首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fluorescence lifetime and rotational correlation time of the single tryptophan residue in -cobratoxin have been measured between pH 2 and 10. The fluorescence decays are non-exponential and give lifetimes that are shorter than normally observed in small proteins (0.3 ns and 1 ns). This emission is consistent with a model in which the tryptophan residue is in slightly different environments in the protein. Fluorescence anisotropy decays show that the tryptophan residue is almost completely immobilised by neighbouring groups in the protein. The range of the wobbling motion is slightly pH dependent and limited to between 5° and 10°.  相似文献   

2.
Muscle strain is one of the most common injuries, resulting in a decreased range of motion (ROM) in this group of muscles. Systematic stretching over a period of time is needed to increase the ROM. The purpose of this study was to determine if whole-body vibration (WBV) training would have a positive effect on flexibility training (contract-release method) and thereby on the ROM of the hamstring musculature. In this study, 19 undergraduate students in physical education (12 women and 7 men, age 21.5 +/- 2.0 years) served as subjects and were randomly assigned to either a WBV group or a control group. Both groups stretched systematically 3 times per week for 4 weeks according to the contract-release method, which consists of a 5-second isometric contraction with each leg 3 times followed by 30 seconds of static stretching. Before each stretching exercise, the WBV group completed a WBV program consisting of standing in a squat position on the vibration platform with the knees bent 90 degrees on the Nemes Bosco system vibration platform (30 seconds at 28 Hz, 10-mm amplitude, 6 times per training session). The results show that both groups had a significant increase in hamstring flexibility. However, the WBV group showed a significantly larger increase (30%) in ROM than did the control group (14%). These results indicate that WBV training may have an extra positive effect on flexibility of the hamstrings when combined with the contract-release stretching method.  相似文献   

3.
The landing response of tethered flying housefliesMusca domestica elicited by motion of periodic gratings is analysed. The field of view of the compound eyes of a fly can be subdivided into a region of binocular overlap and a monocular region. In the monocular region the landing response is elicited by motion from front to back and suppressed by motion from back to front. The sensitivity to front to back motion in monocular flies (one eye covered with black paint) has a maximum at an angle 60°–80° laterally from the direction of flight in the equatorial plane. The maximum of the landing response to front to back motion as a function of the contrast frequencyw/ is observed at around 8 Hz. In the region of binocular overlap of monocular flies the landing response can be elicited by back to front motion around the equatorial plane if a laterally positioned pattern is simulataneously moved from front to back. 40° above the equatorial plane in the binocular region the landing response in binocular flies is elicited by upward motion, 40° below the equatorial plane in the binocular region it is elicited by downward motion. The results are interpreted as an adaptation of the visual system of the fly to the perception of a flow field having its pole in the direction of flight.  相似文献   

4.
This investigation considers the peristaltic flow of a Phan–Thien–Tanner fluid in the presence of slip condition and induced magnetic field. By use of the long wavelength and low Reynolds number approximations, closed form series solutions for stream function, pressure gradient, magnetic force function, axial induced magnetic field, and current density were obtained. The pressure gradient and frictional forces per wavelength were computed by numerical integration. The velocity slip condition in terms of shear stress is taken into account. Graphical results show the comparison between no-slip and viscous fluid cases. Pumping and trapping phenomena are discussed.  相似文献   

5.
Abstract

The motion of the costovertebral joint (CVJ) is governed by the material properties and its morphology. The goal of this numerical study was to identify the material and morphology parameters with the greatest influence on the motion of the CVJ. A fully parametric finite element model of the anatomy and material properties of the CVJ was developed. The impact of five morphology and thirteen material parameters was investigated and compared to in vitro data. The motion was influenced in particular by the rotational stiffness of the articulatio capitis costae and the lateral position of the fovea costalis transveralis.  相似文献   

6.
Ubiquitination of proteins provides a powerful and versatile post-translational signal in the eukaryotic cell. The formation of a thioester bond between ubiquitin (Ub) and the active site of a ubiquitin-conjugating enzyme (E2) is critical for the transfer of Ub to substrates. Assembly of a functional ubiquitin ligase (E3) complex poised for Ub transfer involves recognition and binding of an E2~Ub conjugate. Therefore, full characterization of the structure and dynamics of E2~Ub conjugates is required for further mechanistic understanding of Ub transfer reactions. Here we present characterization of the dynamic behavior of E2~Ub conjugates of two human enzymes, UbcH5c~Ub and Ubc13~Ub, in solution as determined by nuclear magnetic resonance and small-angle X-ray scattering. Within each conjugate, Ub retains great flexibility with respect to the E2, indicative of highly dynamic species that adopt manifold orientations. The population distribution of Ub conformations is dictated by the identity of the E2: the UbcH5c~Ub conjugate populates an array of extended conformations, and the population of Ubc13~Ub conjugates favors a closed conformation in which the hydrophobic surface of Ub faces helix 2 of Ubc13. We propose that the varied conformations adopted by Ub represent available binding modes of the E2~Ub species and thus provide insight into the diverse E2~Ub protein interactome, particularly with regard to interaction with Ub ligases.  相似文献   

7.
Medio-lateral translation during knee flexion continues to raise controversy. Small population sizes, small joint flexion ranges, less-reliable measurement techniques and disparate experimental conditions led to inconsistent reports in the past. To study this subject with more accurate and reliable measurements, we carried out femur and tibia tracking in 22 intact cadaver knees during passive joint motion using a state-of-the-art surgical navigation system. Trackers with active light-emitting diodes were fixed onto the femur and tibia, and an instrumented pointer was used to digitize a number of anatomical landmarks. International recommendations were adopted for anatomical-based reference frame definitions and joint kinematic analysis. For the first time, knee joint translations were reported in both the femoral and tibial reference frames, and over a flexion/extension arc as large as 140°. During flexion, in the femoral reference frame, the center of the tibial plateau moved 4.8 ± 2.8mm medially when averaged over the specimens. In the tibial frame, the knee center moved 13.3 ± 5.7 mm laterally. The relative femoral-to-tibial medio-lateral translation was, on average over the specimens, nearly 20% of the width of the tibial plateau, and can be as large as 35%. Medio-lateral translation occurs in the natural normal knee joint.  相似文献   

8.
The objectives of this study was to investigate the acute effects of various magnitudes of tendon strain on the mechanical properties of the human medial gastrocnemius (MG) in vivo during controlled heel-drop exercises. Seven male and seven female volunteers performed two different exercises executed one month apart: one was a heel-drop exercise on a block (HDB), and the other was a heel-drop exercise on level floor (HDL). In each regimen, the subjects completed a session of 150 heel-drop exercises (15 repetitions × 10 sets; with a 30 s rest following each set). Before and immediately after the heel-drop exercise, the ankle plantar flexor torque and elongation of the MG were measured using a combined measurement system of dynamometry and ultrasonography and then the MG tendon strain and stiffness were evaluated in each subject. The tendon stiffness measured prior to the exercises was not significantly different between the two groups 23.7 ± 10.6 N/mm and 24.1 ± 10.0 N/mm for the HDB and HDL, respectively (p > .05). During the heel-drop exercise, it was found that the tendon strain during the heel-drop exercise on a block (8.4 ± 3.7%) was significantly higher than the strain measured on the level floor (5.4 ± 3.8%) (p < .05). In addition, the tendon stiffness following the heel-drop exercise on a block (32.3 ± 12.2 N/mm) was significantly greater than the tendon stiffness measured following the heel-drop exercise on the level floor (25.4 ± 11.4 N/mm) (p < .05). The results of this study suggest that tendon stiffness immediately following a heel-drop exercise depends on the magnitude of tendon strain.  相似文献   

9.
Retinal activity is the first stage of visual perception. Retinal sampling is non-uniform and not continuous, yet visual experience is not characterized by holes and discontinuities in the world. How does the brain achieve this perceptual completion? Fifty years ago, it was suggested that visual perception involves a two-stage process of (i) edge detection followed by (ii) neural filling-in of surface properties. We examine whether this general hypothesis can account for the specific example of perceptual completion of a small target surrounded by dynamic dots (an ''artificial scotoma''), a phenomenon argued to provide insight into the mechanisms responsible for perception. We degrade the target''s borders using first blur and then depth continuity, and find that border degradation does not influence time to target disappearance. This indicates that important information for the continuity of target perception is conveyed at a coarse spatial scale. We suggest that target disappearance could result from adaptation that is not specific to borders, and question the need to hypothesize an active filling-in process to explain this phenomenon.  相似文献   

10.
The problems of estimating the motion and orientation parameters of a body segment from two n point-set patterns are analyzed using the Plücker coordinates of a line (Plücker lines). The aim is to find algorithms less complex than those in conventional use, and thus facilitating more accurate computation of the unknown parameters. All conventional techniques use point transformation to calculate the screw axis. In this paper, we present a novel technique that directly estimates the axis of a screw motion as a Plücker line. The Plücker line can be transformed via the dual-number coordinate transformation matrix. This method is compared with Schwartz and Rozumalski [2005. A new method for estimating joint parameters from motion data. Journal of Biomechanics 38, 107-116] in simulations of random measurement errors and systematic skin movements. Simulation results indicate that the methods based on Plücker lines (Plücker line method) are superior in terms of extremely good results in the determination of the screw axis direction and position as well as a concise derivation of mathematical statements. This investigation yielded practical results, which can be used to locate the axis of a screw motion in a noisy environment. Developing the dual transformation matrix (DTM) from noisy data and determining the screw axis from a given DTM is done in a manner analogous to that for handling simple rotations. A more robust approach to solve for the dual vector associated with DTM is also addressed by using the eigenvector and the singular value decomposition.  相似文献   

11.
12.
To determine the range of motion of a joint between an initial orientation and a final orientation, it is convenient to subtract initial joint angles from final joint angles, a method referred to as the vectorial approach. However, for three-dimensional movements, the vectorial approach is not mathematically correct. To determine the joint range of motion, the rotation matrix between the two orientations should be calculated, and angles describing the range of motion should be extracted from this matrix, a method referred to as the matrical approach. As the matrical approach is less straightforward to implement, it is of interest to identify situations in which the vectorial approach leads to insubstantial errors. In this study, the vectorial approach was compared to the matrical approach, and theoretical justification was given for situations in which the vectorial approach can reasonably be used. The main findings are that the vectorial approach can be used if (1) the motion is planar (Woltring HJ. 1994. 3-D attitude representation of human joints: a standardization proposal. J Biomech 27(12): 1399–1414), (2) the angles between the final and the initial orientation are small (Woltring HJ. 1991. Representation and calculation of 3-D joint movement. Hum Mov Sci 10(5): 603–616), (3) the angles between the initial orientation of the distal segment and the proximal segment are small and finally (4) when only one large angle occurs between the initial orientation of the distal segment and the proximal segment and the angle sequence is chosen in such a way that this large angle occurs on the first axis of rotation. These findings provide specific criteria to consider when choosing the angle sequence to use for movement analysis.  相似文献   

13.
A technique is described and tested for mapping the sensitivities and preferred directions of motion at different locations within the receptive fields of direction-selective motion-detecting visual neurons. The procedure is to record the responses to a number of visual stimuli, each stimulus presentation consisting of a set of short, randomly-oriented, moving bars arranged in a square grid. Each bar moves perpendicularly to its long axis. The vector describing the sensitivity and preferred direction of motion at each grid location is obtained as a sum of the unit vectors defining the directions of motion of the bars in each of the stimuli at that location, weighted by the strengths of the corresponding responses. The resulting vector field specifies the optimum flow field for the neuron. The advantage of this technique over the conventional approach of probing the receptive field sequentially at each grid location is that the parallel nature of the stimulus is sensitive to nonlinear interactions (such as shunting inhibition for mutual facilitation) between different regions of the visual field. The technique is used to determine accurately the motion receptive fields of direction-selective motion detecting neurons in the optic lobes of insects. It is potentially applicable to motion-sensitive neurons with highly structured receptive fields, such as those in the optic tectum of the pigeon or in area MST of the monkey.  相似文献   

14.
A wide variety of nano-biotechnological applications are being developed for nanoparticles based on in vitro diagnostic and imaging systems. Some of these systems allow highly sensitive detection of molecular biomarkers. Frequently, the very low concentration of the biomarkers makes very difficult the mathematical simulation of the motion of nanoparticles based on classical, partial differential equations. We address the issue of incubation times for low concentration systems using Monte Carlo simulations. We describe a mathematical model and computer simulation of Brownian motion of nanoparticle–bioprobe–polymer contrast agent complexes and their hybridisation to immobilised targets. We present results for the dependence of incubation times on the number of particles available for detection, and the geometric layout of the DNA-detection assay on the chip.  相似文献   

15.
16.
17.
Direct numerical simulations of the mechanics of a single red blood cell (RBC) were performed by considering the nonuniform natural state of the elastic membrane. A RBC was modeled as an incompressible viscous fluid encapsulated by an elastic membrane. The in-plane shear and area dilatation deformations of the membrane were modeled by Skalak constitutive equation, while out-of-plane bending deformation was formulated by the spring model. The natural state of the membrane with respect to in-plane shear deformation was modeled as a sphere ( \(\alpha =0\) ), biconcave disk shape ( \(\alpha =1\) ) and their intermediate shapes ( \(0<\alpha <1\) ) with the nonuniformity parameter \(\alpha \) , while the natural state with respect to out-of-plane bending deformation was modeled as a flat plane. According to the numerical simulations, at an experimentally measured in-plane shear modulus of \(2.5\times 10^{-6}\,\hbox {N}/\hbox {m}\) and an out-of-plane bending rigidity of \(2.0\times 10^{-19}\,\hbox {N}\cdot \hbox {m}\) of the cell membrane, the following results were obtained. (i) The RBC shape at equilibrium was biconcave discoid for \(\alpha >0.22\) and cupped otherwise; (ii) the experimentally measured fluid shear stress at the transition between tumbling and tank-treading motions under shear flow was reproduced for \(0.05<\alpha <0.34\) ; (iii) the elongation deformation of the RBC during tank-treading motion from the simulation was consistent with that from in vitro experiments, irrespective of the \(\alpha \) value. Based on our RBC modeling, the three phenomena (i), (ii), and (iii) were mechanically consistent for \(0.22<\alpha <0.34\) . The condition \(0.05<\alpha <0.22\) precludes a biconcave discoid shape at equilibrium (i); however, it gives appropriate fluid shear stress at the motion transition under shear flow (ii), suggesting that a combined effect of \(\alpha \) and the natural state with respect to out-of-plane bending deformation is necessary for understanding details of the RBC mechanics at equilibrium. Our numerical results demonstrate that moderate nonuniformity in a membrane’s natural state with respect to in-plane shear deformation plays a key role in RBC mechanics.  相似文献   

18.
1. The developmental pattern and effect of cortisone on acid beta-galactosidase and neutral beta-galactosidase were studied in postnatal rats by a recently proposed method for their independent determination. 2. After birth the acid beta-galactosidase activity increases in the ileum, whereas it decreases slightly in the jejunum. On day 16 after birth the activity in the ileum decreases and in 20-day-old rats activity in both parts of the intestine decreases to adult values. In suckling animals the activity in the ileum exceeds the jejunal activity severalfold and in adult animals the activity in the jejunum is slightly higher than that in the ileum. 3. Neutral beta-galactosidase activity is high after birth and decreases in both jejunum and ileum after day 20 after birth. In 12-20-day-old rats activity in both parts is essentially the same, but in adult animals jejunal activity exceeds ileal activity four-to five-fold. 4. Cortisone (0.5, 2.0 or 5.0mg/100g body wt. daily for 4 days) does not influence the activity of either enzyme in 60-day-old rats. Acid beta-galactosidase activity is decreased after cortisone treatment in 8-, 12-, 16-and 18-day-old rats, with sensitivity to cortisone increasing with the approach of weaning. No effect of cortisone on acid beta-galactosidase is seen in 8-day-old rats. Neutral beta-galactosidase activity is increased in the ileum of 8-, 12-, 16- and 18-day old rats, but only in the jejunum of 8-and 12-day-old rats.  相似文献   

19.
Organisms that move along helical trajectories change their net direction of motion largely by changing the direction, with respect to the body of the organism, of their rotational velocity (Crenshaw and Edelstein-Keshet, 1993,Bull. math. Biol. 55, 213–230). This paper demonstrates that an organism orients to a stimulus field, such as a chemical concentration gradient or a ray of light, if the components of its rotational velocity, with respect to the, body of the organism, are simple functions of the stimulus intensity encountered by the organism. For example, an organism can orient to a chemical concentration gradient if the rate at which it rotates around its anterior-posterior axis is proportional to the chemical concentration it encounters. Such an orientation can be either positive or negative. Furthermore, it is true taxis—orientation of the axis of helical motion is direct. It is neither a kinesis nor a phobic response—there is no random component to this mechanism of orientation.  相似文献   

20.
When motion is isolated from form cues and viewed from third-person perspectives, individuals are able to recognize their own whole body movements better than those of friends. Because we rarely see our own bodies in motion from third-person viewpoints, this self-recognition advantage may indicate a contribution to perception from the motor system. Our first experiment provides evidence that recognition of self-produced and friends' motion dissociate, with only the latter showing sensitivity to orientation. Through the use of selectively disrupted avatar motion, our second experiment shows that self-recognition of facial motion is mediated by knowledge of the local temporal characteristics of one's own actions. Specifically, inverted self-recognition was unaffected by disruption of feature configurations and trajectories, but eliminated by temporal distortion. While actors lack third-person visual experience of their actions, they have a lifetime of proprioceptive, somatosensory, vestibular and first-person-visual experience. These sources of contingent feedback may provide actors with knowledge about the temporal properties of their actions, potentially supporting recognition of characteristic rhythmic variation when viewing self-produced motion. In contrast, the ability to recognize the motion signatures of familiar others may be dependent on configural topographic cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号