首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The monolayer technique has been used to study the transfer of [14C]phosphatidylinositol from the monolayer to phosphatidylcholine vesicles. An equivalent transfer rate was found for egg phosphatidylcholine, dioleoylphosphatidylcholine, dielaidoylphosphatidylcholine and dipalmitoylphosphatidylcholine. A reduced transfer rate was found for a shorter-chain derivative, dimyristoylphosphatidylcholine, and for species with two polyunsaturated fatty acid chains such as dilinoleoylphosphatidylcholine, diheptadecadienoylphosphatidylcholine, dilinolenoylphosphatidylcholine and diether and dialkyl derivatives. No activity was found for 1,3-dipalmitoylphosphatidylcholine. The presence of up to 5 mol% phosphatidylinositol in egg phosphatidylcholine vesicles had no effect on the transfer rate. Introduction of more than 5 mol% phosphatidylinositol or phosphatidic acid into the phosphatidylcholine vesicles gradually decreased the rate of phosphatidylinositol transfer from the monolayer. 20 mol% acidic phospholipid was nearly completely inhibitory. Transfer experiments between separate monolayers of phosphatidylcholine and phosphatidylinositol showed that the protein-bound phosphatidylcholine is readily exchanged for phosphatidylinositol, but the protein-bound phosphatidylinositol exchange for phosphatidylcholine occurs at a 20-times lower rate. The release of phosphatidylinositol is dependent on the lipid composition and the concentration of charged lipid in the acceptor membrane, but also on the ratio between donor and acceptor membranes. The main transfer protein from bovine brain which transfer phosphatidylinositol and phosphatidylcholine transfers also phosphatidylglycerol, but not phosphatidylserine or phosphatidic acid. The absence of significant changes in the surface pressure indicate that the phosphatidylinositol and phosphatidylcholine transfer is not accompanied by net mass transfer.  相似文献   

2.
The role of methionine residues in the interaction of the phosphatidylcholine transfer protein from bovine liver with phospholipid vesicles was investigated by specific modification of these residues with iodoacetamide. The modified protein was digested with cyanogen bromide in order to determine which methionine residues had become resistant to this cleavage. Automated Edman degradation on the digest indicated that after 72 h of reaction, Met-1 was modified for 80%, Met-73 for 50%, Met-109 for 20%, whilst Met-173 and Met-203 were found to be unmodified. This distinct modification did not result in any loss of phosphatidylcholine transfer activity. The interaction of the phosphatidylcholine transfer protein with phospholipid vesicles was investigated by making use of electron spin resonance spectroscopy. The interaction of unmodified protein with vesicles composed of phosphatidylcholine/phosphatidic acid/spin-labeled phosphatidylethanolamine (79:16:5, mol%) or composed of phosphatidylserine/spin-labeled phosphatidylethanolamine (95:5, mol%), gave an increase of about 50% in the rotation correlation time. A similar increase was observed with the modified protein. This interaction was further investigated by labeling Met-1 and Met-73 in the transfer protein with iodoacetamidoproxyl spin-label. Spin-labeling did not inactivate the transfer protein. In addition, the electron spin resonance spectra of the spin-labeled protein were not affected upon addition of vesicles composed of phosphatidylcholine/phosphatidic acid (80:20, mol%). These experiments strongly suggest that Met-1 and Met-73 are not part of the site that interacts with the membrane.  相似文献   

3.
ESR spectrometry has been used to study fatty acid spin-labeled phosphatidylcholine exchange from single bilayer donor vesicles to various acceptor systems, such as intact or differently treated mitochondria, phospholipid multilamellar vesicles or single bilayer vesicles. This exchange is catalyzed by soluble non-specific rat liver protein, first investigated by Bloj and Zilversmit in 1977 (J. Biol. Chem. 252, 1613--1619). Non-catalyzed phosphatidylcholine exchange has also been studied. Full inhibition of both mechanisms occurs with lipid-depleted acceptor mitochondria, while N-ethylmaleimide-treated mitochondria behave as good acceptors during catalyzed exchange but are in no way effective during spontaneous exchange. Non-catalyzed exchange does not take place with phospholipase D-treated mitochondria as acceptors, while the pure catalyzed mechanism is inhibited by 28%. Neither multilamellar nor single bilayer phospholipid vesicles exchange spin-labeled phosphatidylcholine in the absence of protein, the former being a poorer acceptor system than the latter during catalyzed exchange, when this activity is 31 and 80%, respectively, of that of intact mitochondria. The hypothesis is made that the spontaneous mechanism is active among intact natural membranes and could be of some importance in vivo. Furthermore, the biomembrane protein moiety is assumed to be involved in the catalyzed exchange more as a phospholipid spacer than as a binder between the exchange protein and the membrane involved. Phospholipids, on the contrary, appear to be important for both functions.  相似文献   

4.
ESR spectrometry has been used to study fatty acid spin-labeled phosphatidylcholine exchange from single bilayer donor vesicles to various acceptor systems, such as intact or differently treated mitochondria, phospholipid multilamellar vesicles or single bilayer vesicles. This exchange is catalyzed by soluble non-specific rat liver protein, first investigated by Bloj and Zilversmit in 1977 (J. Biol. Chem. 252, 1613–1619). Non-catalyzed phosphatidylcholine exchange has also been studied. Full inhibition of both mechanisms occurs with lipid-depleted acceptor mitochondria, while N-ethylmaleimide-treated mitochondria behave as good acceptors during catalyzed exchange but are in no way effective during spontaneous exchange. Non-catalyzed exchange does not take place with phospholipase D-treated mitochondria as acceptors, while the pure catalyzed mechanism is inhibited by 28%. Neither multilamellar nor single bilayer phospholipid vesicles exchange spin-labeled phosphatidylcholine in the absence of protein, the former being a poorer acceptor system than the latter during catalyzed exchange, when this activity is 31 and 80%, respectively, of that of intact mitochondria. The hypothesis is made that the spontaneous mechanism is active among intact natural membranes and could be of some importance in vivo. Furthermore, the biomembrane protein moiety is assumed to be involved in the catalyzed exchange more as a phospholipid spacer than as a binder between the exchange protein and the membrane involved. Phospholipids, on the contrary, appear to be important for both functions.  相似文献   

5.
A new, simple and versatile method to measure phospholipid transfer has been developed, based on the use of a fluorescent phospholipid derivative, 1-acyl-2-parinaroylphosphatidylcholine. Vesicles prepared of this phospholipid show a low level of fluorescence due to interactions between the fluorescent groups. When phospholipid transfer protein and vesicles consisting of non-labeled phosphatidylcholine are added the protein catalyzes an exchange of phosphatidylcholine between the labeled donor and non-labeled acceptor vesicles. The insertion of labeled phosphatidylcholine into the non-labeled vesicles is accompanied by an increase in fluorescence due to abolishment of self-quenching. The initial rate of fluorescence enhancement was found to be proportional to the amount of transfer protein added. This assay was applied to determine the effect of membrane phospholipid composition on the activity of the phosphatidylcholine-, phosphatidylinositol- and non-specific phospholipid transfer proteins. Using acceptor vesicles of egg phosphatidylcholine and various amounts of phosphatidic acid it was observed that the rate of phosphatidylcholine transfer was either stimulated, inhibited or unaffected by increased negative charge depending on the donor to acceptor ratio and the protein used. In another set of experiments acceptor vesicles were prepared of phosphatidylcholine analogues in which the ester bonds were replaced with ether bonds or carbon-carbon bonds. Assuming that only a strictly coupled exchange between phosphatidylcholine and analogues gives rise to the observed fluorescence increase, orders of substrate preference could be established for the phosphatidylcholine- and phosphatidylinositol transfer proteins.  相似文献   

6.
The ability of human plasma phospholipid transfer protein to transfer L-alpha-[14C]dipalmitoylphosphatidylcholine (DPPC) from donor vesicles to acceptor high-density lipoproteins (HDL) was examined, using vesicles of different compositions and sizes, and native or chemically modified HDL. Phosphatidylcholine (PC) transfer was inhibited by both cholesterol and sphingomyelin incorporation into egg-PC vesicles. On a molar basis, cholesterol inhibited transfer about 5-fold more than sphingomyelin; however, the effects of both lipids on the fluidity of the vesicle membrane (measured by fluorescence polarization of diphenylhexatriene), were closely correlated with their effects on PC transfer activity. Increase in vesicle size, and decrease in bilayer curvature, also reduced transfer: the largest vesicles had no transfer activity at all. Addition of phosphatidic acid up to 17 mol% had no effect on PC transfer. HDL apolipoprotein lysyl residues were chemically modified by reductive methylation, citraconylation, or acetoacetylation. The effects of modification on the apolipoprotein structure and on the HDL particle were assessed by intrinsic fluorescence measurements, SDS-polyacrylamide gel electrophoresis patterns, and gel chromatography. Only acetoacetylation significantly affected any of these parameters. The ability of HDL to accept PC in the absence of phospholipid transfer protein decreased with an increase in apolipoprotein negative charge while, in the presence of phospholipid transfer protein, the acceptor ability of HDL increased up to 1.7-fold with an initial increase in negative charge and then decreased, ultimately to zero, upon extensive modification.  相似文献   

7.
Phospholipid transfer protein catalyzes the transfer of phospholipids between bilayer membranes. A general model is developed for describing the kinetics of this process. While previous models derive detailed expressions only for the initial rate of transfer from donor to acceptor membranes, this model takes into account donor-to-donor, acceptor-to-acceptor, and acceptor-to-donor transfers, in addition to the usual donor-to-acceptor transfer. The apparent rate of transfer along any of these specific routes is given as the product of the total rate of transfer (the sum of the rates of transfer along all four routes) and a probability function uniquely defined for each route. The model explains adequately the effects of membrane concentration on phospholipid transfer activity as well as the consequences of varying membrane surface charge and size. Using bovine liver phosphatidylcholine transfer protein, the model is applied to the kinetic analysis of phosphatidylcholine transfer between two populations of small unilamellar vesicles. Rates of protein-catalyzed phosphatidylcholine transfer between vesicles with identical phosphatidic acid content (2 or 6 mol%) are determined experimentally as a function of total vesicle concentration to calculate apparent dissociation constants and maximum rates of transfer; apparent rates of transfer between various combinations of vesicles containing 2 or 6 mol% phosphatidic acid are then deduced from the derived velocity expression. Reasonably good agreement is seen between theoretical apparent rate-vesicle concentration relationships and those measured experimentally. The results support the general treatment of the kinetics of protein-mediated phospholipid transfer and permit an estimation of useful kinetic parameters.  相似文献   

8.
Cholesterol transfer from small and large unilamellar vesicles   总被引:3,自引:0,他引:3  
The rates of transfer of [14C]cholesterol from small and large unilamellar cholesterol/egg yolk phosphatidylcholine vesicles to a common vesicle acceptor were compared at 37 degrees C. The rate of exchange of cholesterol between vesicles of identical cholesterol concentrations (20 mol%) did not differ from the rate of transfer from donor vesicles containing 20 mol% cholesterol to egg yolk PC vesicles. Further, the rate of transfer of [14C]cholesterol from vesicles containing 15 mol% dicetyl phosphate (to confer a negative charge) was not different from the rate of transfer from neutral vesicles. However, the half-time for transfer of [14C]cholesterol from large unilamellar donor vesicles was about 5-times greater (10.2 h, 80 nm diameter) than from small unilamellar vesicles (2.3 h, 23 nm diameter). These data suggest that increased curvature in small unilamellar vesicles reduces cholesterol-nearest neighbor interactions to allow a more rapid transfer of cholesterol into the aqueous phase.  相似文献   

9.
Phosphatidylcholine (PC) transfer activity was found in human erythrocyte hemolysate. The transfer activity was assayed by the ESR peak height increase when spin-labeled PC vesicles were incubated with egg yolk PC vesicles. The transfer activity was isolated from hemoglobin by an ion exchange chromatography followed by gel filtration. The partial purification resulted in a 405-fold increase in the specific transfer activity compared with that of the hemolysate. The molecular weight of the PC transfer protein was estimated to be 23,000 by gel filtration. The transfer activity was inactivated by heat-treatment at 75 degrees C for 10 min. Phosphatidylserine vesicles strongly inhibited the activity. Half-maximal inhibition occurred on addition of 0.24 mol% of phosphatidylserine vesicles to the incubation mixture. Ca2+ restored the activity. The transfer protein was quite similar to the PC transfer protein obtained from bovine liver cytosol.  相似文献   

10.
Investigations were carried out on the influence of phospholipid composition of model membranes on the processes of spontaneous lipid transfer between membranes. Acceptor vesicles were prepared from phospholipids extracted from plasma membranes of control and ras-transformed fibroblasts. Acceptor model membranes with manipulated levels of phosphatidylethanolamine (PE), sphingomyelin and phosphatidic acid were also used in the studies. Donor vesicles were prepared of phosphatidylcholine (PC) and contained two fluorescent lipid analogues, NBD-PC and N-Rh-PE, at a self-quenching concentration. Lipid transfer rate was assessed by measuring the increase of fluorescence in acceptor membranes due to transfer of fluorescent lipid analogues from quenched donor to unquenched acceptor vesicles. The results showed that spontaneous NBD-PC transfer increased upon fluidization of acceptor vesicles. In addition, elevation of PE concentration in model membranes was also accompanied by an increase of lipid transfer to all series of acceptor vesicles. The results are discussed with respect to the role of lipid composition and structural order of cellular plasma membranes in the processes of spontaneous lipid exchange between membrane bilayers.  相似文献   

11.
The rate of transfer of spin-labeled phospholipid from donor vesicles of sonicated 1-acyl-2-(10-doxylstearoyl)-sn-glycero-3-phosphocholine to other vesicle was determined as a function of content of cytochrome P-450 and the phosphatidylcholine/phosphatidylethanolamine ratio in the acceptor vesicles. The transfer rate was measured as an increase in intensity that resulted from a decrease in the line width in the EPR spectrum of the spin-labeled phospholipids as they was transferred to the nonspin-labeled acceptor vesicles. A lower transfer rate was observed for acceptor vesicles of pure egg phosphatidylcholine vesicles than for vesicles for a mixture of phosphatidylcholine and phosphatidylethanolamine. The presence of cytochrome P-450 in the acceptor vesicles further increased the transfer rate. Those alterations in the mole ratios of the protein and the two phospholipids that made the bilayer of the reconstituted vesicles more like the membrane of the endoplasmic reticulum resulted in an increase in phospholipid-transfer rate. The mole ratios of components that produce high phospholipid-transfer rates were similar to those that in an earlier study produced a 31P-NMR spectrum characteristic of a nonbilayer phase. These findings suggest that, in the membrane of the endoplasmic reticulum, phospholipid exchange may be an important element in function and interaction with other intracellular organelles.  相似文献   

12.
Bovine liver phospholipid exchange protein catalyzes the transfer of phosphatidylcholine between donor and acceptor populations of single bilayer phospholipid vesicles. In comparing egg and dimyristoylphosphatidylcholine vesicles, larger transfer rates are found for the unsaturated phospholipid. The bidirectional transfer rates measured from donor to acceptor and from acceptor to donor, are equivalent, suggesting that the protein facilitates an exchange rather than a net transfer of phosphatidylcholine.  相似文献   

13.
The rate of transfer of spin-labeled phospholipid from donor vesicles of sonicated 1-acyl-2-(10-doxylstearoyl)-sn-glycero-3-phosphocholine to other vesicles was determined as a function of content of cytochrome P-450 and the phosphatidylcholine/phosphatidylethanolamine ratio in the acceptor vesicles. The transfer rate was measured as an increase in intensity that resulted from a decrease in the line width in the EPR spectrum of the spin-labeled phospholipids as they were transferred to the nonspin-labeled acceptor vesicles. A lowe transfer rate was observed for acceptor vesicles of pure egg phosphatidylcholine vesicles than for vesicles of a mixture of phosphatidylcholine and phosphatidylethanolamine. The presence of cytochrome P-450 in the acceptor vesicles further increased the transfer rate. Those alterations in the mole ratios of the protein and the two phospholipids that made the bilayer of the reconstituted vesicles more like the membrane of the endoplasmic reticulum resulted in an increase in phospholipid-transfer rate. The mole ratios of components that produce high phospholipid-transfer rates were similar to those that in an earlier study produced a 31P-NMR spectrum characteristic of a nonbilayer phase. These findings suggest that, in the membrane of the endoplasmic reticulum, phospholipid exchange may be an important element in function and interaction with other intracellular organelles.  相似文献   

14.
15.
A J Schroit  J W Madsen 《Biochemistry》1983,22(15):3617-3623
An efficient method for the synthesis and purification of a variety of iodinated phospholipid analogues is described. 1-Acyl-2-[[[3-(3-[125I]iodo-4-hydroxyphenyl)- propionyl]amino]caproyl]phosphatidylcholine (125I-PC) was prepared by alkylation of 1-acyl-2-(aminocaproyl)phosphatidylcholine with monoiodinated Bolton-Hunter reagent. 125I-Labeled phosphatidic acid, phosphatidylethanolamine, and phosphatidylserine were produced from 125I-PC by phospholipase D catalyzed base exchange in the presence of ethanol-amine or L-serine. All of these lipid analogues transferred readily from donor vesicles into recipient membranes. When an excess of acceptor vesicles was mixed with a population of donor vesicles containing the iodinated analogues, approximately 50% of the 125I-labeled lipids transferred to the acceptor vesicle population. In addition, under appropriate incubation conditions, these lipids were observed to transfer from vesicles to mammalian cells. Autoradiographic analysis of 125I-labeled lipids extracted from the cells after incubation with vesicles at 2 degrees C for 60 min revealed that a large proportion of the 125I-labeled phosphatidic acid was metabolized to 125I-labeled diglyceride and 125I-labeled phosphatidylcholine, whereas no metabolism of exogenously supplied 125I-labeled phosphatidylethanolamine or 125I-labeled phosphatidylcholine could be detected.  相似文献   

16.
The interaction of the specific sugar residue in ginsenosides with egg phosphatidylcholine vesicles was investigated by ESR spectrometry using phosphatidic acid spin-labeled at the polar head groups. Ginsenoside-Rc, which has an alpha-L-arabinofuranose residue and agglutinability toward egg yolk phosphatidylcholine vesicles (Fukuda, K. et al. (1985) Biochim. Biophys. Acta 820, 199-206), caused the restriction of the segmental motion of spin-labeled phosphatidic acid in egg phosphatidylcholine vesicles, indicating that the saponin interacted with the polar head groups of vesicles. Other ginsenosides-Rb2, Rb1, Rd and p-nitrophenyl glycoside derivatives which have less or no agglutinability were also investigated in the same manner. Only ginsenoside-Rb2 and p-nitrophenyl alpha-L-arabinofuranoside which have the specific sugar residue (arabinose) showed a strong interaction with the polar head groups of vesicles. To gain an insight into the mechanism of agglutination by ginsenoside-Rc, the interaction with the fatty acyl groups was also studied by using phosphatidylcholine spin-labeled at the fatty acyl groups. Ginsenoside-Rc increased the order parameter of the spin-labeled phosphatidylcholine, indicating that the saponin was inserted into lipid bilayers. In other saponins investigated, only ginsenoside-Rb2 interacted with the fatty acyl part of vesicles. The process of expression of agglutination by ginsenoside-Rc was discussed on the basis of the ESR studies.  相似文献   

17.
Protein-mediated transfer of phosphatidylcholine (PC) by bovine liver phosphatidylcholine transfer protein (PC-TP) was examined using a vesicle-vesicle assay system. Donor and acceptor membranes were prepared from Escherichia coli phospholipids and limiting amounts of egg yolk PC. PC transfer between vesicles of E. coli lipid/egg PC was markedly higher than transfer of PC from vesicles of E. coli lipid/egg PC to vesicles of E. coli lipid. Kinetic parameters of the interaction between PC-TP and E. coli lipid vesicles with or without PC was investigated. The apparent dissociation constants of the complex formed between PC-TP and these vesicles were determined kinetically and from double-reciprocal plots of intrinsic PC-TP fluorescence intensity increase versus vesicle concentration. The magnitude of the dissociation constant decreased as the PC content of the vesicles increased from 0 to 5 mol%. In addition, kinetic analysis revealed that the presence of PC in acceptor vesicles increased both the association and dissociation of PC-TP from vesicles. The effect of membrane PC molecules on transfer rates was examined using bis-phosphatidylcholine, a dimeric PC molecule which is not transferred by PC-TP. Rates of PC transfer to acceptor vesicles comprised of E. coli lipid/bis-PC were virtually identical to rates observed with acceptors vesicles prepared from E. coli lipid. The results suggest that transfer of PC by PC-TP is enhanced only when insertion of protein-bound PC occurs concurrently with the extraction of a molecule of membrane PC, i.e., a concerted, one-step catalytic mechanism for phospholipid exchange.  相似文献   

18.
The mode of action of the phosphatidylcholine exchange protein from bovine liver has been studied by using unilamellar vesicles and multilamellar liposomes both of which membranes contain phosphatidylcholine and phosphatidic acid. The protein-mediated exchange of phosphatidylcholine between vesicles and liposomes fit the kinetic model presented in a previous study [V.D. Besselaar et al. (1975) Biochemistry, 1j, 1852]. Kinetic analysis of the rates of exchange indicate that the apparent dissociation constant of the exchange protein-vesicle complex decreases with an increasing phosphatidic acid content of the vesicles. Both vesicles and liposomes of 10 mol% phosphatidic acid show the same dissociation constant; on the other hand, both the formation and the disruption of the protein-membrane complex was 50--100-times higher for the vesicles than for the liposomes. This implies that the exchange protein can discriminate between vesicles and liposomes. Equilibrium gel chromatography of a column of Bio Gel A-5m confirmed that the exchange protein binds more strongly to vesicles of an increased phosphatidic acid content. The protein-mediated exchange of phosphatidylcholine in the vesicle-liposome system demonstrates a pH optimum at 4.0 to 5.5. The kinetic analysis at pH 5.0 as compared to pH 7.4 indicates that the enhanced exchange at pH 5.0 can solely be accounted for by altered interaction of the exchange protein with the liposomes.  相似文献   

19.
A lipid transfer protein, purified from bovine brain (23.7 kDa, 208 amino acids) and specific for glycolipids, has been used to develop a fluorescence resonance energy transfer assay (anthrylvinyl-labeled lipids; energy donors and perylenoyl-labeled lipids; energy acceptors) for monitoring the transfer of lipids between membranes. Small unilamellar vesicles composed of 1 mol% anthrylvinyl-galactosylceramide, 1.5 mol% perylenoyl-triglyceride, and 97.5% 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) served as donor membranes. Acceptor membranes were 100% POPC vesicles. Addition of glycolipid transfer protein to mixtures of donor and acceptor vesicles resulted in increasing emission intensity of anthrylvinyl-galactosylceramide and decreasing emission intensity of the nontransferable perylenoyl-triglyceride as a function of time. The behavior was consistent with anthrylvinyl-galactosylceramide being transferred from donor to acceptor vesicles. The anthrylvinyl and perylenoyl energy transfer pair offers advantages over frequently used energy transfer pairs such as NBD and rhodamine. The anthrylvinyl emission overlaps effectively the perylenoyl excitation spectrum and the fluorescence parameters of the anthrylvinyl fluorophore are nearly independent of the medium polarity. The nonpolar fluorophores are localized in the hydrophobic region of the bilayer thus producing minimal disturbance of the bilayer polar region. Our results indicate that this method is suitable for assay of lipid transfer proteins including mechanistic studies of transfer protein function.  相似文献   

20.
B Mütsch  N Gains  H Hauser 《Biochemistry》1986,25(8):2134-2140
The kinetics of lipid transfer from small unilamellar vesicles as the donor to brush border vesicles as the acceptor have been investigated by following the transfer of radiolabeled or spin-labeled lipid molecules in the absence of exchange protein. The labeled lipid molecules studied were various radiolabeled and spin-labeled phosphatidylcholines, radiolabeled cholesteryl oleate, and a spin-labeled cholestane. At a given temperature and brush border vesicle concentration similar pseudo-first-order rate constants (half-lifetimes) were observed for different lipid labels used. The lipid transfer is shown to be an exchange reaction leading to an equal distribution of label in donor and acceptor vesicles at equilibrium (time t----infinity). The lipid exchange is a second-order reaction with rate constants being directly proportional to the brush border vesicle concentration. The results are only consistent with a collision-induced exchange of lipid molecules between small unilamellar phospholipid vesicles and brush border vesicles. Other mechanisms such as collision-induced fusion or diffusion of lipid monomers through the aqueous phase are negligible at least under our experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号