共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. We report two situations in which the polarity of gravitropism of single protonemal cells of the moss Physcomitrella patens is reversed. Dark-grown protonemata of wild-type P. patens grow negatively gravitropically. Time-lapse video-microscopy reveals that a temporary reversal of growth polarity occurs during mitotic division which is independent of the cells' growth rate. A transitory reversal of growth direction is also observed when the unidirectional gravitropic stimulus is interrupted by a period of growth on a clinostat. A third situation, in which a mutant class responds by growing positively gravitropically, has been described previously (Jenkins, Courtice & Cove, 1986). These observations are discussed in terms of possible mechanisms for cell morphogenesis and tropic growth. 相似文献
2.
Gravitropic responses of wild-type and mutant strains of the moss Physcomitrella patens 总被引:1,自引:2,他引:1
The gravitropic responses of dark-grown caulonemata and gametophores of wild-type and mutant strains of the moss Physcomitrella patens have been investigated. In the wild-type both caulonemata and gametophores show negative orthogravitropism. No gravitropic response is observed when plants are rotated slowly on a clinostat and the inductive effect of gravity can be replaced by centrifugal force. The gravitropic response of caulonemanta is biphasic, consisting of an initial phase producing a bend of about 20 degrees within 12 h of 90 degrees reorientation and a subsequent slower phase leading to completion of the 90 degrees curvature. No obvious sedimentation of statoliths accompanies this response. Several mutants have been isolated that are either partially or completely impaired in caulonemal gravitropism and one mutant shows a positive gravitropic response. Complementation analysis using somatic hybrids obtained following protoplast fusion indicates that at least three genes can mutate to give an altered gravitropic phenotype. None of these mutants is altered in gametophore gravitropism, suggesting that the gravitropic response of caulonemal filaments may require at least some gene products that are not required for the response of the multicellular gametophores. One class of mutant with impaired caulonemal gravitropism shows a pleiotropic alteration in leaf shape. 相似文献
3.
Expansins in the bryophyte Physcomitrella patens 总被引:3,自引:0,他引:3
Expansins are cell wall proteins which play a key function in basic processes of plant growth and differentiation. It has been proposed that expansins are likely to be present in all land plants and, to date, they have been reported in angiosperms, gymnosperms and pteridophytes. In this paper, we provide the first report and analysis of genes encoding expansin-like proteins in the bryophyte, Physcomitrella patens. Our analysis indicates that both - and -expansins are present as gene families in this plant and expression analysis indicates that these genes are subject to a complex regulation by both hormonal and environmental factors. In particular, the expression of many expansin genes in P. patens is upregulated by stress conditions, suggesting that they play a role in the specific cellular differentiation displayed by P. patens in response to such stress. Finally, we provide the first report on the generation and analysis of a series of knockout mutants for individual expansin genes. Abbreviations: IAA, indole-acetic acid; BAP, 6-benzylaminopurine; ABA, abscisic acid; npt, neomycin phospotransferase; KO, knockout 相似文献
4.
基因定点整合技术及其在苔藓研究中的进展 总被引:5,自引:0,他引:5
基因定点整合技术是20世纪80年代后兴起的一种分子生物学技术,在精细研究基因功能,消除转基因沉默,基因治疗等有重要意义。基因定点整合技术是功能基因组学研究的重要手段。目前关于基因定点整合技术在酵母和鼠胚胎干细胞中的应用已经很成熟,高等植物由于同源重组频率较低而限制了它的应用,但小立碗藓(Physcomitrella patens)基因同源重组频率较高,基因定点整合技术得到了成功应用,可望成为一种新的分子生物学的模式植物。本文针对基因定点整合的原理、技术路线及进展作一综述。 相似文献
5.
《Bioscience, biotechnology, and biochemistry》2013,77(12):2542-2545
Physcomitrella patens, belonging to bryopsida, is a basal lineage of land plants. To gain insight into the diversification of the two-component system (TCS), which is widely conserved from prokaryotes to eukaryotes, we compiled TCS-associated genes by employing P. patens genome databases. The moss has a set of His-kinases (HKs), including homologs of the cytokinin- and ethylene-receptors in seed plants. In addition, it has a number of coding-sequences specifying unique HKs. We found evidence that a putative cytokinin-receptor HK in P. patans serves as a sensor for this hormone, and that the HK activity of a putative ethylene-receptor homolog is regulated by ethylene, as observed for Arabidopsis thaliana. 相似文献
6.
7.
苔藓植物小立碗藓,功能基因组学研究新的模式系统 总被引:2,自引:0,他引:2
苔藓植物具有相对简单的发育模式,单倍体的配子体在其生活史中占主导地位,作为研究植物生物学过程的模式系统具有诸多的优越性。苔藓植物小立碗藓能够高效地通过同源重组的方式将外源核酸整合到其核DNA,这就使得基因打靶在此物种中就像在小鼠胚胎干细胞和酵母中一样成为一个非常便利的技术。另外由于小立碗藓与高等植物在生物特征上有很大相似之处加之其有其他诸多优越性,它有望成为一个诱人的植物生物学和功能基因组学研究的模式系统。Abstract:The potential of moss as a model system to study plant biological process is associated with their relatively simple developmental pattern and the dominance of the haploid gametophyte in the life cycle. The moss Physcomitrella patens exhibits a very high rate of homologous recombination in its nuclear DNA, making gene targeting approaches in this plant as convenient as in yeast or in ES cells of mice. Sharing many biological features with higher plants and having many other advantages, the moss Physcomitrella patens will be an attractive model system for plant biology and functional genome analysis. 相似文献
8.
A specific member of the Cab multigene family can be efficiently targeted and disrupted in the moss Physcomitrella patens 总被引:4,自引:0,他引:4
Hofmann AH Codón AC Ivascu C Russo VE Knight C Cove D Schaefer DG Chakhparonian M Zrÿd JP 《Molecular & general genetics : MGG》1999,261(1):92-99
The analysis of phenotypic change resulting from gene disruption following homologous recombination provides a powerful technique
for the study of gene function. This technique has so far been difficult to apply to plants because the frequency of gene
disruption following transformation with constructs containing DNA homologous to genomic sequences is low (0.01 to 0.1%).
It has recently been shown that high rates of gene disruption (up to 90%) can be achieved in the moss Physcomitrella patens using genomic sequences of unknown function. We have used this system to examine the specificity of gene disruption in Physcomitrella using a member of the Cab multigene family. We have employed the previously characterised Cab gene ZLAB1 and have isolated segments of 13 other closely related members of the Cab gene family. In the 199-bp stretch sequenced, the 13 new members of the Cab family show an average of 8.5% divergence from the DNA sequence of ZLAB1. We observed 304 silent substitutions and 16 substitutions that lead to a change in the amino acid sequence of the protein.
We cloned 1029 bp of the coding region of ZLAB1 (including 177 of the 199 bp with high homology to the 13 new Cab genes) into a vector containing a selectable hygromycin resistance marker, and used this construct to transform P. patens. In three of nine stable transformants tested, the construct had inserted in, and disrupted, the ZLAB1 gene. There was no discernible phenotype associated with the disruption. We have therefore shown that gene disruption is
reproducible in P. patens and that the requirement for sequence homology appears to be stringent, therefore allowing the role of individual members
of a gene family to be analysed in land plants for the first time.
Received: 2 February 1998 / Accepted: 15 October 1998 相似文献
9.
10.
11.
Studying plant development in mosses: the transgenic route 总被引:1,自引:0,他引:1
C. D. KNIGHT 《Plant, cell & environment》1994,17(5):669-674
The current status of transgenic studies in mosses is reviewed with particular attention being given to the mosses Physcomitrella patens and Ceratodon purpureus. This paper reviews the advantages of using mosses as models for higher plants in the study of plant development, and includes developmental processes, already partially characterized at the genetic level by mutant analysis, for which transgenic studies may be applicable. The P. patens transformation process is being studied in this laboratory and details are given for a class of transformants which contain extrachromosomal plasmid DNA. Publications which present the nucleic acid and/or protein sequence for nuclear, chloroplast and mitochondrial genes are reviewed. Areas of research in which transgenic studies promise to complement existing cell biological and physiological approaches are discussed. These include the measurement of calcium levels in mutant and wild-type transformants expressing the apoaequorin gene and a role for phytochrome gene expression in the establishment of polarity. 相似文献
12.
13.
Pol Vendrell-Mir Pierre-François Perroud Fabian B. Haas Rabea Meyberg Florence Charlot Stefan A. Rensing Fabien Nogué Josep M. Casacuberta 《The Plant journal : for cell and molecular biology》2021,108(6):1786-1797
In the last few years, next-generation sequencing techniques have started to be used to identify new viruses infecting plants. This has allowed to rapidly increase our knowledge on viruses other than those causing symptoms in economically important crops. Here we used this approach to identify a virus infecting Physcomitrium patens that has the typical structure of the double-stranded RNA endogenous viruses of the Amalgaviridae family, which we named Physcomitrium patens amalgavirus 1, or PHPAV1. PHPAV1 is present only in certain accessions of P. patens, where its RNA can be detected throughout the cell cycle of the plant. Our analysis demonstrates that PHPAV1 can be vertically transmitted through both paternal and maternal germlines, in crosses between accessions that contain the virus with accessions that do not contain it. This work suggests that PHPAV1 can replicate in genomic backgrounds different from those that actually contain the virus and opens the door for future studies on virus–host coevolution. 相似文献
14.
15.
Kanae Yokogawa Shigeo Kawata Tadashi Takemura Yoshio Yoshimura 《Bioscience, biotechnology, and biochemistry》2013,77(8):1533-1543
Two lytic enzymes capable of lysing Streptococcus mutans have been purified to give a single band on disc-gel electrophoresis, respectively. The M–1 and M–2 enzymes were both proved to be N-acetylmuramidases. However, these enzymes were entirely different on their enzymatic properties. The molecular weights were about 20,000 and 11,000 for M–1 and M–2 enzymes, respectively, The maximal lytic activity of M–1 enzyme was obtained at ionic strength 0.05, while lytic activity of M–2 enzyme did not change within the ionic strength range of 0 to 0.05. The M–1 enzyme constituted the majority of the total lytic activity against the cell walls of Streptococcus mutans BHT of cultured filtrate. The M–2 enzyme showed less specific lytic activity on the cell walls of Streptococcus mutans BHT than M–1 enzyme. 相似文献
16.
Huether CM Lienhart O Baur A Stemmer C Gorr G Reski R Decker EL 《Plant biology (Stuttgart, Germany)》2005,7(3):292-299
The commercial production of complex pharmaceutical proteins from human origin in plants is currently limited through differences in protein N-glycosylation pattern between plants and humans. On the one hand, plant-specific alpha(1,3)-fucose and beta(1,2)-xylose residues were shown to bear strong immunogenic potential. On the other hand, terminal beta(1,4)-galactose, a sugar common on N-glycans of pharmaceutically relevant proteins, e.g., antibodies, is missing in plant N-glycan structures. For safe and flexible production of pharmaceutical proteins, the humanisation of plant protein N-glycosylation is essential. Here, we present an approach that combines avoidance of plant-specific and introduction of human glycan structures. Transgenic strains of the moss Physcomitrella patens were created in which the alpha(1,3)-fucosyltransferase and beta(1,2)-xylosyltransferase genes were knocked out by targeted insertion of the human beta(1,4)-galactosyltransferase coding sequence in both of the plant genes (knockin). The transgenics lacked alpha(1,3)-fucose and beta(1,2)-xylose residues, whereas beta(1,4)-galactose residues appeared on protein N-glycans. Despite these significant biochemical changes, the plants did not differ from wild type with regard to overall morphology under standard cultivation conditions. Furthermore, the glyco-engineered plants secreted a transiently expressed recombinant human protein, the vascular endothelial growth factor, in the same concentration as unmodified moss, indicating that the performed changes in glycosylation did not impair the secretory pathway of the moss. The combined knockout/knockin approach presented here, leads to a new generation of engineered moss and towards the safe and flexible production of correctly processed pharmaceutical proteins with humanised N-glycosylation profiles. 相似文献
17.
G. Bruce Birrell Karen K. Hedberg Eric Barklis O. Hayes Griffith 《Journal of cellular biochemistry》1997,65(4):550-564
A novel cell surface phosphoinositide-cleaving phospholipase C (ecto-PLC) activity was isolated from cultured cells by exploiting its presumed external exposure. Biotinylation of intact cells followed by solubilization of the biotinylated proteins from a membrane fraction and recovery onto immobilized-avidin beads, allowed assay of this cell surface enzyme activity apart from the background of the substantial family of intracellular PLCs. Several cell lines of differing ecto-PLC expression were examined as well as cells stably transfected to overexpress the glycosylphosphatidylinositol (GPI)-anchored protein human placental alkaline phosphatase (PLAP) as a cell surface enzyme marker. The resulting bead preparations from ecto-PLC positive cells possessed calcium-dependent PLC activity with preference for lysophosphatidylinositol (lysoPI) rather than phosphatidylinositol (PI). The function of ecto-PLC of intact cells evidently is not to release GPI-anchored proteins at the cell surface, as no detectable Ca2+-dependent release of overexpressed PLAP from ecto-PLC-positive cells was observed. To investigate the cell surface linkage of the ecto-PLC itself, intact cells were treated with bacterial PI-PLC to cleave simple GPI anchors, but no decrease in ecto-PLC activity was observed. High ionic strength washes of biotinylated membranes prior to the generation of bead preparations did not substantially reduce the lysoPI-PLC activity. The results verify that the ecto-PLC is truly cell surface-exposed, and unlike other members of the PLC family that are thought to be peripheral membrane proteins, this novel lysoPI-PLC is most likely a true membrane protein. J. Cell. Biochem. 65:550–564. © 1997 Wiley-Liss Inc. 相似文献
18.
19.
20.
Ryusuke Yokoyama Yohei Uwagaki Hiroki Sasaki Taro Harada Yuji Hiwatashi Mitsuyasu Hasebe Kazuhiko Nishitani 《The Plant journal : for cell and molecular biology》2010,64(4):645-656
This comprehensive overview of the xyloglucan endotransglucosylase/hydrolase (XTH) family of genes and proteins in bryophytes, based on research using genomic resources that are newly available for the moss Physcomitrella patens, provides new insights into plant evolution. In angiosperms, the XTH genes are found in large multi‐gene families, probably reflecting the diverse roles of individual XTHs in various cell types. As there are fewer cell types in P. patens than in angiosperms such as Arabidopsis and rice, it is tempting to deduce that there are fewer XTH family genes in bryophytes. However, the present study unexpectedly identified as many as 32 genes that potentially encode XTH family proteins in the genome of P. patens, constituting a fairly large multi‐gene family that is comparable in size with those of Arabidopsis and rice. In situ localization of xyloglucan endotransglucosylase activity in this moss indicates that some P. patens XTH proteins exhibit biochemical functions similar to those found in angiosperms, and that their expression profiles are tissue‐dependent. However, comparison of structural features of families of XTH genes between P. patens and angiosperms demonstrated the existence of several bryophyte‐specific XTH genes with distinct structural and functional features that are not found in angiosperms. These bryophyte‐specific XTH genes might have evolved to meet morphological and functional needs specific to the bryophyte. These findings raise interesting questions about the biological implications of the XTH family of proteins in non‐seed plants. 相似文献