首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative importance of acetylcholine, dopamine, endogenous opiates, gamma-aminobutyric acid (GABA), glutamate, glycine, noradrenaline, and serotonin as transmitters in the pigeon visual system was estimated by measuring the activity of choline acetyltransferase (ChAT), glutamic acid decarboxylase (GAD), and aromatic amino acid decarboxylase (AAD) as well as the binding of dihydroalprenolol, etorphine, kainic acid, muscimol, serotonin, spiroperidol, strychnine, and quinuclidinyl benzilate (QNB) in the tectum opticum, nucleus rotundus, ectostriatum, dorsolateral thalamus, and hyperstriatum (Wulst). As a nonvisual reference structure, the paleostriatal complex was included in the examination. The regional distribution of most of these parameters was very similar to data reported in the mammalian CNS supporting the hypothesis that the avian tectofugal and thalamofugal visual systems are homologous to the mammalian tecto-thalamo-cortical and retino-geniculo-striate pathways, respectively. On the basis of the low values of their parameters, some transmitters can be excluded as significant contributors in a number of structures. As a hypothesis for further investigations, the presence of cholinergic and serotoninergic systems in the Wulst, possibly originating in the dorsolateral thalamus and nucleus raphe, respectively, and of glycinergic and dopaminergic terminals in the paleostriatal complex is proposed.  相似文献   

2.
Abstract: Olfactory bulb removal and consequential degeneration of the lateral olfactory tract led to a decreasein the levels of glutaminase and malate dehydrogenase inthe ipsilateral olfactory cortex. These changes in enzyme activity may account for the well established decrease inthe levels of aspartate and glutamate in the olfactory cortex following ipsilateral bulbectomy. The level of glutamine synthetase, a glial marker enzyme, was slightly-increased while the activities of glutamate decarboxylase, glutamate dehydrogenase, and glutamate oxaloacetic transaminase were unchanged.  相似文献   

3.
The hippocampus is well suited for studies of the interrelationships of various neurotransmitter systems in the CNS by reason of its simple laminated organization, defined connections, and variety of identified neurotransmitters. We have studied the biochemical and pharmacological properties of five radiolabeled ligand binding sites in a membrane fraction prepared from rat hippocampal formation. These binding sites are thought to identify recognition sites for neurotransmitter receptors. The rank order of ligand binding sites is [3H]muscimol > [3H]quinuclidinyl benzilate > [3Hdihydroergocryptine > [3H]dihydroalprenolol > 125I-labeled α-bungarotoxin. All ligands have a single, saturable, high-affinity binding site. Pharmacological characterization of the ligand binding sites indicates properties consistent with the identification of these sites as neurotransmitter receptors.  相似文献   

4.
Hyposmolarity activates amino acid efflux as part of the corrective volume process in a variety of cells. This review discusses the mechanism of amino acid release in brain cells preparations. Results present evidence of substantial differences between the efflux of taurine and that of GABA and glutamate, which besides a possible role as osmolytes, have a main function as synaptic transmitters. The differences found concern the efflux time course, the sensitivity to Cl channel blockers, the modulation by tyrosine kinases, the influence of PKC and the effect of cytoskeleton disruptive agents. While taurine efflux features fit well with the mechanisms so far described in most cell types, the efflux of GABA and glutamate does not. Alternate mechanisms for the release of these two amino acids are discussed, including a PKC-modulated, actin-dependent exocytosis.  相似文献   

5.
Juvenile salmon have an olfactory ability to imprint their natal stream odors, but neither the odor properties of natal stream water nor the imprinting timing and duration have been clarified as yet. Here we show, using electrophysiological and behavioral experiments, that one-year-old lacustrine sockeye salmon (Oncorhynchus nerka) can be imprinted around the stage of parr-smolt transformation (PST) by a single amino acid, 1 µM L-proline (Pro), or L-glutamic acid (Glu). We also show by real-time PCR that changes occur in mRNA levels of the salmon olfactory imprinting-related gene (SOIG) around PST. The electro-olfactogram (EOG) responses of test fish exposed to Pro in March (before PST) and April–June (during PST) for 2 weeks were significantly (1.7-fold) greater than those of non-exposed control fish, but not those of test fish exposed in July (after PST). When Pro and control water were added to the water inlets of a two-choice test tank during the spawning season 2 years after the test water exposure, 80% of maturing and matured test fish exposed before and during PST showed a preference for Pro, whereas those exposed after PST did not. The EOG response of test fish exposed to Pro or Glu for 1 hour, 6 hours, 1 day, 7 days, or 14 days in May revealed that only the response after 14 days of exposure was significantly (1.8-fold) greater than the control. The expression levels of SOIG mRNA increased before and during PST, and decreased after PST. We conclude that one-year-old lacustrine sockeye salmon can be imprinted by a single amino acid before and during PST, and that imprinting requires exposure for at least 14 days.  相似文献   

6.
7.
In the present work, we have studied the effect of ruthenium red (RuR), La3+ and 4-aminopyridine (4-AP) on the specific binding of (+)-[3H]PN200-110 to synaptosomes, as well as the effect of nitrendipine, nifedipine, and BAY K 8644 on gamma-[3H]aminobutyric acid [( 3H]GABA) release induced by potassium depolarization and by 4-AP in synaptosomes. Scatchard plots indicated that neither RuR nor 4-AP modifies the KD and Bmax of [3H]PN200-110 specific binding, whereas La3+ decreased the Bmax by about 25%; when the effect of the drugs on the total binding of PN200-110 was studied, a similar inhibition by La3+ was found. The calcium antagonists, nitrendipine and nifedipine, did not affect at all the potassium-stimulated release of [3H]GABA nor its release induced by 4-AP. The calcium agonist BAY K 8644 failed to affect both the spontaneous and the potassium-stimulated GABA release. Our results suggest that the binding sites of dihydropyridines in presynaptic membranes are not related to the calcium channels involved in neurotransmitter release with which RuR, La3+, and 4-AP interact.  相似文献   

8.
The extracellular carbohydrate-binding domain of the Type I transmembrane receptor CD44 is known to undergo affinity switching, where change in conformation leads to enhanced binding of its carbohydrate ligand hyaluronan. Separate x-ray crystallographic and NMR experiments have led to competing explanations, with the former supporting minor conformational changes at the binding site and the latter a major order-to-disorder unfolding transition distant from the binding site. Here, all-atom explicit-solvent molecular dynamics studies employing adaptive biasing force sampling revealed a substantial favorable free-energy change associated with contact formation between the Arg41 side chain and hyaluronan at the binding site, independent of whether the distant site was ordered or disordered. Analogous computational experiments on Arg41Ala mutants showed loss of this favorable free-energy change, consistent with existing experimental data. More provocatively, the simulation data revealed the molecular mechanism by which the order-to-disorder transition enhances hyaluronan binding: in the disordered state, a number of basic residues gain sufficient conformational freedom—lacking in the ordered state—to spontaneously form side-chain contacts with hyaluronan. Mutation of these residues to Ala had been known to decrease binding affinity, but there had previously been no structural explanation, given their lack of proximity to the carbohydrate-binding site in existing structures of the complex.  相似文献   

9.
The extracellular carbohydrate-binding domain of the Type I transmembrane receptor CD44 is known to undergo affinity switching, where change in conformation leads to enhanced binding of its carbohydrate ligand hyaluronan. Separate x-ray crystallographic and NMR experiments have led to competing explanations, with the former supporting minor conformational changes at the binding site and the latter a major order-to-disorder unfolding transition distant from the binding site. Here, all-atom explicit-solvent molecular dynamics studies employing adaptive biasing force sampling revealed a substantial favorable free-energy change associated with contact formation between the Arg41 side chain and hyaluronan at the binding site, independent of whether the distant site was ordered or disordered. Analogous computational experiments on Arg41Ala mutants showed loss of this favorable free-energy change, consistent with existing experimental data. More provocatively, the simulation data revealed the molecular mechanism by which the order-to-disorder transition enhances hyaluronan binding: in the disordered state, a number of basic residues gain sufficient conformational freedom—lacking in the ordered state—to spontaneously form side-chain contacts with hyaluronan. Mutation of these residues to Ala had been known to decrease binding affinity, but there had previously been no structural explanation, given their lack of proximity to the carbohydrate-binding site in existing structures of the complex.  相似文献   

10.
LC-MS/MS 检测癫痫患者神经递质类氨基酸   总被引:1,自引:0,他引:1       下载免费PDF全文
目的:建立液相色谱串联质谱同位素内标法检测神经递质类氨基酸并用于癫痫患者临床评价.方法:选用AAA-C18柱色谱柱,以乙腈水(含有0.01%七氟丁酸、0.1%甲酸)为流动相,采用梯度洗脱进行分离,血浆样品用iTRAQ-115衍生化试剂处理后,加入iTRAQ-114衍生化的氨基酸内标并进样,选用3200QTRAP型质谱仪的多重反应监测(MRM)扫描方式进行检测.疾病组与健康组的统计采用t检验和主成份分析.结果:疾病组和健康组氨基酸测定结果显示:Trp、GABA两组间没有显著性差异(P>0.05),Arg、Glv、Ser、Tau、Asp、Glu、EtN、两组间有显著性差异(P<0.05),通过PCA分析显示,疾病组与健康组之间差异明显,Asp、Glu、Ser等是引起差异的主要氨基酸.结论:试验方法灵敏、专属性强,并初步的用于癫痫患者体内氨基酸评价.  相似文献   

11.
目的:建立液相色谱串联质谱同位素内标法检测神经递质类氨基酸并用于癫痫患者临床评价。方法:选用AAA-C18柱色谱柱,以乙腈水(含有0.01%七氟丁酸、0.1%甲酸)为流动相,采用梯度洗脱进行分离,血浆样品用iTRAQ-115衍生化试剂处理后,加入iTRAQ-114衍生化的氨基酸内标并进样,选用3200QTRAP型质谱仪的多重反应监测(MRM)扫描方式进行检测。疾病组与健康组的统计采用t检验和主成份分析。结果:疾病组和健康组氨基酸测定结果显示:Trp、GABA两组间没有显著性差异(P〉0.05),Arg、Gly、Ser、Tau、Asp、Glu、EtN、两组间有显著性差异(P〈0.05),通过PCA分析显示,疾病组与健康组之间差异明显,Asp、Glu、Ser等是引起差异的主要氨基酸。结论:试验方法灵敏、专属性强,并初步的用于癫痫患者体内氨基酸评价。  相似文献   

12.
Anorectic drugs such as mazindol bind to a class of low-affinity, sodium-sensitive sites in the brain which are affected by ambient glucose concentrations and a predisposition to develop diet-induced obesity (DIO). This study used quantitative autoradiography of 10 nM 3H-mazindol binding to identify the cellular location of these putative anorectic binding sites in the brain and to assess the way in which the development of DIO affected their binding. We previously showed that chow-fed, obesity-prone rats have widespread increases in brain 3H-mazindol binding to these low-affinity sites as compared with diet-resistant (DR) rats. Here, low-affinity 3H-mazindol binding was assessed in the brains of eight rats which developed DIO vs. eight which were DR after three months on a high-energy diet. DIO rats gained 89% more weight and had 117% higher plasma insulin levels but no difference in plasma glucose levels compared with DR rats. Along with these differences, low-affinity 3H-mazindol binding in DIO rats was identical to that in DR rats in all of the 23 brain areas assessed. This suggested that this binding was downregulated by the development of obesity in DIO rats. In other chow-fed rats, stereotaxic injections of 5,7-dihydroxytrypta-mine and 6-hydroxydopamine (60HDA) to ablate serotonin and catecholamine nerve terminals in the ventromedial nucleus of the hypothalamus (VMN) had no effect on 3H-mazindol binding. However, ibotenic acid injected into the VMN, substantia nigra, pars reticulata, and pars compacta destroyed intrinsic neurons and/or their local processes and decreased low-affinity 3H-mazindol binding by 13%-22%. Destruction of dopamine neurons in the substantia nigra, pars compacta, and noradrenergic neurons in the locus ceruleus with 60HDA also reduced 3H-mazindol binding in those areas by 9% and 12%, respectively. This suggested that up to 22% of putative anorectic binding sites may be located on the cell bodies of dopamine, norepinephrine, and other neurons, but not on serotonin or catecholamine nerve terminals in the brain. Binding to these sites may be downregulated by the development of DIO, possibly as a result of the concomitant hyperinsulinemia.  相似文献   

13.
Expression and age-related changes of calbindin-D28k (CB), parvalbumin (PV), and calretinin (CR) in the main olfactory bulb of the dog were investigated by immunohistochemistry and western blot analysis. Neurons that expressed these calcium-binding proteins showed a characteristic laminar distribution. Most of CB-immunoreactive neurons were observed in the glomerular layer (GL) and the inner sublayer of the external plexiform layer (EPL). Most of PV-immunoreactive neurons were observed in the outer sublayer of the EPL. CR-immunoreactive neurons were mainly distributed in the GL and the granule cell layer. With regard to age-related changes, CB-immunoreactive neurons in the GL were stable among all age groups; however, in the EPL they decreased with age. PV-immunoreactive neurons decreased in middle-aged and aged groups. However, CR-immunoreactive neurons were not decreased in middle-aged and aged groups. These results suggest that CB-immunoreactive neurons in the EPL were most sensitive to aging, and that their reduction may be related to aging in the dog.  相似文献   

14.
The semi-aquatic lifestyle of amphibians represents a unique opportunity to study the molecular driving forces involved in the transition of aquatic to terrestrial olfaction in vertebrates. Most amphibians have anatomically segregated main and vomeronasal olfactory systems, but at the cellular and molecular level the segregation differs from that found in mammals. We have recently shown that amino acid responses in the main olfactory epithelium (MOE) of larval Xenopus laevis segregate into a lateral and a medial processing stream, and that the former is part of a vomeronasal type 2 receptor expression zone in the MOE. We hypothesized that the lateral amino acid responses might be mediated via a vomeronasal-like transduction machinery. Here we report that amino acid-responsive receptor neurons in the lateral MOE employ a phospholipase C (PLC) and diacylglycerol-mediated transduction cascade that is independent of Ca2+ store depletion. Furthermore, we found that putative transient receptor potential (TRP) channel blockers inhibit most amino acid-evoked responses in the lateral MOE, suggesting that ion channels belonging to the TRP family may be involved in the signaling pathway. Our data show, for the first time, a widespread PLC- and diacylglycerol-dependent transduction cascade in the MOE of a vertebrate already possessing a vomeronasal organ.  相似文献   

15.
The external plexiform layer of the olfactory bulb is among the brain regions where insulin receptors are most abundant. In vitro binding of porcine 125I-insulin to membranes of dendrodendritic synaptosomes isolated from adult rat olfactory bulbs was studied to test the hypothesis that dendrodendritic synapses are major insulin-receptive sites in the external plexiform layer of olfactory bulbs. Of the specific insulin binding sites present in a total particulate fraction from the olfactory bulbs, approximately half were recovered in the dendrodendritic synaptosome fraction. The only other subcellular fraction to which substantial insulin binding was observed was the conventional (axodendritic/axosomatic) synaptosome fraction. Analysis of equilibrium binding of insulin to dendrodendritic synaptosomal membranes, at total insulin concentrations of 0.5-1,000 nM, revealed binding site heterogeneity consistent with a two-site model for insulin binding to a high-affinity (KD = 6 nM), low-capacity (Bmax = 110 fmol/mg of protein) site and a low-affinity (KD = 190 nM), high-capacity (Bmax = 570 fmol/mg of protein) site. The results indicate that the intense labeling of the external plexiform layer of the olfactory bulb in autoradiographic studies of insulin binding can be attributed to insulin receptors on dendrodendritic synaptic membranes in this region.  相似文献   

16.
N-Methyl-D-aspartate (NMDA) administration exacerbates neurological dysfunction after traumatic spinal cord injury in rats, whereas NMDA antagonists improve outcome in this model. These observations suggest that release of excitatory amino acids contributes to secondary tissue damage after traumatic spinal cord injury. To further examine this hypothesis, concentrations of free amino acids were measured in spinal cord samples from anesthetized rats subjected to various degrees of impact trauma to the T9 spinal segment. Levels of excitatory and inhibitory neurotransmitter amino acids [gamma-aminobutyric acid (GABA), glutamate, aspartate, glycine, taurine] and levels of nonneurotransmitter amino acids (asparagine, glutamine, alanine, threonine, serine) were determined at 5 min, 4 h, and 24 h posttrauma. Uninjured surgical (laminectomy) control animals showed modest but significant declines in aspartate and glutamate levels, but not in other amino acids, at all time points. In injured animals, the excitatory amino acids glutamate and aspartate were significantly decreased by 5 min posttrauma, and remained depressed at 4 h and 24 h as compared with corresponding laminectomy controls. In contrast, the inhibitory amino acids, glycine, GABA, and taurine, were decreased at 5 min postinjury, had partially recovered at 4 h, and were almost fully recovered at 24 h. The nonneurotransmitter amino acids were unchanged at 5 min posttrauma and significantly increased at 4 h, with partial recovery at 24 h. At 4 h postinjury, severe trauma caused significantly greater decreases in aspartate and glutamate than did either mild or moderate injury. These findings are consistent with the postulated role of excitatory amino acids in CNS trauma.  相似文献   

17.
Abstract: A dramatic, time-dependent loss of l -glutamine was observed in mouse and rat hippocampal slices equilibrated in normal artificial CSF under static (no-flow) and super-fused (constant-flow) conditions. Concomitant with the decline in l -glutamine, there was a significant, but less pronounced, decrease in levels of the neurotransmitter amino acids, γ-aminobutyric acid, l -aspartate, and l -glutamate. The disappearance of l -glutamine was a result of diffusion from the tissue to the artificial CSF rather than chemical or biochemical transformation. The loss of amino acids from the hippocampal slices was prevented to different degrees by the addition of 0.5 m M exogenous l -glutamine to the artificial CSF. The levels of newly synthesized amino acids were also determined, because they may be more indicative of the neuronal activity than the total tissue levels of amino acids. The effects of perturbations in glutamine (length of the equilibration time and addition of exogenous. glutamine) on newly synthesized glutamate were more pronounced under 4-aminopyridine-stimulated than control (unstimulated) conditions. Therefore, a loss of l -glutamine from the hippocampal slices may have neurophysiological effects and warrants further investigation.  相似文献   

18.
Abstract: The release of preloaded [14C]neuroactive amino acids (glutamic acid, proline, γ-aminobutyric acid) from rat brain synaptosomes can occur via a time-dependent, Ca2+ -independent process. This Ca2+-independent efflux is increased by compounds that activate Na+ channels (veratridine, scorpion venoms), by the ionophore gramicidin D, and by low concentrations of unsaturated fatty acids (oleic acid and arachidonic acid). Saturated fatty acids have no effect on the efflux process. Neither saturated nor unsaturated fatty acids have an effect on the release of [14C]leucine, an amino acid not known to possess neurotransmitter properties. The increase in the efflux of neuroactive amino acids by oleic and arachidonic acids can also be demonstrated using synaptosomal membrane vesicles. Under conditions in which unsaturated free fatty acids enhance amino acid efflux, no effect on 22Na+ permeability is observed. Since Na+ permeability is not altered by fatty acids, the synaptosomes are not depolarized in their presence and, thus, the Na+ gradient can be assumed to be undisturbed. We conclude that unsaturated fatty acids represent a potentially important class of endogenous modulators of neuroactive amino acid transport in nerve endings and further postulate that their action is the result of an uncoupling of amino acid transport from the synaptosomal Na+ gradient.  相似文献   

19.
Abstract : The aim of the present study was to identify the N-terminal regions of human corticotropin-releasing factor (CRF) receptor type 1 (hCRF-R1) that are crucial for ligand binding. Mutant receptors were constructed by replacing specific residues in hCRF-R1 with amino acids from the corresponding position in the N-terminal region of the human vasoactive intestinal peptide receptor type 2 (hVIP-R2). In cyclic AMP stimulation and CRF binding assays, it was established that two regions within the N-terminal domain were crucial for the binding of CRF receptor agonists and antagonists : one region mapping to amino acids 43-50 and a second amino acid sequence extending from position 76 to 84 of hCRF-R1. Recently, it was found that the latter sequence plays a very important role in determining the high ligand selectivity of the Xenopus CRF-R1 (xCRF-R1). Replacement of amino acids 76-84 of hCRF-R1 with residues from the same segment of the hVIP-R2 N terminus markedly reduced the binding affinity of CRF ligands. Mutation of Arg76 or Asn81 but not Gly83 of hCRF-R1 to the corresponding amino acids of xCRF-R1 or hVIP-R2 resulted in 100-1,000-fold lower affinities for human/rat CRF, rat urocortin, and astressin. These data underline the importance of the N-terminal domain of CRF-R1 in high-affinity ligand binding.  相似文献   

20.
The efferent connections of the olfactory bulb and accessory olfactory bulb of two species of garter snakes, Thamnophis sirtalis and T. radix were studied with experimental anterograde degeneration techniques. Axons of cells located in the olfactory bulb terminate ipsilaterally in all parts of the anterior olfactory nucleus, olfactory tubercle and lateral pallium. In addition, some axons enter the ipsilateral stria medullaris thalami, cross the midline in the habenular commissure, enter the contralateral stria medullaris thalami and terminate in the contralateral lateral pallium. The axons of cells in the accessory olfactory bulb course through the telencephalon completely separated from the fibers of olfactory bulb origin and terminate predominantly in the nucleus sphericus. These results confirm previous reports of the separation between the central projections of the olfactory and vomeronasal systems in a variety of vertebrates. The totality of the separation between these two systems coupled with the extensive development of the vomeronasal-accessory bulb system in these snakes suggests that they may be ideal subjects for further research on the functional significance of the vomeronasal system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号