首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two molecular cytogenetics methods, PRINS (primed in situ DNA labeling) and C-PRINS (cycling PRINS), were optimized for the physical mapping of several types of DNA sequences on the mitotic chromosomes of the narrow-leafed lupin (Lupinus angustifolius L.). The fragment of the FokI element from Vicia faba was localised by indirect PRINS reaction. Two other sequences, fragments of the coding sequences of L. luteus and of L. angustifolius, were localised by indirect C-PRINS. These techniques are faster and more sensitive than FISH, and they allowed the mapping of short DNA fragments. The data obtained shows that both types of PRINS are valuable tools for chromosome identification in lupin.  相似文献   

2.
Mapping of repeated DNA sequences in plant chromosomes by PRINS and C-PRINS   总被引:4,自引:0,他引:4  
 The primed in situ DNA labelling (PRINS) procedure was optimised for the rapid physical mapping of several types of repetitive DNA sequences on the mitotic chromosomes of Vicia faba, Pisum sativum and Secale cereale. A localization of the highly repeated FokI sequence on V. faba chromosomes was achieved after a 7-min total reaction time. In addition, we report a procedure for direct cycling-PRINS (C-PRINS), a variation of PRINS which involves a sequence of thermal cycles analogous to the polymerase chain reaction. Compared to PRINS, C-PRINS was more sensitive. Further work is needed to improve the sensitivity of the reaction to allow for the reliable detection of low-copy DNA sequences. Received: 17 September 1996 / Accepted: 18 October 1996  相似文献   

3.
A comparison of sequence resolution on plant chromosomes: PRINS versus FISH   总被引:2,自引:0,他引:2  
 The resolution of the chromosomal positions of six high- and one low-copy sequences by oligonucleotide-primed in situ (PRINS) labelling was compared with corresponding data obtained after fluorescent in situ hybridization (FISH) on field-bean and barley chromosomes. While PRINS proved to be suitable for the rapid detection of high-copy tandem repeats at the same loci as those revealed by FISH, no clear PRINS signal was obtained for the low-copy family of vicilin genes at their locus on field-bean chromosome II. This indicates that localization of short target sequences by primer extension via Taq polymerase in situ does not yet provide a resolution equal, or superior, to FISH on plant chromosomes. Therefore, the use of a cocktail of chromosome-specific single-copy sequences as primers for PRINS is no alternative for the not as yet feasible chromosome painting in plants. Received: 21 April 1998 / Accepted: 12 May 1998  相似文献   

4.
In the present study the chromosome distribution of the 5S rDNA loci and its relation to the major rDNA genes were investigated in three Coregonid species (Salmonidae): Coregonus lavaretus, Coregonus peled and Coregonus albula, a family which has experienced large karyotype rearrangements along its evolution starting from a tetraploid ancestor. 5S PRINS/CMA3 sequential staining together with previous data enabled us to locate 5S rRNA genes and nucleolar organizer regions (NORs) in the three species analyzed. PRINS revealed the 5S rDNA cluster at the distal part of the long arm of a similar submetacentric chromosome pair in the three species. Our data indicate that 5S rDNA clusters have probably conserved chromosomal location in the genus Coregonus, whereas 45S rDNA (NOR) sites are clearly differentiated, from a single locus in C. peled, to multiple loci in C. lavaretus and highly polymorphic multichromosomal location in C. albula.  相似文献   

5.
In yeast, rRNA genes can be detected with the FISH technique using rRNA gene probes. This technique yields reliable, reproducible and precise results, but is time-consuming. Here, the primed in situ DNA synthesis (PRINS) procedure has been optimized for rapid detection of yeast rRNA genes. PRINS, which is as sensitive as PCR and allows cytological localization of analyzed sequences, can be adapted for various screening tests requiring fast labeling of rRNA genes.  相似文献   

6.
A method for high quality chromosome banding after in situ hybridization with biotinylated probes has been developed. Fluoresceine-conjugated avidin is used for probe detection, while chromosome banding is performed with a tetramethylrodhamine-conjugated anti-BrdU antibody. In this way probe localization and chromosome identification can be performed simultaneously simply by changing the incidental light wavelength.Abbreviations BAT BrdU antibody technique - DABCO 1,4 diazobicyclo-(2.2.2)octane - FITC fluorescein isothiocyanate - FPG fluorochrome plus giemsa - PHA phytohemagglutinin - RBA R-banding BrdU acridine - TRITC tetramethylrhodamine isothiocyanate  相似文献   

7.
The distribution of two repetitive DNA probes Sat-121 and PB6-4, specific for the section Procumbentes of the genus Beta, was tested in 16 B. patellaris monosomic addition families using a dot-blot hybridization procedure. All monosomic additions were accurately distinguished from diploid sib plants with both DNA probes. The probe PB6-4, with the strongest signal after hybridization, was selected for rapid screening of an extensive number of putative monosomic additions in B. patellaris or B. procumbens addition families using a squash-blot hybridization procedure. The probe PB6-4 detected 118 monosomic additions in 640 plants (18.4%) in eight different B. procumbens addition families. The addition family with chromosome 4 of B. procumbens was semi-lethal and could not be tested. The distribution of PB6-4 in B. patellaris addition families was confirmed in 63 addition families using the squash-blot procedure. In 4580 plants of these addition families, 628 individual monosomic additions (13.7%) were found. The relationship of the morphological characteristics of monosomic addition plants to the results of the squash-blot hybridization (plants with signal) using probe PB6-4 is quite rigorous but not complete. The correlation between plants with a signal and chromosome number (2n=19) is complete. These results indicate that sequences present on PB6-4 are probably present on all chromosomes of B. patellaris and B. procumbens. The possibility of utilizing the sequence information of Sat-121 for a PCR-based assay to screen for putative monosomic addition plants was also investigated as an alternative to chromosome counting. The DNA-amplification profiles using the primers REP and REP.INV clearly distinguished monosomic addition plants from their diploid sibs.  相似文献   

8.
 Molecular cytogenetics is mostly performed by fluorescence in situ hybridization using long DNA probes that are generated by vector cloning. Oligonucleotide primed in situ labeling (PRINS) is a recent method that has been established for the detection of the centromeric or telomeric region in metaphase chromosomes. In this overview, we demonstrate the possible applications of PRINS and provide elaborated protocols for its use in intact interphase cells of routine cytological preparations, e.g., cell smears, touch preparations, and cytospins of non-neoplastic and neoplastic tissues. Moreover, the various modifications of the PRINS method, such as multi-color PRINS for targetting different chromosomes within one cell or the enzymatic detection of the PRINS product instead of the more commonly used fluorochromes, are discussed. Accepted: 4 July 1997  相似文献   

9.
The centromeric alpha satellite DNA subfamilies from chromosomes 13 and 21 are almost identical in sequence and cannot be easily distinguished by mean of probes for Southern blot or in situ hybridisation. We have used the oligonucleotide-primed in situ (PRINS) labelling technique with primers defined from the alpha satellite sequence of chromosome 13. One primer was found to label specifically the centromeric region of chromosomes 13 and allowed the detection of a polymorphism between two chromosome 13 homologues in one individual.  相似文献   

10.
An improved primed in situ labeling (PRINS) procedure that provides fast, highly sensitive, and nonradioactive cytogenetic localization of chromosome-specific tandem repeat sequences is presented. The PRINS technique is based on the sequence-specific annealing in situ of unlabeled DNA. This DNA then serves as primer for chain elongation in situ catalyzed by a DNA polymerase. If biotin-labeled nucleotides are used as substrate for the chain elongation, the hybridization site becomes labeled with biotin. The biotin is subsequently made visible through the binding of FITC-labeled avidin. Tandem repeat sequences may be detected in a few hours with synthetic oligonucleotides as primers, but specific labeling of single chromosomes is not easily obtained. This may be achieved, however, if denatured double-stranded DNA fragments from polymerase-chain-reaction products or cloned probes are used as primers. In the latter case, single chromosome pairs are stained with a speed and ease (1 h reaction and no probe labeling) that are superior to traditional in situ hybridization. Subsequent high-quality Q banding of the chromosomes is also possible. The developments described here extends the range of applications of the PRINS technique, so that it now can operate with any type of probe that is available for traditional in situ hybridization.  相似文献   

11.
We have applied a refined microdissection procedure to create a plasmid library of the barley (Hordeum vulgare L.) chromosome arm 1HS. The technical improvements involved include synchronization of meristematic root tissue, a metaphase drop-spread technique, paraffin protection of the collection drop to avoid evaporation, and a motorized and programmable microscope stage. Thirteen readily-discernible telocentric chromosomes have been excised from metaphases of synchronized root-tip mitoses. After lysis in a collection drop (2 nl), the DNA was purified, restricted withRsaI, ligated into a vector containing universal sequencing primers, and amplified by the polymerase chain reaction. Finally, the amplified DNA was cloned into a standard plasmid vector. The size of the library was estimated to be approximately 44,000 recombinant plasmids, of which approximately 13% can be utilized for RFLP analysis. Tandem repetitive probes could be rapidly excluded from further analysis after colony hybridization with labelled total barley DNA. Analysis of 552 recombinant plasmids established that: (1) the insert sizes ranged between 70 and 1150 bp with a mean of 250 bp, (2) approximately 60% of the clones contained highly repetitive sequences, and (3) all single- or low-copy probes tested originate from chromosome 1HS. Four probes were genetically mapped, using an interspecificH. vulgare xH. spontaneum F2 population. One of these probes was found to be closely linked to theMla locus conferring mildew resistance.  相似文献   

12.
Both PRimed IN Situ (PRINS) and Peptide Nucleic Acid (PNA) technologies have emerged as research techniques, but they have quickly evolved to applications in biological diagnosis assays. The two procedures now constitute efficient alternatives to the conventional fluorescence in situ hybridization (FISH) procedure for in situ chromosome identification and aneuploidy detection. They present several advantages (specificity, speed, discriminating ability) that make them very attractive for a number of cytogenetic purposes. Multicolor PRINS and PNA protocols have been described for the specific identification of human chromosomes. Various applications have already been developed in human genetics and new adaptations are ongoing.  相似文献   

13.
A procedure is presented for the detection of mRNA in whole-mount preparations of youngArabidopsis seedlings using digoxigenin (DIG)-labeled RNA probes. It includes tissue preservation with formaldehyde, permeabilization with polyoxyethy lenesorbitan (Tween 20), DMSO, and heptane. Hybridization signal is detected using colloidal gold or alkaline-phosphatase-conjugated anti-DIG antibodies.  相似文献   

14.
Here we demonstrate fluorescencein situ hybridization (FISH) of chromosome-specific cytogenetic DNA markers for chromosome identification in maize using repetitive and single copy probes. The fluorescently labeled probes, CentC and pZm4–21, were shown to be reliable cytogenetic markers in the maize inbred line KYS for identification of mitotic metaphase chromosomes. The fluorescent strength of CentC signal, relative position, knob presence, size and location were used for the karyotyping. Based on direct visual analysis of chromosome length and position of FISH signals, a metaphase karyotype was constructed for maize inbred line KYS. All chromosomes could be identified unambiguously. The knob positions in the karyotype agreed well with those derived from traditional cytological analyses except chromosomes 3, 4 and 8. One chromosome with a telomeric knob on the short arm was assigned to 3. A chromosome with a knob in the middle of the long arm was assigned number 4 by simultaneous hybridization with a knob-specific probe pZm4–21 and a chromosome 4-specific probe Cent 4. On chromosome 8, we found an additional small telomeric knob on the short arm. In addition, chromosome-specific probes were employed to identify chromosome 6 (45S rDNA) and chromosome 9 (single-copy probeumc105a cosmid).  相似文献   

15.
Based on the analysis of nucleotide sequences of 16S rRNA, oligonucleotide probes were designed for the detection and identification of representatives of the genus Desulfurococcus (kingdom Crenarchaeota of the domain Archaea). The detection procedure included obtaining PCR products on DNA isolated from pure cultures, enrichments, or natural samples with a designed Crenarchaeota-specific primer pair: Cren 7F (5"-TTCCGGTTGATCCYGCCGGACC-3") and Cren 518R (5"-GCTGGTWTTACCGCGGCGGCTGA-3"). The PCR products were hybridized with Dig-11-dUTP–labeled oligonucleotide probes targeting the genus Desulfurococcus (Dco 198, 5"-CGTTAACYCCYGCCACACC-3") and its species D. mobilis (Dco_mob 198, 5"-CGTTAACCCCTGCCACACC-3") and D. amylolyticus (Dco_amy 198, 5"-CGTTAACCCCCGCCACACC-3"). With the use of these primers and probes, four new strains isolated from hydrotherms of Kamchatka and Kunashir Island were identified as members of the speciesDesulfurococcus amylolyticus. Desulfurococcus representatives were detected in several natural samples, including a sample taken from a marine hydrotherm at Kunashir Island; this demonstrates that representatives of this genus occur not only in terrestrial but also in marine environments.  相似文献   

16.
The primed in situ labelling (PRINS) technique is an alternative to in situ hybridization for chromosomal screening. We have developed a semi-automatic PRINS protocol, using a programmable thermocycler. The method has been successfully tested with specific primers for chromosomes, 13, 16, 18, 21, X and Y. Specific chromosome detection has been obtained on both metaphases and interphase nuclei. This suggests that PRINS may be a reliable technique for detecting aneuploidies and some chromosomal aberrations.  相似文献   

17.
cDNA probes encoding the barley endosperm ADP-glucose pyrophosphorylase (AGP) small subunit (bepsF2), large subunit (bepl10), and leaf AGP large subunit (blpl) were hybridized with barley genomic DNA blots to determine copy number and polymorphism. Probes showing polymorphism were mapped on a barley RFLP map. Probes that were not polymorphic were assigned to chromosome arms using wheat-barley telosomic addition lines. The data suggested the presence of a single-copy gene corresponding to each of the cDNA probes. In addition to the major bands, several weaker cross-hybridizing bands indicated the presence of other, related sequences. The weaker bands were specific to each probe and were not due to cross-hybridization with the other probes examined here. The endosperm AGP small subunit (bepsF2) majorband locus was associated with chromosome 1P and designated Aga1. The endosperm AGP large subunit (bepl10) major-band locus was mapped to chromosome 5M and designated Aga7. The endosperm AGP large-subunit minor bands were not mapped. The leaf AGP large-subunit major band was associated with chromosome 7M and designated Aga5. One of the leaf AGP large-subunit minor bands was mapped to chromosome 5P and designated Aga6. A clone for the wheat endosperm AGP large-subunit (pAga7) hybridized to the same barley genomic DNA bands as the corresponding barley probe indicating a high degree of identity between the two probes.  相似文献   

18.
Phillip RB  Konkol NR  Reed KM  Stein JD 《Genetica》2001,111(1-3):119-123
The sex chromosome pair has been identified previously as the largest submetacentric pair in the genome in several species of the genus Salvelinus (eastern trouts and chars) including S. namaycush (lake trout) and as a large subtelocentric/acrocentric pair in several species of the genus Oncorhynchus (Pacific trouts and salmon). Sex chromosomes have not been identified in Salmo (Atlantic salmon and brown trout). Two paint probes, one specific for the short arm (Yp) and the other for the long arm (Yq) of the sex chromosome pair in Salvelinus namaycush were hybridized to chromosomes of Oncorhynchus mykiss (rainbow trout) and O. tshawytscha (chinook salmon) and Salmo salar (Atlantic salmon) and S. trutta (brown trout). The two probes hybridized to two different autosomal pairs in each of the Oncorhynchus species, supporting lack of homology between the sex chromosomes in the two genera. The Yp probe hybridized to interstitial regions on two different chromosome pairs in S. salar and one pair in S. trutta. The Yq probe hybridized to a different pair in both species.  相似文献   

19.
 Ethanol fixation combined with microwave pretreatment allows rapid and simple detection of signals produced by cycling primed in situ (PRINS) amplification, which uses a single primer, and in situ polymerase chain reaction (ISPCR) in intact cells. After thermal cycling, signals remain as discrete subnuclear spots in the region of amplification and are clearly distinguishable from non-specific background labelling. These methods are applicable to routine blood smears, even after Giemsa staining or immunocytochemistry, and cellular morphology is retained. Chromosome enumeration by cycling PRINS is demonstrated using primers for repeat DNA sequences, whilst single copy sequence detection is demonstrated using bcl-2, CFTR and chromosome 21 specific primer pairs in ISPCR. We show that ethanol fixation supports efficient extension of cycling PRINS products to approximately 550 bp using up to 70 rounds of thermal cycling. Accepted: 15 February 1999  相似文献   

20.

Background  

In situ detection of short sequence elements in genomic DNA requires short probes with high molecular resolution and powerful specific signal amplification. Padlock probes can differentiate single base variations. Ligated padlock probes can be amplified in situ by rolling circle DNA synthesis and detected by fluorescence microscopy, thus enhancing PRINS type reactions, where localized DNA synthesis reports on the position of hybridization targets, to potentially reveal the binding of single oligonucleotide-size probe molecules. Such a system has been presented for the detection of mitochondrial DNA in fixed cells, whereas attempts to apply rolling circle detection to metaphase chromosomes have previously failed, according to the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号