首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The macrocyclic antibiotic LY333328 has been evaluated as a chiral selector for the enantioseparation of nine dansylated amino acids. This macrocyclic glycopeptide was used as a chiral mobile phase additive (CMPA) in conjunction with narrow bore high‐performance liquid chromatography (HPLC). The key mobile phase parameters of LY333328 concentration and buffer pH were varied, along with variations in stationary phases consisting of C8, phenyl, cyano, and silica. After observing and plotting changes in retention and resolution based on corresponding variation in these parameters, a better understanding of the behavior of this chiral selector was obtained. The pKa values of the dansyl amino acid analytes and LY333328 were measured and used to gain a better understanding of the microenvironment in which these enantioseparations occur. Optimized conditions resulted in the baseline separation of eight of nine dansyl amino acids. Chirality 11:75–81, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

2.
Chiral recognition mechanisms with macrocyclic glycopeptide selectors   总被引:2,自引:0,他引:2  
Berthod A 《Chirality》2009,21(1):167-175
Macrocyclic glycopeptide selectors are naturally occurring antibiotics produced by microorganisms. They were found to be excellent chiral selectors for a wide range of enantiomers, including amino acids. Four selectors are commercialized as chiral stationary phases (CSP) for chromatography. They are ristocetin, teicoplanin, vancomycin, and the teicoplanin aglycone (TAG). The key docking interaction for amino acid recognition was established to be a charge-charge interaction between the anionic carboxylate group of the amino acid and a cationic amine group of the macrocyclic peptidic selector basket. The carbohydrate units are responsible for secondary interactions. However, they hinder somewhat the charge-charge docking interaction. The TAG selector is more effective for amino acid enantioseparations than the other CSPs. The "sugar" units are however useful allowing for chiral recognitions of other analytes, e.g., beta-blockers, not possible with the aglycone. Thermodynamic studies established that normal phase and reversed phase enantioseparations were enthalpy-driven. With polar waterless mobile phases used in the polar ionic mode, some separations were enthalpy-driven and others were entropy-driven. The linear solvation energy method was tentatively used to gain knowledge about the chiral recognition mechanism. It appeared to be a viable approach with neutral molecules but it failed with ionizable solutes. With molecular solutes and the teicoplanin CSP, the study showed a significant role of the surface charge-induced dipole interaction and steric effects. The remarkable complementary enantioselectivity effect observed with the four CSPs is discussed.  相似文献   

3.
The macrocyclic antibiotics represent a relatively new class of chiral selectors in CE, HPLC, and TLC. We have examined the use of the macrocyclic antibiotic vancomycin as a chiral selector in HPLC for the separation of 1,4-dihydropyridines (DHPs) calcium antagonists (CAs). Chromatographic data of six 1,4-dihydropyridine calcium channel blockers obtained on the vancomycin chiral stationary phase (Chirobiotic V) were compared with those obtained on an alpha(1)-acid glycoprotein (AGP) HPLC stationary phase. Optimization of pH and organic modifier was carried out in order to modulate the retention properties of each system. All chiral neutral DHPs were resolved on the AGP column, whereas on Chirobiotic V only basic DHPs showed a split peak. The analytical chromatographic procedure on Chirobiotic V proved suitable for semipreparative separation, since the separation factor on the analytical column was high enough to obtain pure enantiomers with high yields.  相似文献   

4.
Direct high‐performance liquid chromatographic (HPLC) separation of four bicyclo[2.2.2]octane based 2‐amino‐3‐carboxylic acid enantiomers were developed on chiral stationary phases (CSPs) containing different macrocyclic glycopeptide antibiotic selectors. The analyses were performed under reversed‐phase, polar organic and polar ionic mode on macrocyclic‐glycopeptide‐based Chirobiotic T, T2, TAG, and R columns. The effects of the mobile phase composition including the acid and base modifier, the structure of the analytes, and the temperature on the separations were investigated. Experiments were achieved at constant mobile phase compositions on different stationary phases in the temperature range 5–40°C. Thermodynamic parameters were calculated from plots of ln k or ln α versus 1/T. It was recognized that the enantioseparations in reversed‐phase and polar organic mode were enthalpically driven, but under polar‐ionic conditions entropically driven enantioseparation was observed as well. Baseline separation and determination of elution sequence were achieved in all cases. Chirality 26:200–208, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
Excellent separations were achieved using a coated column to suppress electroosmotic flow and employing a countercurrent process between chiral selector and racemic solute. Using the macrocyclic antibiotic vancomycin as a chiral selector in capillary electrophoresis the resolution of nonsteroidal antiinflammatories and dansyl amino acids was achieved. Improvement in sensitivity due to the elimination of background absorbance and increased efficiency due to the removal of wall adsorption effects are both achieved using this technique. © 1996 Wiley-Liss. Inc.  相似文献   

6.
This paper deals with the chiral separation of triiodothyronine (T3) and thyroxine (T4) by HPLC and micro-HPLC. The separation of T3 and T4 is of great pharmaceutical and clinical interest, since the enantiomers exhibit different pharmacological activities. The HPLC measurements were performed on a chiral stationary ligand-exchange phase using l-4-hydroxyproline bonded via 3-glycidoxypropyltrimethoxysilane to silica gel as a selector. Also a chiral teicoplanin (Chirobiotic ™®) phase was used.

In micro-HPLC the chiral separation behaviour of l-4-hydroxyproline, and of the macrocyclic antibiotics teicoplanin and teicoplanin aglycone was investigated for the enantioseparation of T3 and T4. l-4-Hydroxyproline was bonded to 3 μm and the glycopeptide antibiotics were bonded to 3.5 μm silica gel and separations were accomplished by microbore HPLC columns (10 cm × 1 mm I.D.). With both techniques and all chiral selectors investigated T3 and T4 were baseline resolved. micro-HPLC was found to be superior to analytical HPLC with respect to low consumption of packing material, mobile phase and analyte.  相似文献   


7.
Reversed-phase high-performance liquid chromatographic methods were developed for the separation of enantiomers of eleven unnatural beta(2)-homoamino acids on chiral stationary phases containing macrocyclic glycopeptides (teicoplanin-containing Chirobiotic T and T2) or the macrocyclic peptide teicoplanin aglycone (Chirobiotic TAG) as chiral selectors. The effects of the organic modifier, the mobile phase composition, temperature, and the structures of the analytes on the separations were investigated. Separations were carried out at constant mobile phase compositions in temperature range 7-45 degrees C and the changes in enthalpy, Delta(DeltaH(o)), entropy, Delta(DeltaS(o)), and free energy, Delta(DeltaG(o)), were calculated. The -Delta(DeltaG(o)) values obtained on the three columns indicated that Chirobiotic TAG, without sugar units, may promote the interactions of the enantiomers of beta(2)-homoamino acids with branched alkyl or aryl side-chains, whereas for beta(2)-homoamino acids with alkyl side-chains Chirobiotic T and T2 seem to be more favorable. The elution sequence was determined in some cases and was observed to be R < S.  相似文献   

8.
Brewer BN  Zu C  Koscho ME 《Chirality》2005,17(8):456-463
The ability to use mixtures of deprotonated N-(3,5-dinitrobenzoyl)amino acids as chiral selectors for the determination of enantiomeric composition by electrospray ionization-mass spectrometry is demonstrated. For each experiment, two N-(3,5-dinitrobenzoyl)amino acids were chosen such that each would have opposite selectivity for the enantiomers of the analyte. Electrospray ionization-mass spectrometry, monitored in the negative ion mode, of solutions containing the two N-(3,5-dinitrobenzoyl)amino acids, sodium hydroxide, and the analyte, in a one-to-one mixture of methanol and water, afford peaks in the mass spectrum that correspond to the deprotonated 1:1 analyte-selector complexes. The ratio of the intensities of the complexes in the mass spectrum can be related to the enantiomeric composition of the analyte. Additionally, the sense and extent of chiral recognition is consistent with chromatographic observations, using chiral stationary phases derived from N-(3,5-dinitrobenzoyl)amino acids. Each analysis of enantiomeric composition requires less than 10 s to complete, indicating that this method has great potential for the development of fast-/high-throughput chiral analyses.  相似文献   

9.
This review highlights recent progresses in capillary electrophoresis (CE) analysis of amino acid enantiomers in the last decade. Various chiral selectors including cyclodextrins (CDs), bile salts, crown ethers, cinchona alkaloids, metal-chiral amino acid complexes, macrocyclic antibiotics and proteins have been employed to separate amino acid enantiomers. In the CE analysis of amino acids, the selection of the separation mode is one of the most important issues to obtain good resolution of target enantiomers. Among several separation modes, CD-modified capillary zone electrophoresis (CD-CZE), CD electrokinetic chromatography (CDEKC), micellar EKC (MEKC), CD-modified micellar electrokinetic chromatography (CD-MEKC), capillary electrochromatography (CEC), ligand-exchange CE (LE-CE), and nonaqueous CE (NACE) have been employed to the chiral analysis of amino acids. More than 160 published research articles collected from SciFinder Scholar databases from the year 2001 described the enantioseparations of amino acids by capillary-based electrophoresis. This review provides a comprehensive table listing the CE analysis of amino acid enantiomers with categorizing by the separation modes.  相似文献   

10.
Chiral separation of glycyl- and diastereomeric dipeptides and tripeptides was performed by micro-HPLC using macrocyclic antibiotics as chiral selectors. Teicoplanin was compared with teicoplanin aglycone (TAG) regarding selectivity, efficiency and separation time. The stationary phases are based on teicoplanin and TAG chemically bonded to 3.5 mum silica gel. The material was packed into 10 cm x 1 mm stainless steel microcolumns. Different mobile phases were checked using the reversed phase mode. Both teicoplanin and TAG were found to show good chiral separation ability for dipeptides. Glycyl-dipeptides were baseline resolved and most of the diastereomeric dipeptides and tripeptides were separated into their four isomers. In this study, teicoplanin was found to be advantageous compared to TAG regarding separation time, although TAG showed the higher resolution power. Baseline resolution for some glycyl-dipeptides was obtained within 3 min, diastereomeric dipeptides were resolved in 7 min. This method was also shown to be applicable for enantiomer purity control.  相似文献   

11.
New brush-type chiral stationary phases (CSP I-IV) comprising N-3,5,6-trichloro-2,4-dicyanophenyl-L-alpha-amino acids (1-4) were prepared by binding of chiral selectors 1-4 to gamma-aminopropyl silica gel. To check the role of excess free aminopropyl groups, CSP V was prepared by binding N-3,5,6-trichloro-2,4-dicyanophenyl-L-alanyl-(3-triethoxysilyl)propylamide to unmodified silica gel. The best separation of racemic 2-aryloxypropionic acids (TR-1-13) was obtained with CSP I; the -(-)-S enantiomer were regularly eluted first, as determined by a CD detector. The mechanism of chiral recognition implies a synergistic interaction of carboxylic acid analyte with the chiral selector and achiral free gamma-aminopropyl units on silica. In fact, CSP V, which is lacking an achiral aminopropyl spacer, shows a lower separation ability for 2-aryloxypropionic acids, but a similar enantioselective discrimination of esters TR-19-20, in comparison with CSP I. CSP I-IV retain unaltered separation ability after a few months of continuous work using a large number of various mobile phases.  相似文献   

12.
In the recent years, numerous successful applications of various chiral selectors in high performance separation methods have generated an increasing interest in the application of some of these compounds as electroactive species in potentiometric sensors. The objective of this work was to examine the enantioselectivy of several different sensors employing substituted cyclodextrins, example antibiotic teicoplanin and electrodeposited conductive polymers for various chiral analytes. Varying degrees of enantioselectivity were found for the ion-selective electrodes examined, depending on the chiral selector used and the target analyte.  相似文献   

13.
Chen S  Ward T 《Chirality》2004,16(5):318-330
A variety of compounds containing amines (i.e., amino acids, amino alcohols, etc.) were chemically derivatized with a variety of electrophilic tagging reagents to elucidate the chiral recognition sites on a teicoplanin-bonded chiral stationary phase (CSP) and on R-naphthylethylcarbamate-beta-cyclodextrin (RN-beta-CD)-bonded CSP. Solutes were separated under optimum chromatographic conditions on teicoplanin and RN-beta-CD CSPs for comparison using an acetonitrile-based mobile phase. It was noted that the size of the analyte or tagging reagent exerted a greater influence on compounds separated on teicoplanin than on RN-beta-CD when using the polar organic mode. This suggests that chiral recognition on teicoplanin CSP is more sensitive to size and indicates that the hydrophobic pocket of teicoplanin plays a significant role in chiral recognition in this mode. However, the type of functional groups had a greater impact than the size of analyte on separations obtained from RN-beta-CD phase in the polar-organic mode. Specifically, the pi-pi interaction was enhanced by derivatizing the aromatic ring of the tagging reagent with electron-withdrawing groups and thus altered the resolution substantially. For both phases, chiral recognition is most pronounced when the stereogenic center of the analyte is near the tagging moiety and surrounded by functional groups (e.g., carboxylic, etc.) which are favorable for hydrogen bonding.  相似文献   

14.
Hsien TJ  Chen S 《Amino acids》2007,33(1):97-104
Summary. A fluorescent electrophilic reagent, 9-fluorenone-4-carbonyl chloride (FCC), is chosen to functionalize amino acids in alkaline medium before their HPLC resolution. FCC reacts with both primary and secondary amino acids to produce stable and highly fluorescent derivatives suitable for sensitive and efficient chromatographic determination and resolution on a teicoplanin chiral stationary phase (CSP) using the methanol-based solvent mixture as the mobile phase. The detection limit is in the picomole range and approximately 0.01% of the d-enantiomer in an excess of the l-enantiomer is detectable. However, the resolution is not reproducible under the elution of either the water- or the acetonitrile-based mobile phase. The increase in solubility of analyte in the mobile phase seems to be responsible. Upon comparison under the optimal chromatographic conditions, the resolution is better than that for the 9-fluorenylmethyl chloroformate (FMOC) or 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatives reported previously.  相似文献   

15.
A capillary electrophoretic (CE) method for the enantioseparation of N‐protected chiral amino acids was developed using quinine and tert‐butyl carbamoylated quinine as chiral selectors added to nonaqueous electrolyte solutions (NACE). A series of various N‐derivatized amino acids were tested as chiral selectands, and in order to optimize the CE enantioseparation of these compounds, different parameters were investigated: the nature of the organic solvent, the combination of different solvents, the nature and the concentration of the background electrolyte, the selector concentration, the capillary temperature, and the applied voltage. The influence of these factors on the separation of the analyte enantiomers and the electroosmotic flow was studied. Generally, with tert‐butyl carbamoylated quinine as chiral selector, better enantioseparations were achieved than with unmodified quinine. Optimum experimental conditions were found with a buffer made of 12.5 mM ammonia, 100 mM octanoic acid, and 10 mM tert‐butyl carbamoylated quinine in an ethanol–methanol mixture (60:40 v/v). Under these conditions, DNB‐Leu enantiomers could be separated with a selectivity factor (α) of 1.572 and a resolution (Rs) of 64.3; a plate number (N) of 127,000 and an asymmetry factor (As) of 0.93 were obtained for the first migrating enantiomer. Chirality 11:622–630, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

16.
A macrocyclic glycopeptide antibiotic containing a hydrophobic “tail” is covalently attached to silica gel via linkage chains. This material is extensively evaluated as a chiral stationary phase (CSP) for HPLC. The relevant structural features of the teicoplanin molecule which make it an effective chiral selector are discussed. The teicoplanin CSP appears to have excellent enantioselectivity for native amino acids, peptides, α-hydroxycarboxylic acids, and a variety of neutral analytes including cyclic amides and amines. Enantio-separations can be achieved in the reversed phase, normal phase, and “polar-organic” modes. This chiral selector is stable and the integrity of the CSP is excellent in all separation modes. Hence it can be considered a highly effective multimodal column. Optimization of these separations is discussed in terms of both selectivity and efficiency. Results indicate that the surface loading of the chiral selector affects all relevant separation parameters. A hypothesis is proposed to explain the enhanced efficiency obtained when using teicoplanin CSPs with higher surface coverage. It appears that teicoplanin is a widely applicable, highly effective chiral selector for HPLC enantioseparations. © 1995 Wiley-Liss, Inc.  相似文献   

17.
The enantioselective binding sites on bovine serum albumin were examined by HPLC using 19 racemic 5-N, N-dimethylamino-1-naphthalenesulfonyl derivatives of alpha-amino acids (dansyl amino acids) as chiral probes. On a bovine serum albumin bonded chiral stationary phase, seven L-forms eluted faster than their D-forms, while ten D-forms eluted before their L-forms. It was speculated that either two classes or two different binding sites exist on bovine serum albumin which can be distinguished by N-dansyl-L-proline and N-dansyl-D-norvaline. This was confirmed by fluorometric experiments where non-fluorescent 1-naphthalenesulfonyl derivatives were synthesized and competitive adsorption experiments were performed.  相似文献   

18.
Four diastereomeric chiral stationary phases (CSPs) based on quinine, quinidine, epiquinine, and epiquinidine tert‐butyl carbamate selectors were synthesized and evaluated under ion exchange HPLC conditions with a set of racemic N‐acylated and N‐oxycarbonylated α‐amino acids as selectands. The enantioseparation potential of quinine‐ and quinidine‐derived CSPs proved to be far superior to that of their C9‐epimeric congeners. The absolute configuration of C9 stereogenic center of the cinchonan backbone of these selectors was identified as the structural feature controlling the elution order. Guided by an X‐ray structure of a most favorable selector–selectand complex and the observed chromatographic enantioseparation data, a chiral recognition model was advanced. The contributions of ion‐pairing, π–π donor–acceptor, hydrogen bonding and steric interactions were established as crucial factors. Chirality 11:522–528, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

19.
A Micelle-enhanced ultrafiltration (MEUF) separation process was investigated that can potentially be used for large-scale enantioseparations. Copper(II)-amino acid derivatives dissolved in nonionic surfactant micelles were used as chiral selectors for the separation of dilute racemic amino acids solutions. For the alpha-amino acids phenylalanine, phenylglycine, O-methyltyrosine, isoleucine, and leucine good separation was obtained using cholesteryl L-glutamate and Cu(II) ions as chiral selector with an operational enantioselectivity (alpha(op)) up to 14.5 for phenylglycine. From a wide set of substrates, including four beta-amino acids, it was concluded that the performance of this system is determined by two factors: the hydrophobicity of the racemic amino acid, which results in a partitioning of the racemic amino acid over micelle and aqueous solution, and the stability of the diastereomeric complex formed upon binding of the amino acid with the chiral selector. The chiral hydrophobic cholesteryl anchor of the chiral selector also plays an active role in the recognition process, since inversion of the chirality of the glutamate does not yield the reciprocal enantioselectivities. However, if the cholesteryl group is replaced by a nonchiral alkyl chain, reciprocal operational enantioselectivities are found with enantiomeric glutamate selectors.  相似文献   

20.
This paper summarizes recent research on the stereospecific analysis of amphetamine, its analogs and metabolites, by liquid chromatography. The different methods proposed have been evaluated and compared in terms of resolution power, time of analysis, sensitivity, or potential for automation. Chiral derivatization, followed by separation of the diastereomers formed in achiral chromatographic systems, is still the method preferred for the analysis of amphetamines at trace levels, as derivatization also improves analyte detectability. This is the method of choice for the enantiomeric analysis of amphetamines at the low concentrations typically encountered in biological samples. In recent years, special attention has been devoted to the development of alternatives for the automation of the analytical process by integrating the derivatization step into the chromatographic scheme. A promising alternative is the employment of beta-cyclodextrins as chiral selectors, both immobilized on the stationary phase and added to the mobile phase. However, with a few exceptions, beta-cyclodextrins perform better for non-derivatized amphetamines. Therefore, the utility of these selectors in the analysis of biological samples is limited. The reliability of less-used chiral stationary phases (Pirkle type, cellulose based or protein based), as well as methods based on the mathematical treatment of the chromatographic signal, are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号