首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shangary S  Johnson DE 《Biochemistry》2002,41(30):9485-9495
Overexpression of Bcl-2, an anti-apoptotic oncoprotein, is commonly observed in a variety of human malignancies and is associated with resistance to chemotherapy and radiotherapy. Although the precise mechanism of Bcl-2 action remains elusive, current evidence indicates that Bcl-2 inhibits apoptosis by binding and inhibiting pro-apoptotic molecules such as Bax. Therefore, agents that disrupt the ability of Bcl-2, or other anti-apoptotic molecules, to bind to pro-apoptotic molecules may have therapeutic value. Several studies have shown that the BH3 domains of Bcl-2 and Bax are critically important for Bax/Bcl-2 heterodimerization. In this report, we designed and synthesized peptides based on the BH3 domains of three distinct Bcl-2 family members, Bcl-2, Bax and Bad. In vitro interaction assays were used to compare the abilities of the different peptides to inhibit Bax/Bcl-2 and Bax/Bcl-x(L) heterodimerization, as well as Bcl-2 and Bax homodimerization. Bax BH3 peptide (20-amino acids) potently inhibited both Bax/Bcl-2 and Bax/Bcl-x(L) interactions, exhibiting IC(50) values of 15 and 9.5 microM, respectively. The Bad BH3 peptide (21 amino acids) was slightly more potent than Bax BH3 at inhibiting Bax/Bcl-x(L) but failed to disrupt Bax/Bcl-2. Bcl-2 BH3 peptide (20-amino acids) was inactive toward Bax/Bcl-2 and had only a weak inhibitory effect on Bax/Bcl-x(L) heterodimerization. All three BH3 peptides failed to significantly inhibit homodimerization of Bcl-2 or Bax. Consistent with its ability to disrupt Bax/Bcl-2 heterodimerization, Bax BH3 peptide was able to overcome Bcl-2 overexpression and induce cytochrome c release from mitochondria of Bcl-2-overexpressing Jurkat T leukemic cells. Bad BH3 peptide, while potently inducing cytochrome c release in wild-type Jurkat cells, only partially overcame the effects of Bcl-2 overexpression. Bcl-2 BH3 failed to induce cytochrome c release, even in wild-type cells. Delivery of the Bax BH3 and Bad BH3 peptides into wild-type Jurkat cells induced comparable levels of cell death. In cells overexpressing Bcl-2, the potency of Bax BH3 peptide was similar to that seen in wild-type cells, while the efficacy of Bad BH3 peptide was reduced. By contrast, in Bcl-x(L)-overexpressing cells, Bad BH3 exhibited greater cell-killing activity than Bax BH3. The Bcl-2 BH3 peptide and a mutant Bax BH3 peptide had no appreciable effect on Jurkat cells. Together, our data suggest that agents based on the Bax BH3 domain may have therapeutic value in cancers overexpressing Bcl-2, while agents based on the BH3 domain of Bad may be more useful for tumors overexpressing Bcl-x(L).  相似文献   

2.
D C Huang  J M Adams    S Cory 《The EMBO journal》1998,17(4):1029-1039
Bcl-2 and close homologues such as Bcl-xL promote cell survival, while other relatives such as Bax antagonize this function. Since only the pro-survival family members possess a conserved N-terminal region denoted BH4, we have explored the role of this amphipathic helix for their survival function and for interactions with several agonists of apoptosis, including Bax and CED-4, an essential regulator in the nematode Caenorhabditis elegans. BH4 of Bcl-2 could be replaced by that of Bcl-x without perturbing function but not by a somewhat similar region near the N-terminus of Bax. Bcl-2 cell survival activity was reduced by substitutions in two of ten conserved BH4 residues. Deletion of BH4 rendered Bcl-2 (and Bcl-xL) inactive but did not impair either Bcl-2 homodimerization or ability to bind to Bax or five other pro-apoptotic relatives (Bak, Bad, Bik, Bid or Bim). Hence, association with these death agonists is not sufficient to promote cell survival. Significantly, however, Bcl-xL lacking BH4 lost the ability both to bind CED-4 and antagonize its pro-apoptotic activity. These results favour the hypothesis that the BH4 domain of pro-survival Bcl-2 family members allows them to sequester CED-4 relatives and thereby prevent apoptosis.  相似文献   

3.
Bax is a pro-apoptotic Bcl-2 family protein that regulates programmed cell death through homodimerization and through heterodimerization with Bcl-2. Bax alpha is encoded by six exons and undergoes alternative splicing. Bax kappa, a splice variant of Bax with conserved BH1, BH2 and BH3 binding domains and a C-terminal transmembrane domain (TM), but with an extra 446-bp insert between exons 1 and 2 leading to loss of an N-terminal ART domain, was identified from an ischemic rat brain cDNA library. Expression of Bax kappa mRNA and protein was up-regulated in hippocampus after cerebral ischemic injury. The increased Bax kappa mRNA was distributed mainly in selectively vulnerable hippocampal CA1 neurons that are destined to die after global ischemia. Overexpression of Bax kappa protein in HN33 mouse hippocampal neuronal cells induced cell death, which was partially abrogated by co-overexpression of Bcl-2. Moreover, co-overexpression of Bax kappa and Bax alpha increased HN33 cell death. The results suggest that the Bax kappa may have a role in ischemic neuronal death.  相似文献   

4.
A novel Bax-associating protein, named MAP-1 (Modulator of Apoptosis), has been identified in a yeast two-hybrid screen. MAP-1 contains a BH3-like (BH: Bcl-2 homology) motif and mediates caspase-dependent apoptosis in mammalian cells when overexpressed. MAP-1 homodimerizes and associates with the proapoptotic Bax and the prosurvival Bcl-2 and Bcl-X(L) of the Bcl-2 family in vitro and in vivo in mammalian cells. Mutagenesis analyses revealed that the BH3-like domain in MAP-1 is not required for its association with Bcl-X(L) but is required for association with Bax and for mediating apoptosis. Interestingly, in contrast to other Bax-associating proteins such as Bcl-X(L) and Bid, which require the BH3 and BH1 domains of Bax, respectively, for binding, the binding of MAP-1 to Bax appears to require all three BH domains (BH1, BH2, and BH3) of Bax, because point mutation of the critical amino acid in any one of these domains is sufficient to abolish its binding to MAP-1. These data suggest that MAP-1 mediates apoptosis through a mechanism that involves binding to Bax.  相似文献   

5.
The pro-apoptotic "BH3 domain-only" proteins of the Bcl-2 family (e.g. Bid and Bad) transduce multiple death signals to the mitochondrion. They interact with the anti-apoptotic Bcl-2 family members and induce apoptosis by a mechanism that requires the presence of at least one of the multidomain pro-apoptotic proteins Bax or Bak. Although the BH3 domain of Bid can promote the pro-apoptotic assembly and function of Bax/Bak by itself, other BH3 domains do not function as such. The latter point raises the question of whether, and how, these BH3 domains induce apoptosis. We show here that a peptide comprising the minimal BH3 domain from Bax induces apoptosis but is unable to stimulate the apoptotic activity of microinjected recombinant Bax. This relies on the inability of the peptide to directly induce Bax translocation to mitochondria or a change in its conformation. This peptide nevertheless interferes with Bax/Bcl-xL interactions in vitro and stimulates the apoptotic activity of Bax when combined with Bcl-xL. Similarly, a peptide derived from the BH3 domain of Bad stimulates Bax activity only in the presence of Bcl-xL. Thus, BH3 domains do not necessarily activate multidomain pro-apoptotic proteins directly but promote apoptosis by releasing active multidomain pro-apoptotic proteins from their anti-apoptotic counterparts.  相似文献   

6.
Interactions among Bcl-2 family proteins mediated by Bcl-2 homology (BH) regions transform apoptosis signals into actions. The interactions between BH3 region-only proteins and multi-BH region proteins such as Bax and Bcl-2 have been proposed to be the dominant interactions required for initiating apoptosis. Experimental evidence also suggests that both homo- and hetero-interactions are mediated primarily by the BH3 regions in all Bcl-2 family proteins and contribute to commitment to or inhibition of apoptosis. We found that a peptide containing the BH3 helix of Bax was not sufficient to activate recombinant Bax to permeabilize mitochondria. However, an extended peptide containing the BH3 helix and additional downstream sequences activated Bax to permeabilize mitochondria and liposomes. Bcl-2 inhibited the membrane-permeabilizing activity of peptide-activated Bax. This activity of Bcl-2 was inhibited by the extended but not the BH3-only peptide despite both peptides binding to Bcl-2 with similar affinity. Further, membrane-bound Bax activation intermediates directly activated soluble Bax further permeabilizing the membrane. Bcl-2 inhibited Bax auto-activation. We therefore propose that Bax auto-activation amplifies the initial death signal produced by BH3-only proteins and that Bcl-2 functions as an inhibitor of Bax auto-activation.  相似文献   

7.
Antiapoptotic Bcl-2 family proteins inhibit apoptosis in cultured cells by binding BH3 domains of proapoptotic Bcl-2 family members via a hydrophobic BH3 binding groove on the protein surface. We investigated the physiological importance of the BH3 binding groove of an antiapoptotic Bcl-2 protein in mammals in vivo by analyzing a viral Bcl-2 family protein. We show that the gamma-herpesvirus 68 (gammaHV68) Bcl-2 family protein (gammaHV68 v-Bcl-2), which is known to inhibit apoptosis in cultured cells, inhibits both apoptosis in primary lymphocytes and Bax toxicity in yeast. Nuclear magnetic resonance determination of the gammaHV68 v-Bcl-2 structure revealed a BH3 binding groove that binds BH3 domain peptides from proapoptotic Bcl-2 family members Bax and Bak via a molecular mechanism shared with host Bcl-2 family proteins, involving a conserved arginine in the BH3 peptide binding groove. Mutations of this conserved arginine and two adjacent amino acids to alanine (SGR to AAA) within the BH3 binding groove resulted in a properly folded protein that lacked the capacity of the wild-type gammaHV68 v-Bcl-2 to bind Bax BH3 peptide and to block Bax toxicity in yeast. We tested the physiological importance of this v-Bcl-2 domain during viral infection by engineering viral mutants encoding a v-Bcl-2 containing the SGR to AAA mutation. This mutation resulted in a virus defective for both efficient reactivation of gammaHV68 from latency and efficient persistent gammaHV68 replication. These studies demonstrate an essential functional role for amino acids in the BH3 peptide binding groove of a viral Bcl-2 family member during chronic infection.  相似文献   

8.
Background: The Bcl-2 family of proteins plays a key role in the regulation of apoptosis. Some family members prevent apoptosis induced by a variety of stimuli, whereas others promote apoptosis. Competitive dimerisation between family members is thought to regulate their function. Homologous domains within individual proteins are necessary for interactions with other family members and for activity, although the specific mechanisms might differ between the pro-apoptotic and anti-apoptotic proteins.Results: Using a cell-free system based on extracts of Xenopus eggs, we have investigated the role of the Bcl-2 homology domain 3 (BH3) from different members of the Bcl-2 family. BH3 domains from the pro-apoptotic proteins Bax and Bak, but not the BH3 domain of the anti-apoptotic protein Bcl-2, induced apoptosis in this system, as determined by the rapid activation of specific apoptotic proteases (caspases) and by DNA fragmentation. The apoptosis-inducing activity of the BH3 domains requires both membrane and cytosolic fractions of cytoplasm, involves the release of cytochrome c from mitochondria and is antagonistic to Bcl-2 function. Short peptides, corresponding to the minimal sequence of BH3 domains required to bind anti-apoptotic Bcl-2 family proteins, also trigger apoptosis in this system.Conclusions: The BH3 domains of pro-apoptotic proteins are sufficient to trigger cytochrome c release, caspase activation and apoptosis. These results support a model in which pro-apoptotic proteins, such as Bax and Bak, bind to Bcl-2 via their BH3 domains, inactivating the normal ability of Bcl-2 to suppress apoptosis. The ability of synthetic peptides to reproduce the effect of pro-apoptotic BH3 domains suggests that such peptides may provide the basis for engineering reagents to control the initiation of apoptosis.  相似文献   

9.
The B-cell CLL/lymphoma-2 (Bcl-2) family of proteins are important regulators of the intrinsic pathway of apoptosis, and their interactions, driven by Bcl-2 homology (BH) domains, are of great interest in cancer research. Particularly, the BH3 domain is of clinical relevance, as it promotes apoptosis through activation of Bcl-2-associated x protein (Bax) and Bcl-2 antagonist killer (Bak), as well as by antagonising the anti-apoptotic Bcl-2 family members. Although investigated extensively in vitro, the study of the BH3 domain alone inside cells is more problematic because of diminished secondary structure of the unconstrained peptide and a lack of stability. In this study, we report the successful use of a novel peptide aptamer scaffold – Stefin A quadruple mutant – to anchor and present the BH3 domains from Bcl-2-interacting mediator of cell death (Bim), p53 upregulated modulator of apoptosis (Puma), Bcl-2-associated death promoter (Bad) and Noxa, and demonstrate its usefulness in the study of the BH3 domains in vivo. When expressed intracellularly, anchored BH3 peptides exhibit much the same binding specificities previously established in vitro, however, we find that, at endogenous expression levels, Bcl-2 does not bind to any of the anchored BH3 domains tested. Nonetheless, when expressed inside cells the anchored PUMA and Bim BH3 α-helices powerfully induce cell death in the absence of efficient targeting to the mitochondrial membrane, whereas the Noxa helix requires a membrane insertion domain in order to kill Mcl-1-dependent myeloma cells. Finally, the binding of the Bim BH3 peptide to Bax was the only interaction with a pro-apoptotic effector protein observed in this study.  相似文献   

10.
PUMA Dissociates Bax and Bcl-X(L) to induce apoptosis in colon cancer cells   总被引:4,自引:0,他引:4  
PUMA is a BH3-only Bcl-2 family protein that plays an essential role in DNA damage-induced apoptosis. PUMA interacts with anti-apoptotic Bcl-2 and Bcl-X(L) and is dependent on Bax to induce apoptosis. In this study, we investigated how the interactions of PUMA with the antiapoptotic proteins coordinate with Bax to initiate apoptosis in HCT116 colon cancer cells. We found that Bcl-X(L) was most effective among several antiapoptotic proteins in suppressing PUMA-induced apoptosis and PUMA-dependent apoptosis induced by the DNA-damaging agent adriamycin. Mutant Bcl-X(L) that cannot interact with Bax was unable to protect cells from PUMA-mediated apoptosis. Knockdown of Bcl-X(L) by RNA interference significantly enhanced PUMA-mediated apoptosis in HCT116 cells but not in PUMA-knockout cells. Furthermore, Bax was found to be dissociated preferentially from Bcl-X(L) in HCT116 cells but not in the PUMA-knockout cells, in response to PUMA induction and adriamycin treatment. PUMA inhibited the association of Bax and Bcl-X(L) in vitro by directly binding to Bcl-X(L) through its BH3 domain. Finally, we found that wild-type Bax, but not mutant Bax deficient in either multimerization or mitochondrial localization, was able to restore PUMA-induced apoptosis in the BAX-knockout cells. Together, these results indicate that PUMA initiates apoptosis in part by dissociating Bax and Bcl-X(L), thereby promoting Bax multimerization and mitochondrial translocation.  相似文献   

11.
Release of apoptogenic proteins such as cytochrome c from mitochondria is regulated by pro- and anti-apoptotic Bcl-2 family proteins, with pro-apoptotic BH3-only proteins activating Bax and Bak. Current models assume that apoptosis induction occurs via the binding and inactivation of anti-apoptotic Bcl-2 proteins by BH3-only proteins or by direct binding to Bax. Here, we analyze apoptosis induction by the BH3-only protein Bim(S). Regulated expression of Bim(S) in epithelial cells was followed by its rapid mitochondrial translocation and mitochondrial membrane insertion in the absence of detectable binding to anti-apoptotic Bcl-2 proteins. This caused mitochondrial recruitment and activation of Bax and apoptosis. Mutational analysis of Bim(S) showed that mitochondrial targeting, but not binding to Bcl-2 or Mcl-1, was required for apoptosis induction. In yeast, Bim(S) enhanced the killing activity of Bax in the absence of anti-apoptotic Bcl-2 proteins. Thus, cell death induction by a BH3-only protein can occur through a process that is independent of anti-apoptotic Bcl-2 proteins but requires mitochondrial targeting.  相似文献   

12.
Using a Bax-dependent membrane-permeabilization assay, we show that peptides corresponding to the BH3 domains of Bcl-2 family "BH3-only" proteins have dual functions. Several BH3 peptides relieved the inhibition of Bax caused by the antiapoptotic Bcl-x(L) and/or Mcl-1 proteins, some displaying a specificity for either Bcl-x(L) or Mcl-1. Besides having this derepression function, the Bid and Bim peptides activated Bax directly and were the only BH3 peptides tested that could potently induce cytochrome c release from mitochondria in cultured cells. Furthermore, Bax activator molecules (cleaved Bid protein and the Bim BH3 peptide) synergistically induced cytochrome c release when introduced into cells along with derepressor BH3 peptides. These observations support a unified model of BH3 domain function, encompassing both positive and negative regulation of other Bcl-2 family members. In this model, the simple inhibition of antiapoptotic functions is insufficient to induce apoptosis unless a direct activator of Bax or Bak is present.  相似文献   

13.
A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-X(L), and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-X(L) and Mcl-1 and prevents their binding to fluorescently labeled Bak- or Bim-BH3 peptides in vitro. Using several approaches, we demonstrate that BH3-M6 is a pan-Bcl-2 antagonist that inhibits the binding of Bcl-X(L), Bcl-2, and Mcl-1 to multi-domain Bax or Bak, or BH3-only Bim or Bad in cell-free systems and in intact human cancer cells, freeing up pro-apoptotic proteins to induce apoptosis. BH3-M6 disruption of these protein-protein interactions is associated with cytochrome c release from mitochondria, caspase-3 activation and PARP cleavage. Using caspase inhibitors and Bax and Bak siRNAs, we demonstrate that BH3-M6-induced apoptosis is caspase- and Bax-, but not Bak-dependent. Furthermore, BH3-M6 disrupts Bcl-X(L)/Bim, Bcl-2/Bim, and Mcl-1/Bim protein-protein interactions and frees up Bim to induce apoptosis in human cancer cells that depend for tumor survival on the neutralization of Bim with Bcl-X(L), Bcl-2, or Mcl-1. Finally, BH3-M6 sensitizes cells to apoptosis induced by the proteasome inhibitor CEP-1612.  相似文献   

14.
To investigate the exact biochemical functions by which Bcl-2 regulates apoptosis, we established a stable human small cell lung carcinoma cell line, Ms-1, overexpressing wild-type human Bcl-2 or various deletion and point mutants thereof, and examined the effect of these Bcl-2 mutants on apoptosis induced by antitumor drugs such as camptothecin. Cytochrome c release, caspase-3-(-like) protease activation, and apoptosis induced by antitumor drugs were accelerated by overexpression of Bcl-2 lacking a Bcl-2 homology (BH) 1 domain (Bcl-2/ DeltaBH1), but not by that of BH2, BH3, or BH4 domain-deleted Bcl-2. A similar result was obtained upon the substitution of glycine 145 with alanine in the BH1 domain (Bcl-2/G145A), which failed to interact with either Bax or Bak. Pro-apoptotic Bax and Bak have been known to be activated in response to antitumor drugs, and Bcl-2/G145A as well as Bcl-2/DeltaBH1 also accelerated Bax- or Bak-induced apoptosis in HEK293T cells. These two mutants still retained the ability to interact with wild-type Bcl-2 and Bcl-xL, and abrogated the inhibitory effect of wild-type Bcl-2 or Bcl-xL on Bax- or Bak-induced apoptosis. In addition, immunoprecipitation studies revealed that Bcl-2/DeltaBH1 and Bcl-2/G145A interrupted the association between wild-type Bcl-2 and Bax/Bak. Taken together, our results demonstrate that Bcl-2/DeltaBH1 or Bcl-2/G145A acts as a dominant negative of endogenous anti-apoptotic proteins such as Bcl-2 and Bcl-xL, thereby enhancing antitumor drug-induced apoptosis, and that this dominant negative activity requires both a failure of interaction with Bax and Bak through the BH1 domain of Bcl-2 and retention of the ability to interact with Bcl-2 and Bcl-xL.  相似文献   

15.
Bax is a proapoptotic Bcl-2 family member that has a central role in the initiation of mitochondria-dependent apoptosis. However, the mechanism of Bax activation during apoptosis remains unsettled. It is believed that the activation of Bax is mediated by either dissociation from prosurvival Bcl-2 family members, or direct association with BH3-only members. Several interaction sites on Bax that mediate its interactions with other Bcl-2 family members, as well as its proapoptotic activity, have been identified in previous studies by other groups. To rigorously investigate the functional role of these interaction sites, we knocked in their respective mutants using HCT116 colon cancer cells, in which apoptosis induced by several stimuli is strictly Bax-dependent. Bax-mediated apoptosis was intact upon knock-in (KI) of K21E and D33A, which were shown to block the interaction of Bax with BH3-only activators. Apoptosis was partially reduced by KI of D68R, which impairs the interaction of Bax with prosurvival members, and S184V, a constitutively mitochondria-targeting mutant. In contrast, apoptosis was largely suppressed by KI of L70A/D71A, which blocks homo-oligomerization of Bax and its binding to prosurvival Bcl-2 family proteins. Collectively, our results suggest that the activation of endogenous Bax in HCT116 cells is dependent on its homo-oligomerization sites, but not those previously shown to interact with BH3-only activators or prosurvival proteins only. We therefore postulate that critical interaction sites yet to be identified, or mechanisms other than protein-protein interactions, need to be pursued to delineate the mechanism of Bax activation during apoptosis.  相似文献   

16.
Bax activation and mitochondrial insertion during apoptosis   总被引:11,自引:0,他引:11  
The mitochondrial apoptotic pathway is a highly regulated biological mechanism which determines cell fate. It is defined as a cascade of events, going from an apoptotic stimulus to the MOM permeabilization, resulting in the activation of the so-called executive phase. This pathway is very often altered in cancer cells.The mitochondrial permeabilization is under the control of the Bcl-2 family of proteins (pBcls). These proteins share one to four homology domains (designed BH1-4) with Bcl-2, and are susceptible of homo- and/or hetero-dimerization. In spite of a poor amino-acid sequence homology, these proteins exhibit very similar tertiary structures. Strikingly, while some of these proteins are anti-apoptotic, the others are pro-apoptotic. Pro-apoptotic proteins are further divided in two sub-classes: multi-domains proteins, among which Bax and Bak, which exhibit BH1-3 domains, and BH3-only proteins (or BOPs). Schematically, BOPs and anti-apoptotic proteins antagonistically regulate the activation of the multi-domain proteins Bax and Bak and their oligomerization in the MOM, the latter process being responsible for the apoptotic mitochondrial permeabilization.Considering the critical role of Bax in cancer cells apoptosis, we focus in this review on the molecular events of Bax activation through its interaction with the other proteins from the Bcl-2 family. The mechanism by which Bax triggers the MOM permeabilization once activated will be discussed in some other reviews in this special issue.  相似文献   

17.
BNIP3 (formerly NIP3) is a pro-apoptotic, mitochondrial protein classified in the Bcl-2 family based on limited sequence homology to the Bcl-2 homology 3 (BH3) domain and COOH-terminal transmembrane (TM) domain. BNIP3 expressed in yeast and mammalian cells interacts with survival promoting proteins Bcl-2, Bcl-X(L), and CED-9. Typically, the BH3 domain of pro-apoptotic Bcl-2 homologues mediates Bcl-2/Bcl-X(L) heterodimerization and confers pro-apoptotic activity. Deletion mapping of BNIP3 excluded its BH3-like domain and identified the NH(2) terminus (residues 1-49) and TM domain as critical for Bcl-2 heterodimerization, and either region was sufficient for Bcl-X(L) interaction. Additionally, the removal of the BH3-like domain in BNIP3 did not diminish its killing activity. The TM domain of BNIP3 is critical for homodimerization, pro-apoptotic function, and mitochondrial targeting. Several TM domain mutants were found to disrupt SDS-resistant BNIP3 homodimerization but did not interfere with its killing activity or mitochondrial localization. Substitution of the BNIP3 TM domain with that of cytochrome b(5) directed protein expression to nonmitochondrial sites and still promoted apoptosis and heterodimerization with Bcl-2 and Bcl-X(L). We propose that BNIP3 represents a subfamily of Bcl-2-related proteins that functions without a typical BH3 domain to regulate apoptosis from both mitochondrial and nonmitochondrial sites by selective Bcl-2/Bcl-X(L) interactions.  相似文献   

18.
细胞凋亡,即细胞程序性死亡,在多细胞生物的发育和稳态调控过程中发挥关键作用.Bcl-2家族蛋白是凋亡过程中的主要调控因子,关于Bcl-2家族蛋白在凋亡过程中的功能及其作用机制一直是研究的热点.已有研究显示Bcl-2家族蛋白不仅作用于线粒体引发凋亡,并且参与了包括对细胞内质网Ca2+的调控、DNA损伤的修复及与自噬的相互...  相似文献   

19.
Bcl-2 protects cells against mitochondrial oxidative stress and subsequent apoptosis. However, the mechanism underlying the antioxidant function of Bcl-2 is currently unknown. Recently, Bax and several Bcl-2 homology-3 domain (BH3)-only proteins (Bid, Puma, and Noxa) have been shown to induce a pro-oxidant state at mitochondria (1-4). Given the opposing effects of Bcl-2 and Bax/BH3-only proteins on the redox state of mitochondria, we hypothesized that the antioxidant function of Bcl-2 is antagonized by its interaction with the BH3 domains of pro-apoptotic family members. Here, we show that BH3 mimetics that bind to a hydrophobic surface (the BH3 groove) of Bcl-2 induce GSH-sensitive mitochondrial dysfunction and apoptosis in cerebellar granule neurons. BH3 mimetics displace a discrete mitochondrial GSH pool in neurons and suppress GSH transport into isolated rat brain mitochondria. Moreover, BH3 mimetics and the BH3-only protein, Bim, inhibit a novel interaction between Bcl-2 and GSH in vitro. These results suggest that Bcl-2 regulates an essential pool of mitochondrial GSH and that this regulation may depend upon Bcl-2 directly interacting with GSH via the BH3 groove. We conclude that this novel GSH binding property of Bcl-2 likely plays a central role in its antioxidant function at mitochondria.  相似文献   

20.
Cancer cells frequently possess defects in the genetic and biochemical pathways of apoptosis. Members of the Bcl-2 family play pivotal roles in regulating apoptosis and possess at least one of four Bcl-2 homology (BH) domains, designated BH1 to BH4. The BH3 domain is the only one conserved in proapoptotic BH3-only proteins and plays an important role in protein-protein interactions in apoptosis by regulating homodimerization and heterodimerization of the Bcl-2 family members. To date, 10 BH3-only proapoptotic proteins have been identified and characterized in the human genome. The completion of the Human Genome Project and the availability of various public databases and sequence analysis algorithms allowed us to use the bioinformatic database-mining approach to identify one novel BH3-only protein, apolipoprotein L6 (ApoL6). The full-length cDNA of ApoL6 was identified, cloned, and functionally expressed in p53-null colorectal cancer cells (DLD-1). We found that overexpression of wild-type ApoL6 induced mitochondria-mediated apoptosis in DLD-1 cells characterized by release of cytochrome c and Smac/DIABLO from mitochondria and activation of caspase-9, whereas ApoL6 BH3 domain deletion allele did not. In addition, overexpression of ApoL6 also induced activation of caspase-8. Furthermore, we showed that adenovirus harboring the full-length cDNA of ApoL6 induced marked apoptosis in a variety of cancer cell types, and ApoL6 recruited and interacted with lipid/fatty acid components during the induction of apoptosis. To our knowledge, this is the first example that intracellular overproduction of an apolipoprotein induces marked apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号