transporters in the low-density microsomal fraction was 30 pmol/mg of membrane protein for the obese rats compared to 15 pmol/mg of membrane protein for the lean controls. An estimated number of glucose transporters was calculated using membrane protein and enzyme recoveries for each group. Insulin increased the number of transporters in the plasma membrane by 3 X 10(6) sites/cell for the obese rats and only 0.6 X 10(6) sites/cell for the lean controls. In addition, insulin decreased the number of transporters/cell in the intracellular membrane pool by approximately 4 X 10(6) sites/cell for the obese rats and 0.9 X 10(6) sites/cells for the lean rats. The total number of transporters/cell was about 7 X 10(6) sites/cell for the obese animals and 1.6 X 10(6) sites/cell for the lean controls. In the basal state, more than 80% of these transporters were located in the intracellular pool for both the lean and obese rats. Thus, the marked hyperresponsive insulin-mediated glucose transport observed in adipose cells from 30-day-old obese Zucker rats may be the consequence of a marked increase in the number of glucose transporters in the intracellular pool.  相似文献   

11.
Bioactivity-guided isolation of Opuntia ficus-indica (Cactaceae) seeds against ethanol-treated primary rat hepatocytes yielded six lignan compounds. Among the isolates, furofuran lignans 4?6, significantly protected rat hepatocytes against ethanol-induced oxidative stress by reducing intracellular reactive oxygen species levels, preserving antioxidative defense enzyme activities, and maintaining the glutathione content. Moreover, 4 dose-dependently induced the heme oxygenase-1 expression in HepG2 cells.  相似文献   

12.
Glucose is actively taken up from the glomerular filtrate into the tubule cells by the Na(+)-dependent active glucose transporter (GT), and passively crosses the basolateral membrane via facilitated diffusion GT. With the use of antibodies directed against two types of GTs, we show the immunocytochemical localization of the Na(+)-dependent active GT (SGLT1) and the erythrocyte/HepG2-type facilitated diffusion GT (GLUT1). For light microscopic observation, frozen sections were stained by the rhodamine labeling method. Counterstaining with fluorescein-phalloidin and 4,6-diamidino-2-phenylindole dihydrochloride (DAPI) was employed to facilitate cell type identification. Immunogold staining was carried out on ultra-thin frozen sections for electron microscopy. The antibody to SGLT1 reacted with a 77 KD protein in immunoblotting of a kidney lysate. By immunocytochemistry, SGLT1 was localized in the microvillous plasma membrane in the apical brush borders of the cells of all three proximal tubule segments (S1, S2, and S3). The antibodies to GLUT1, a member of the facilitated diffusion GT family, were raised against human erythrocyte GT or synthetic oligopeptides derived from HepG2 GT, which reacted with a 48 KD protein in immunoblotting of the kidney lysate. GLUT1 was found at the basolateral plasma membranes of S3 proximal tubule cells, cells of the thick limb of Henle's loop, and collecting duct cells. Combined with known physiological data, our findings suggest that SGLT1 in the apical plasma membrane of the proximal tubule cells is responsible for the Na(+)-dependent active reabsorption of glucose from the glomerular filtrate. GLUT1 in the basolateral plasma membrane of S3 cells may transport reabsorbed glucose to the blood vessels. GLUT1 in the basolateral plasma membranes of cells of the thick limb of Henle's loop and of the collecting duct, on the other hand, may nourish these metabolically active cells by facilitating the diffusion of extracellular glucose provided from blood through the basolateral side of the cells.  相似文献   

13.
Glucose transport in 3T3L1 adipocytes is mediated by two facilitated diffusion transport systems. We examined the effect of chronic glucose deprivation on transport activity and on the expression of the HepG2 (GLUT 1) and adipocyte/muscle (GLUT 4) glucose transporter gene products in this insulin-sensitive cell line. Glucose deprivation resulted in a maximal increase in 2-deoxyglucose uptake of 3.6-fold by 24 h. Transport activity declined thereafter but was still 2.4-fold greater than the control by 72 h. GLUT 1 mRNA and protein increased progressively during starvation to values respectively 2.4- and 7.0-fold greater than the control by 72 h. Much of the increase in total immunoreactive GLUT 1 protein observed later in starvation was the result of the accumulation of a non-functional or mistargeted 38 kDa polypeptide. Immunofluorescence microscopy indicated that increases in GLUT 1 protein occurred in presumptive plasma membrane (PM) and Golgi-like compartments during prolonged starvation. The steady-state level of GLUT 4 protein did not change during 72 h of glucose deprivation despite a greater than 10-fold decrease in the mRNA. Subcellular fractionation experiments indicated that the increased transport activity observed after 24 h of starvation was principally the result of an increase in the 45-50 kDa GLUT 1 transporter protein in the PM. The level of the GLUT 1 transporter in the PM and low-density microsomes (LDM) was increased by 3.9- and 1.4-fold respectively, and the GLUT 4 transporter content of the PM and LDM was 1.7- and 0.6-fold respectively greater than that of the control after 24 h of glucose deprivation. These data indicate that newly synthesized GLUT 1 transporters are selectively shuttled to the PM and that GLUT 4 transporters undergo translocation from an intracellular compartment to the PM during 24 h of glucose starvation. Thus glucose starvation results in an increase in glucose transport in 3T3L1 adipocytes via a complex series of events involving increased biosynthesis, decreased turnover and subcellular redistribution of transporter proteins.  相似文献   

14.
Intravenous iron, used for the treatment of anemia in chronic renal failure and other diseases, represents a possible source of free iron in tissue cells, particularly in the liver. In this study we examined the effect of different sources of intravenous iron (IVI) on the labile iron pool (LIP) which represents the nonferritin-bound, redox-active iron that is implicated in oxidative stress and cell injury. Furthermore, we examined the role of the LIP for the synthesis of ferritin. We used HepG2 cells as a well known model for hepatoma cells and monitored the LIP with the metal-sensitive fluorescent probe, calcein-AM, the fluorescence of which is quenched on binding to iron. We showed that steady state LIP levels in HepG2 cells were increased transiently, up to three-fold compared to control cells, as an adaptive response to long-term IVI exposure. In relation to the amount of iron in the LIP, the ferritin levels increased and the iron content of ferritin decreased. As any fluctuation in the LIP, even when it is only transient (e.g. after exposure to intravenous iron in this study), may result either in impairment of synthesis of iron containing proteins or in cell injury by pro-oxidants. Such findings in nonreticuloendothelial cells may have important implications in the generation of the adverse effects of chronic iron exposure reported in dialysis patients.  相似文献   

15.
Antibodies against human erythrocyte glucose transporters (GLUT-1) were used to determine if the transporters of embryonic and adult rat hearts have similar reactivity. On the basis of immunoblotting, these antibodies react more strongly with embryonic transporters than with adult ones. To determine if this phenomenon may be correlated with changes in the expression of transporter types during development, RNA isolated from either the embryonic or the adult rat heart was amplified by polymerase chain reaction (PCR) to identify the transporter species. Both GLUT-1 and GLUT-4 fragments were obtained among the PCR products. They were used for Northern blot analysis. The results indicate that the embryonic heart is rich in GLUT-1 mRNA; whereas the adult heart contains predominantly GLUT-4 mRNA. Thus, it appears that the major type of glucose transporter in rat heart switches from GLUT-1 to GLUT-4 during development.  相似文献   

16.
A marked resistance to the stimulatory action of insulin on glucose metabolism has previously been shown in guinea pig, compared to rat, adipose tissue and isolated adipocytes. The mechanism of insulin resistance in isolated guinea pig adipocytes has, therefore, been examined by measuring 125I-insulin binding, the stimulatory effect of insulin on 3-0-methylglucose transport and on lipogenesis from [3-3H]glucose, the inhibitory effect of insulin on glucagon-stimulated glycerol release, and the translocation of glucose transporters in response to insulin. The translocation of glucose transporters was assessed by measuring the distribution of specific D-glucose-inhibitable [3H]cytochalasin B binding sites among the plasma, and high and low density microsomal membrane fractions prepared by differential centrifugation from basal and insulin-stimulated cells. At a glucose concentration (0.5 mM) where transport is thought to be rate-limiting for metabolism, insulin stimulates lipogenesis from 30 to 80 fmol/cell/90 min in guinea pig cells and from 25 to 380 fmol/cell/90 min in rat cells with half-maximal effects at approximately 100 pM in both cell types. Insulin similarly stimulates 3-O-methylglucose transport from 0.40 to 0.70 fmol/cell/min and from 0.24 to 3.60 fmol/cell/min in guinea pig and rat fat cells, respectively. Nevertheless, guinea pig cells bind more insulin per cell than rat cells, and insulin fully inhibits glucagon-stimulated glycerol release. In addition, the differences between guinea pig and rat cells in the stimulatory effect of insulin on lipogenesis and 3-O-methylglucose transport cannot be explained by the greater cell size of the former compared to the latter (0.18 and 0.09 micrograms of lipid/cell, respectively). However, the number of glucose transporters in the low density microsomal membrane fraction prepared from basal guinea pig cells is markedly reduced compared to that from rat fat cells (12 and 70 pmol/mg of membrane protein, respectively) and the translocation of intracellular glucose transporters to the plasma membrane fraction in response to insulin is correspondingly reduced. These results suggest that guinea pig adipocytes are markedly resistant to the stimulatory action of insulin on glucose transport and that this resistance is the consequence of a relative depletion in the number of intracellular glucose transporters.  相似文献   

17.
Comparisons of the site specific binding of nitrobenzylthioinosine (NBMPR) to intact and lysed red cells from various mammalian and avian species suggest the presence of a cytoplasmic pool of nucleoside transporters. In some species the cytoplasmic pool is about 50% of the total (mouse). On the average, the cytoplasmic pool is approx. 20% of the surface pool of NBMPR-binding sites. In sheep reticulocytes, both pools disappear in an energy-dependent manner during the maturation of the reticulocyte in vitro.  相似文献   

18.
To identify the novel inhibitor of de novo lipogenesis in hepatocytes, we screened for inhibitory activity of triglyceride (TG) synthesis using [14C]acetate in the human hepatoma cell line, HepG2. Using this assay system we discovered the novel compound, benzofuranyl α-pyrone (TEI-B00422). TEI-B00422 also inhibited the incorporation of acetate into the triglyceride (TG) fraction in rat primary hepatocytes. In HepG2 cells, the incorporation of oleate into TG was unaffected. TEI-B00422 inhibited rat hepatic acetyl-CoA carboxylase (ACC), Ki = 3.3 μM, in a competitive manner with respect to acety-CoA but not fatty acid synthase and acyl-CoA transferase/diacylglycerol. Thus, these results suggest that the inhibition of TG synthesis by TEI-B00422 is based on the inhibitory action of ACC. The structure of TEI-B00422 is totally different from the known inhibitors of ACC and may be useful in the development of therapeutic agents to combat a number of metabolic disorders.  相似文献   

19.
20.
We studied the transport rate of a non-metabolizable hexose analogue, 3-O-methyl-D-glucose, in polymorphonuclear leukocytes (insulin-insensitive cells) from patients with untreated non-insulin-dependent diabetes mellitus. The mean glucose transport rate was significantly elevated in the diabetic patients compared with healthy controls (13.3 +/- 3.7 vs 10.4 +/- 2.5 fl/cell.sec, mean +/- SD, p less than 0.01). In the diabetic subjects, glucose transport rates were positively correlated with HbA1c levels (r = 0.563, p less than 0.01) but had no relations with ambient plasma glucose concentrations. Short-term incubation with 20 mM D-glucose had no effect on glucose transport in those cells. When glucose transport rates, HbA1c and fasting plasma glucose levels were simultaneously measured at weekly intervals over a four-week period in three diabetic subjects, the alterations in transport rates generally paralleled the changes observed in HbA1c levels rather than plasma glucose concentrations. It can be concluded that unlike insulin-sensitive cells such as adipocytes and muscle, glucose transport in human polymorphonuclear leukocytes, which are insulin insensitive cells, is increased in patients with non-insulin-dependent diabetes mellitus. Long-term, not short-term, derangement of glucose metabolism seems to be associated with increased glucose transport rate found in those patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号