共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Changes in flexibility and structural stability of Pseudomonas aeruginosa azurin in response to cavity-creating mutations were probed by the phosphorescence emission of Trp-48, which was deeply buried in the compact hydrophobic core of the macromolecule, and by measurements of guanidinum hydrochloride unfolding, respectively. Replacement of the bulky side chains Phe-110, Phe-29, and Tyr-108 with the smaller Ala introduced cavities at different distances from the hydrophobic core. The phosphorescence lifetime (τ0) of Trp-48, buried inside the protein core, and the acrylamide quenching rate constant (kq) were used to monitor local and global flexibility changes induced by the introduction of the cavity. The results of this work demonstrate the following: 1), the effect on core flexibility of the insertion of cavities is not correlated readily to the distance of the cavity from the core; 2), the protein global flexibility results are related to the cavity distance from the packed core of the macromolecule; and 3), the increase in protein flexibility does not correspond necessarily to a comparable destabilizing effect of some mutations. 相似文献
3.
We have studied the refolding and thermal denaturation of hen egg white lysozyme in a wide range of pH values (from 1.5 to 9.4) using stopped-flow circular dichroism (CD) and differential scanning calorimetry (DSC). A linear correlation was found between the thermal denaturation temperature (T(m)) and the logarithm of the refolding rate of the slow folding phase of hen egg white lysozyme (lnk(2)). 相似文献
4.
The successful prediction of protein-folding rates based on the sequence-predicted secondary structure suggests that the folding rates might be predicted from sequence alone. To pursue this question, we directly predict the folding rates from amino acid sequences, which do not require any information on secondary or tertiary structure. Our work achieves 88% correlation with folding rates determined experimentally for proteins of all folding types and peptide, suggesting that almost all of the information needed to specify a protein's folding kinetics and mechanism is comprised within its amino acid sequence. The influence of residue on folding rate is related to amino acid properties. Hydrophobic character of amino acids may be an important determinant of folding kinetics, whereas other properties, size, flexibility, polarity and isoelectric point, of amino acids have contributed little to the folding rate constant. 相似文献
5.
Effect of signal peptide on the stability and folding kinetics of maltose binding protein 总被引:2,自引:0,他引:2
While the role of the signal sequence in targeting proteins to specific subcellular compartments is well characterized, there are fewer studies that characterize its effects on the stability and folding kinetics of the protein. We report a detailed characterization of the folding kinetics and thermodynamic stabilities of maltose binding protein (MBP) and its precursor form, preMBP. Isothermal GdmCl and urea denaturation as a function of temperature and thermal denaturation studies have been carried out to compare stabilities of the two proteins. preMBP was found to be destabilized by about 2-6 kcal/mol (20-40%) with respect to MBP. Rapid cleavage of the signal peptide by various proteases shows that the signal peptide is accessible in the native form of preMBP. The observed rate constant of the major slow phase in folding was decreased 5-fold in preMBP relative to MBP. The rate constants of unfolding were similar at 25 degrees C, but preMBP also exhibited a large burst phase change in unfolding that was absent in MBP. At 10 degrees C, preMBP exhibited a higher unfolding rate than MBP as well as a large burst phase. The appreciable destabilization of MBP by signal peptide is functionally relevant, because it enhances the likelihood of finding the protein in an unfolded translocation-competent form and may influence the interactions of the protein with the translocation machinery. Destabilization is likely to result from favorable interactions between the hydrophobic signal peptide and other hydrophobic regions that are exposed in the unfolded state. 相似文献
6.
Correlation between pyocin-sensitivity and 2-amino sugar composition of Pseudomonas aeruginosa 总被引:5,自引:0,他引:5
N Suzuki 《FEBS letters》1974,48(2):301-305
7.
Spectrin domains are three-helix bundles, commonly found in large tandem arrays. Equilibrium studies have shown that spectrin domains are significantly stabilized by their neighbors. In this work we show that domain:domain interactions can also have profound effects on their kinetic behavior. We have studied the folding of a tandem pair of spectrin domains (R1617) using a combination of single- and double-jump stopped flow experiments (monitoring folding by both circular dichroism and fluorescence). Mutant proteins were also used to investigate the complex folding kinetics. We find that, although the domains fold and unfold individually, there is a single rate-determining step for both folding and unfolding of the protein. This is consistent with the equilibrium observation of cooperative folding of the entire two-domain protein. The results may have important biological implications. Not only will the protein fold more efficiently during cotranslational folding, but the ability of the multidomain protein to withstand thermal unfolding in the cell will be dramatically increased. This study suggests that caution has to be exercised when extrapolating from single domains to larger proteins with a number of independently folding modules arranged in tandem. The multidomain protein spectrin is certainly more than "the sum of its parts". 相似文献
8.
Investigating the relative importance of protein stability, function, and folding kinetics in driving protein evolution has long been hindered by the fact that we can only compare modern natural proteins, the products of the very process we seek to understand, to each other, with no external references or baselines. Through a large-scale all-atom simulation of protein evolution, we have created a large diverse alignment of SH3 domain sequences which have been selected only for native state stability, with no other influencing factors. Although the average pairwise identity between computationally evolved and natural sequences is only 17%, the residue frequency distributions of the computationally evolved sequences are similar to natural SH3 sequences at 86% of the positions in the domain, suggesting that optimization for the native state structure has dominated the evolution of natural SH3 domains. Additionally, the positions which play a consistent role in the transition state of three well-characterized SH3 domains (by phi-value analysis) are structurally optimized for the native state, and vice versa. Indeed, we see a specific and significant correlation between sequence optimization for native state stability and conservation of transition state structure. 相似文献
9.
Pseudomonas aeruginosa is an opportunistic pathogen that contributes to the mortality of immunocompromised individuals and patients with cystic fibrosis. Pseudomonas infection presents clinical challenges due to its ability to form biofilms and modulate host-pathogen interactions through the secretion of virulence factors. The calcium-regulated alkaline protease (AP), a member of the repeats in toxin (RTX) family of proteins, is implicated in multiple modes of infection. A series of full-length and truncation mutants were purified for structural and functional studies to evaluate the role of Ca(2+) in AP folding and activation. We find that Ca(2+) binding induces RTX folding, which serves to chaperone the folding of the protease domain. Subsequent association of the RTX domain with an N-terminal α-helix stabilizes AP. These results provide a basis for the Ca(2+)-mediated regulation of AP and suggest mechanisms by which Ca(2+) regulates the RTX family of virulence factors. 相似文献
10.
D. Santorelli S. Rocchio F. Fata I. Silvestri F. Angelucci F. Imperi D. Marasco C. Diaferia L. Gigli N. Demitri L. Federici A. Di Matteo C. Travaglini-Allocatelli 《Biochimica et Biophysica Acta (BBA)/General Subjects》2021,1865(2):129780
BackgroundRibosome-binding factor A from the pathogenic bacterium Pseudomonas aeruginosa (PaRbfA) is a small ribosome assembly factor, composed by a single KH domain, involved in the maturation of the 30S subunit. These domains are characterized by the ability to bind RNA or ssDNA and are often located in proteins involved in a variety of cellular functions. However, although the ability of proteins to fold properly, to misfold or to aggregate is of paramount importance for their cellular functions, limited information is available on these dynamic properties in the case of KH domains.MethodsPaRbfA thermodynamic stability and folding mechanism: Far-UV CD and fluorescence spectroscopy, stopped-flow kinetics and chevron plot analysis, site-directed mutagenesis. Fibrils characterization: FT-IR spectroscopy, Thioflavin T fluorescence, Transmission Electron Microscopy (TEM) and X-ray fibrils diffraction.ResultsQuantitative analysis of the (un)folding kinetics of PaRbfA show that, in vitro, the protein folds via a 3-states mechanism involving a transiently populated folding intermediate. We also provide experimental evidences that PaRbfA can form ordered fibrils endowed with cross-β structure even in mild conditions.ConclusionThese results lead to the hypothesis that the folding intermediate of PaRbfA may expose (some of) the predicted amyloidogenic regions, which could act as aggregation nuclei in the fibrillogenesis.General significanceThe methodological approach presented herein could be readily adapted to verify the ability of other KH domain proteins to form cross-β structured fibrils and to transiently populate a folding intermediate. 相似文献
11.
Dong H Mukaiyama A Tadokoro T Koga Y Takano K Kanaya S 《Journal of molecular biology》2008,378(1):264-272
Ribonuclease HII from hyperthermophile Thermococcus kodakaraensis (Tk-RNase HII) is a kinetically robust monomeric protein. The conformational stability and folding kinetics of Tk-RNase HII were measured for nine mutant proteins in which a buried larger hydrophobic side chain is replaced by a smaller one (Leu/Ile to Ala). The mutant proteins were destabilized by 8.9 to 22.0 kJ mol− 1 as compared with the wild-type protein. The removal of each -CH2- group burial decreased the stability by 5.1 kJ mol− 1 on average in the mutant proteins of Tk-RNase HII examined. This is comparable with the value of 5.3 kJ mol− 1 obtained from experiments for proteins from organisms growing at moderate temperature. We conclude that the hydrophobic residues buried inside protein molecules contribute to the stabilization of hyperthermophilic proteins to a similar extent as proteins at normal temperature. In the folding experiments, the mutant proteins of Tk-RNase HII examined exhibited faster unfolding compared with the wild-type protein. These results indicate that the buried hydrophobic residues strongly contribute to the kinetic robustness of Tk-RNase HII. This is the first report that provides a practical cause of slow unfolding of hyperthermostable proteins. 相似文献
12.
The fastest simple, single domain proteins fold a million times more rapidly than the slowest. Ultimately this broad kinetic spectrum is determined by the amino acid sequences that define these proteins, suggesting that the mechanisms that underlie folding may be almost as complex as the sequences that encode them. Here, however, we summarize recent experimental results which suggest that (1) despite a vast diversity of structures and functions, there are fundamental similarities in the folding mechanisms of single domain proteins and (2) rather than being highly sensitive to the finest details of sequence, their folding kinetics are determined primarily by the large-scale, redundant features of sequence that determine a protein's gross structural properties. That folding kinetics can be predicted using simple, empirical, structure-based rules suggests that the fundamental physics underlying folding may be quite straightforward and that a general and quantitative theory of protein folding rates and mechanisms (as opposed to unfolding rates and thus protein stability) may be near on the horizon. 相似文献
13.
Proteins containing stretches of repeating amino acid sequences are prevalent throughout nature, yet little is known about the general folding and assembly mechanisms of these systems. Here we propose myotrophin as a model system to study the folding of ankyrin repeat proteins. Myotrophin is folded over a large pH range and is soluble at high concentrations. Thermal and urea denaturation studies show that the protein displays cooperative two-state folding properties despite its modular nature. Taken together with previous studies on other ankyrin repeat proteins, our data suggest that the two-state folding pathway may be characteristic of ankyrin repeat proteins and other integrated alpha-helical repeat proteins in general. 相似文献
14.
Gianni S Travaglini-Allocatelli C Cutruzzolà F Bigotti MG Brunori M 《Journal of molecular biology》2001,309(5):1177-1187
Cytochrome c(551) (cyt c(551)) from Pseudomonas aeruginosa is a small protein (82 residues) that folds via a three-state pathway with the accumulation in the microsecond time-range of a compact collapsed intermediate. The presence of a single His residue, at position 16, permits the study of the refolding at pH 7.0 in the absence of miscoordination events. Here, we report on folding kinetics in the millisecond time-range as a function of urea under different pH conditions. Analysis of this process (over-and-above proline cis-trans isomerization) at pH 7.0, suggests the existence of a multiple transition state pathway in which we postulate three transition states. Taking advantage of site-directed mutagenesis we propose that the first "unfolded-like" transition state (t(1)) originates from the electrostatic properties of the collapsed state, while the second transition state (t(2)) involves the interaction between the N and C-terminal helices and is stabilized by the salt bridge between Lys10 and Glu70 ( approximately 1 kcal mol(-1)). Our results suggest that, contrary to other cytochromes c, the roll-over effect observed for cyt c(551) at low denaturant concentration can be interpreted in terms of a broad energy barrier without population of any intermediates. The third and more "native-like" transition state (M) can be associated with the breaking/formation of the Fe(3+)-Met61 bond. This strong interaction is stabilized by the hydrogen bond between Trp56 and heme propionate 17 (HP-17) as suggested by the increase in the unfolding rate at high denaturant concentration of the Trp56Phe site-directed mutant. 相似文献
15.
Demetrius L 《Journal of theoretical biology》2002,217(3):397-411
This article appeals to an evolutionary model which postulates that primordial proteins were described by small polypeptide chains which (i) lack disulfide bridges, and (ii) display slow folding rates with multi-state kinetics, to determine relations between structural properties of proteins and their folding kinetics. We parameterize the energy landscape of proteins in terms of thermodynamic activation variables. The model studies evolutionary changes in these thermodynamic parameters, and we invoke relations between these activation variables and structural properties of the protein to predict the following correspondence between protein structure and folding kinetics. 1. Proteins with inter- and intra-chain disulfide bridges: large variability in both folding rates and stability of intermediates, multi-state kinetics. 2. Proteins which lack inter and intra-chain disulfide bridges. 2.1 Single-domain chains: fast folding rates; unstable intermediates; two-state kinetics. 2.2 Multi-domain monomers: intermediate rates; metastable intermediates; multi-state kinetics. 2.3 Multi-domain oligomers: slow rates; metastable intermediates; multi-state kinetics. The evolutionary model thus provides a kinetic characterization of one important subfamily of proteins which we describe by the following properties: Folding dynamics of single-domain proteins which lack disulfide bridges are described by two-state kinetics. Folding rate of this class of proteins is positively correlated with the thermodynamic stability of the folded state. 相似文献
16.
The folding kinetics and thermodynamics of the isolated C-terminal domain of the ribosomal protein L9 (CTL9) have been studied as a function of pH. CTL9 is an alpha-beta protein that contains a single beta-sheet with an unusual mixed parallel, anti-parallel topology. The folding is fully reversible and two-state over the entire pH range. Stopped-flow fluorescence and CD experiments yield the same folding rate, and the chevron plots have the characteristic V-shape expected for two-state folding. The values of DeltaG*(H2O) and the m value calculated from the kinetic experiments are in excellent agreement with the equilibrium measurements. The extrapolated initial amplitudes of both the stopped-flow fluorescence and CD measurements show that there is no detectable burst phase intermediate. The domain contains three histidine residues, two of which are largely buried in the native state. They do not participate in salt-bridges or take part in a hydrogen bonded network. NMR measurements reveal that the buried histidine residues have significantly perturbed pK(a) values in the native state. The equilibrium stability and the folding rate are found to be strongly dependent upon their ionization state. There is a linear relationship between the log of the folding rate and DeltaG* (H2O) . The protein is much more stable and folds noticeably faster at pH values above the native state pK(a) values. DeltaG*(H2O) of unfolding increases from 2.90 kcal mol(-1) at pH 5.0 to 6.40 kcal mol(-1) at pH 8.0 while the folding rate increases from 0.60 to 18.7 s(-1). Tanford linkage analysis revealed that the interactions involving the two histidine residues are largely developed in the transition state. The results are compared to other studies of the pH-dependence of folding. 相似文献
17.
Torrent J Font J Herberhold H Marchal S Ribó M Ruan K Winter R Vilanova M Lange R 《Biochimica et biophysica acta》2006,1764(3):489-496
Pressure-jump induced relaxation kinetics can be used to study both protein unfolding and refolding. These processes can be initiated by upward and downward pressure-jumps of amplitudes of a few 10 to 100 MPa, with a dead-time on the order of milliseconds. In many cases, the relaxation times can be easily determined when the pressure cell is connected to a spectroscopic detection device, such as a spectrofluorimeter. Adiabatic heating or cooling can be limited by small pressure-jump amplitudes and a special design of the sample cell. Here, we discuss the application of this method to four proteins: 33-kDa and 23-kDa proteins from photo-system II, a variant of the green fluorescent protein, and a fluorescent variant of ribonuclease A. The thermodynamically predicted equivalency of upward and downward pressure-jump induced protein relaxation kinetics for typical two-state folders was observed for the 33-kDa protein, only. In contrast, the three other proteins showed significantly different kinetics for pressure-jumps in opposite directions. These results cannot be explained by sequential reaction schemes. Instead, they are in line with a more complex free energy landscape involving multiple pathways. 相似文献
18.
The primary alkylsulfatase of Pseudomonas aeruginosa: inducer specificity and induction kinetics 总被引:1,自引:0,他引:1
The ability of primary alkylsulfate esters and alkanesulfonates to induce alkylsulfatase formation in Pseudomonas aeruginosa was compared on the basis of maximum enzyme levels, induction rate, and levels of induction as a function of inducer concentration. Apparent K inducer values for these effectors were calculated from linear relationships between reciprocals of induction rate and inducer concentration. Maximum enzyme levels estimated from linear progress relationships for each effector indicated that little major distinction could be made between effectors. Excepting carbon chain lengths of C8 which induced about the same level of enzyme, sulfate esters were generally better inducers than sulfonates with little or no apparent induction occurring with effectors of chain length less than or equal to C6. These observations also held true when rates were compared, except that the rate for the C8 ester was approximately ninefold greater than that for the analogous sulfonate. Apparent K inducer constants decreased with increasing alkyl chain length for the esters (C6-C12) and the sulfonates (C8-C14). Values for the esters were approximately sixfold greater than those for sulfonates of equivalent chain length. Plots of log apparent K inducer values against carbon chain length for each series of esters and sulfonates yielded straight-line relationships characteristic of an homologous series in each instance. 相似文献
19.
Inter-residue interactions in protein folding and stability 总被引:6,自引:0,他引:6
During the process of protein folding, the amino acid residues along the polypeptide chain interact with each other in a cooperative manner to form the stable native structure. The knowledge about inter-residue interactions in protein structures is very helpful to understand the mechanism of protein folding and stability. In this review, we introduce the classification of inter-residue interactions into short, medium and long range based on a simple geometric approach. The features of these interactions in different structural classes of globular and membrane proteins, and in various folds have been delineated. The development of contact potentials and the application of inter-residue contacts for predicting the structural class and secondary structures of globular proteins, solvent accessibility, fold recognition and ab initio tertiary structure prediction have been evaluated. Further, the relationship between inter-residue contacts and protein-folding rates has been highlighted. Moreover, the importance of inter-residue interactions in protein-folding kinetics and for understanding the stability of proteins has been discussed. In essence, the information gained from the studies on inter-residue interactions provides valuable insights for understanding protein folding and de novo protein design. 相似文献
20.
The gene-3 protein (G3P) of filamentous phages is essential for the infection of Escherichia coli. The carboxy-terminal domain anchors this protein in the phage coat, whereas the two amino-terminal domains N1 and N2 protrude from the phage surface. We analyzed the folding mechanism of the two-domain fragment N1-N2 of G3P (G3P(*)) and the interplay between folding and domain assembly. For this analysis, a variant of G3P(*) was used that contained four stabilizing mutations (IIHY-G3P(*)). The observed refolding kinetics extend from 10 ms to several hours. Domain N1 refolds very rapidly (with a time constant of 9.4 ms at 0.5 M guanidinium chloride, 25 degrees C) both as a part of IIHY-G3P(*) and as an isolated protein fragment. The refolding of domain N2 is slower and involves two reactions with time constants of seven seconds and 42 seconds. These folding reactions of the individual domains are followed by a very slow, spectroscopically silent docking process, which shows a time constant of 6200 seconds. This reaction was detected by a kinetic unfolding assay for native molecules. Before docking, N1 and N2 unfold fast and independently, after docking they unfold slowly in a correlated fashion. A high energy barrier is thus created by domain docking, which protects G3P kinetically against unfolding. The slow domain docking is possibly important for the infection of E.coli by the phage. Upon binding to the F pilus, the N2 domain separates from N1 and the binding site for TolA on domain N1 is exposed. Since domain reassembly is so slow, this binding site remains accessible until pilus retraction has brought N1 close to TolA on the bacterial surface. 相似文献