首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gravitropic responses of dark-grown caulonemata and gametophores of wild-type and mutant strains of the moss Physcomitrella patens have been investigated. In the wild-type both caulonemata and gametophores show negative orthogravitropism. No gravitropic response is observed when plants are rotated slowly on a clinostat and the inductive effect of gravity can be replaced by centrifugal force. The gravitropic response of caulonemanta is biphasic, consisting of an initial phase producing a bend of about 20 degrees within 12 h of 90 degrees reorientation and a subsequent slower phase leading to completion of the 90 degrees curvature. No obvious sedimentation of statoliths accompanies this response. Several mutants have been isolated that are either partially or completely impaired in caulonemal gravitropism and one mutant shows a positive gravitropic response. Complementation analysis using somatic hybrids obtained following protoplast fusion indicates that at least three genes can mutate to give an altered gravitropic phenotype. None of these mutants is altered in gametophore gravitropism, suggesting that the gravitropic response of caulonemal filaments may require at least some gene products that are not required for the response of the multicellular gametophores. One class of mutant with impaired caulonemal gravitropism shows a pleiotropic alteration in leaf shape.  相似文献   

2.
Abstract. We report two situations in which the polarity of gravitropism of single protonemal cells of the moss Physcomitrella patens is reversed. Dark-grown protonemata of wild-type P. patens grow negatively gravitropically. Time-lapse video-microscopy reveals that a temporary reversal of growth polarity occurs during mitotic division which is independent of the cells' growth rate. A transitory reversal of growth direction is also observed when the unidirectional gravitropic stimulus is interrupted by a period of growth on a clinostat. A third situation, in which a mutant class responds by growing positively gravitropically, has been described previously (Jenkins, Courtice & Cove, 1986). These observations are discussed in terms of possible mechanisms for cell morphogenesis and tropic growth.  相似文献   

3.
Expansins in the bryophyte Physcomitrella patens   总被引:3,自引:0,他引:3  
Expansins are cell wall proteins which play a key function in basic processes of plant growth and differentiation. It has been proposed that expansins are likely to be present in all land plants and, to date, they have been reported in angiosperms, gymnosperms and pteridophytes. In this paper, we provide the first report and analysis of genes encoding expansin-like proteins in the bryophyte, Physcomitrella patens. Our analysis indicates that both - and -expansins are present as gene families in this plant and expression analysis indicates that these genes are subject to a complex regulation by both hormonal and environmental factors. In particular, the expression of many expansin genes in P. patens is upregulated by stress conditions, suggesting that they play a role in the specific cellular differentiation displayed by P. patens in response to such stress. Finally, we provide the first report on the generation and analysis of a series of knockout mutants for individual expansin genes. Abbreviations: IAA, indole-acetic acid; BAP, 6-benzylaminopurine; ABA, abscisic acid; npt, neomycin phospotransferase; KO, knockout  相似文献   

4.
5.
Autophagy, a major catabolic process in eukaryotes, was initially related to cell tolerance to nutrient depletion. In plants autophagy has also been widely related to tolerance to biotic and abiotic stresses (through the induction or repression of programmed cell death, PCD) as well as to promotion of developmentally regulated PCD, starch degradation or caloric restriction important for life span. Much less is known regarding its role in plant cell differentiation. Here we show that macroautophagy, the autophagy pathway driven by engulfment of cytoplasmic components by autophagosomes and its subsequent degradation in vacuoles, is highly active during germ cell differentiation in the early diverging land plant Physcomitrella patens. Our data provide evidence that suppression of ATG5-mediated autophagy results in reduced density of the egg cell-mediated mucilage that surrounds the mature egg, pointing toward a potential role of autophagy in extracellular mucilage formation. In addition, we found that ATG5- and ATG7-mediated autophagy is essential for the differentiation and cytoplasmic reduction of the flagellated motile sperm and hence for sperm fertility. The similarities between the need of macroautophagy for sperm differentiation in moss and mouse are striking, strongly pointing toward an ancestral function of autophagy not only as a protector against nutrient stress, but also in gamete differentiation.  相似文献   

6.
The analysis of phenotypic change resulting from gene disruption following homologous recombination provides a powerful technique for the study of gene function. This technique has so far been difficult to apply to plants because the frequency of gene disruption following transformation with constructs containing DNA homologous to genomic sequences is low (0.01 to 0.1%). It has recently been shown that high rates of gene disruption (up to 90%) can be achieved in the moss Physcomitrella patens using genomic sequences of unknown function. We have used this system to examine the specificity of gene disruption in Physcomitrella using a member of the Cab multigene family. We have employed the previously characterised Cab gene ZLAB1 and have isolated segments of 13 other closely related members of the Cab gene family. In the 199-bp stretch sequenced, the 13 new members of the Cab family show an average of 8.5% divergence from the DNA sequence of ZLAB1. We observed 304 silent substitutions and 16 substitutions that lead to a change in the amino acid sequence of the protein. We cloned 1029 bp of the coding region of ZLAB1 (including 177 of the 199 bp with high homology to the 13 new Cab genes) into a vector containing a selectable hygromycin resistance marker, and used this construct to transform P. patens. In three of nine stable transformants tested, the construct had inserted in, and disrupted, the ZLAB1 gene. There was no discernible phenotype associated with the disruption. We have therefore shown that gene disruption is reproducible in P. patens and that the requirement for sequence homology appears to be stringent, therefore allowing the role of individual members of a gene family to be analysed in land plants for the first time. Received: 2 February 1998 / Accepted: 15 October 1998  相似文献   

7.
Physcomitrella patens, belonging to bryopsida, is a basal lineage of land plants. To gain insight into the diversification of the two-component system (TCS), which is widely conserved from prokaryotes to eukaryotes, we compiled TCS-associated genes by employing P. patens genome databases. The moss has a set of His-kinases (HKs), including homologs of the cytokinin- and ethylene-receptors in seed plants. In addition, it has a number of coding-sequences specifying unique HKs. We found evidence that a putative cytokinin-receptor HK in P. patans serves as a sensor for this hormone, and that the HK activity of a putative ethylene-receptor homolog is regulated by ethylene, as observed for Arabidopsis thaliana.  相似文献   

8.
The moss Physcomitrella patens is a model for the study of plant cell biology and, by virtue of its basal position in land plant phylogeny, for comparative analysis of the evolution of plant gene function and development. It is ideally suited for 'reverse genetic' analysis by virtue of its outstanding ability to undertake targeted transgene integration by homologous recombination. However, gene identification through mutagenesis and map-based cloning has hitherto not been possible, due to the lack of a genetic linkage map. Using molecular markers [amplified fragment length polymorphisms (AFLP) and simple sequence repeats (SSR)] we have generated genetic linkage maps for Physcomitrella. One hundred and seventy-nine gene-specific SSR markers were mapped in 46 linkage groups, and 1574 polymorphic AFLP markers were identified. Integrating the SSR- and AFLP-based maps generated 31 linkage groups comprising 1420 markers. Anchorage of the integrated linkage map with gene-specific SSR markers coupled with computational prediction of AFLP loci has enabled its correspondence with the newly sequenced Physcomitrella genome. The generation of a linkage map densely populated with molecular markers and anchored to the genome sequence now provides a resource for forward genetic interrogation of the organism and for the development of a pipeline for the map-based cloning of Physcomitrella genes. This will radically enhance the potential of Physcomitrella for determining how gene function has evolved for the acquisition of complex developmental strategies within the plant kingdom.  相似文献   

9.
Toc64 has been suggested to be part of the chloroplast import machinery in Pisum sativum. A role for Toc64 in protein transport has not been established, however. To address this, we generated knockout mutants in the moss Physcomitrella patens using the moss's ability to perform homologous recombination with nuclear DNA. Physcomitrella patens contains two genes that encode Toc64-like proteins. Both of those proteins appear to be localized in the chloroplast. The double-mutant plants were lacking Toc64 protein in the chloroplasts but showed no growth phenotype. In addition, these plants accumulated other plastid proteins at wild-type levels and showed no difference from wild type in in vitro protein import assays. These plants did have a slightly altered chloroplast shape in some tissues, however. The evidence therefore indicates that Toc64 proteins are not required for import of proteins in Physcomitrella, but may point to involvement in the determination of plastid shape.  相似文献   

10.
有前景的模式植物小立碗藓的研究新进展   总被引:1,自引:0,他引:1  
刘艳  曹同  陈静文   《广西植物》2007,27(1):90-94
小立碗藓是在分子生物学研究方面有广阔应用前景的模式植物。该文主要综述了有关小立碗藓在功能基因组学、进化和适应性及植物生理等方面最新的研究进展。  相似文献   

11.
12.
13.
The moss Physcomitrella patens contains high proportions of polyunsaturated very-long-chain fatty acids with up to 20 carbon atoms. Starting from preformed C18 polyunsaturated fatty acids, their biosynthesis involves a sequence of Delta6-desaturation, Delta6-elongation and Delta5-desaturation. In this report we describe for the first time the characterisation of a cDNA (PSE1) of plant origin with homology to the ELO-genes from Saccharomyces cerevisiae, encoding a component of the Delta6-elongase. Functional expression of PSE1 in S. cerevisiae led to the elongation of exogenously supplied Delta6-polyunsaturated fatty acids. By feeding experiments with different trienoic fatty acids of natural and synthetic origin, both substrate specificity and substrate selectivity of the enzyme were investigated. The activity of Pse1, when expressed in yeast, was not sensitive to the antibiotic cerulenin, which is an effective inhibitor of fatty acid synthesis and elongation. Furthermore, the PSE1 gene was disrupted in the moss by homologous recombination. This led to a complete loss of all C20 polyunsaturated fatty acids providing additional evidence for the function of the cDNA as coding for a component of the Delta6-elongase. The elimination of the elongase was not accompanied by a visible alteration in the phenotype, indicating that C20-PUFAs are not essential for viability of the moss under phytotron conditions.  相似文献   

14.
苔藓植物小立碗藓,功能基因组学研究新的模式系统   总被引:2,自引:0,他引:2  
董文  李卫  郭光沁  郑国锠 《遗传》2004,26(4):560-566
苔藓植物具有相对简单的发育模式,单倍体的配子体在其生活史中占主导地位,作为研究植物生物学过程的模式系统具有诸多的优越性。苔藓植物小立碗藓能够高效地通过同源重组的方式将外源核酸整合到其核DNA,这就使得基因打靶在此物种中就像在小鼠胚胎干细胞和酵母中一样成为一个非常便利的技术。另外由于小立碗藓与高等植物在生物特征上有很大相似之处加之其有其他诸多优越性,它有望成为一个诱人的植物生物学和功能基因组学研究的模式系统。Abstract:The potential of moss as a model system to study plant biological process is associated with their relatively simple developmental pattern and the dominance of the haploid gametophyte in the life cycle. The moss Physcomitrella patens exhibits a very high rate of homologous recombination in its nuclear DNA, making gene targeting approaches in this plant as convenient as in yeast or in ES cells of mice. Sharing many biological features with higher plants and having many other advantages, the moss Physcomitrella patens will be an attractive model system for plant biology and functional genome analysis.  相似文献   

15.
Transfer RNA metabolism in developmentally-abnormal ove strains of Physcomitrella patens (Hedw.) Br. Eur. which produce more than 100 times the wild-type level of cytokinin, was analysed. tRNA from ove and wild-type strains of P. patens was extracted and characterised and tRNA metabolism in these strains was compared. No differences large enough to account for the observed levels of cytokinin production by ove strains were found. The amount of cellular tRNA and the rate of cytokinin degradation were similar in ove and wild-type strains suggesting that the cause of over-production in the mutants may be due to changed control of a biosynthetic route independent of tRNA.  相似文献   

16.
Plant secretome comprises dozens of secreted proteins. However, little is known about the composition of the whole secreted peptide pools and the proteases responsible for the generation of the peptide pools. The majority of studies focus on target detection and characterization of specific plant peptide hormones. In this study, we performed a comprehensive analysis of the whole extracellular peptidome, using moss Physcomitrella patens as a model. Hundreds of modified and unmodified endogenous peptides that originated from functional and nonfunctional protein precursors were identified. The plant proteases responsible for shaping the pool of endogenous peptides were predicted. Salicylic acid (SA) influenced peptide production in the secretome. The proteasome activity was altered upon SA treatment, thereby influencing the composition of the peptide pools. These results shed more light on the role of proteases and posttranslational modification in the “active management” of the extracellular peptide pool in response to stress conditions. It also identifies a list of potential peptide hormones in the moss secretome for further analysis.  相似文献   

17.
18.
19.
PtdIns‐4,5‐bisphosphate is a lipid messenger of eukaryotic cells that plays a critical role in processes such as cytoskeleton organization, intracellular vesicular trafficking, secretion, cell motility, regulation of ion channels and nuclear signalling pathways. The enzymes responsible for the synthesis of PtdIns(4,5)P2 are phosphatidylinositol phosphate kinases (PIPKs). The moss Physcomitrella patens contains two PIPKs, PpPIPK1 and PpPIPK2. To study their physiological role, both genes were disrupted by targeted homologous recombination and as a result mutant plants with lower PtdIns(4,5)P2 levels were obtained. A strong phenotype for pipk1, but not for pipk2 single knockout lines, was obtained. The pipk1 knockout lines were impaired in rhizoid and caulonemal cell elongation, whereas pipk1‐2 double knockout lines showed dramatic defects in protonemal and gametophore morphology manifested by the absence of rapidly elongating caulonemal cells in the protonemal tissue, leafy gametophores with very short rhizoids, and loss of sporophyte production. pipk1 complemented by overexpression of PpPIPK1 fully restored the wild‐type phenotype whereas overexpression of the inactive PpPIPK1E885A did not. Overexpression of PpPIPK2 in the pipk1‐2 double knockout did not restore the wild‐type phenotype demonstrating that PpPIPK1 and PpPIPK2 are not functionally redundant. In vivo imaging of the cytoskeleton network revealed that the shortened caulonemal cells in the pipk1 mutants was the result of the absence of the apicobasal gradient of cortical F‐actin cables normally observed in wild‐type caulonemal cells. Our data indicate that both PpPIPKs play a crucial role in the development of the moss P. patens, and particularly in the regulation of tip growth.  相似文献   

20.
As in higher plants, the development of the moss Physcomitrella patens is regulated by environmental signals and phytohormones. At the protonema level transition from chloronema to caulonema cells is under auxin control. The formation on second sub-apical caulonema cells of buds that will give rise to the leafy gametophore requires cytokinins. Using [3H]azidoCPPU (1-(2-azido-6-chloropyrid-4-yl)-3-(4-[3H])phenylurea), a photoactivatable cytokinin agonist, we have specifically photolabelled a soluble 34 kDa protein of P. patens. Urea derivatives were very efficient competitors of photolabelling while purine-type cytokinins were poor competitors. The protein UBP34 was purified by affinity chromatography and the sequences of six internal peptides obtained. A cDNA encoding UBP34 was cloned by screening a P. patens protonema cDNA library with a probe amplified by PCR using degenerate primers designed from the peptide sequences. The UBP34 amino acid sequence shows an average sequence identity of 42% with both intracellular PR proteins and the BetV1-related family of plant allergens. Recombinant UBP34 expressed in Escherichia coli was confirmed to bind azidoCPPU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号