首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
分别采用测定菌丝体蛋白的方法、测定核酸的方法、酸洗干燥法和纤维素测定仪的方法测定以不溶性纤维素为底物发酵产纤维素酶过程中的生物量。通过对发酵液取样测定比较,结果发现,采用测定核酸的方法精密度最高,其RSD值为6.32%,该法同纤维素测定仪的方法均可用于精确测定以不溶性纤维素为底物发酵产纤维素酶过程中的生物量。酸洗干燥法的测定结果精密度较差一些,但由于操作简便,也可用于常规分析。而测定菌丝体蛋白的方法无论是在精密度上还是操作简便性上均不占优势,该方法可作为另外3种方法的补充。为以不溶性纤维素为底物发酵产纤维素酶过程中生物量的分析检测提供了选择方法的依据。  相似文献   

2.
通过单因素及正交试验对米曲霉(Aspergillus orza)C491产生聚半乳糖醛酸酶的发酵条件进行了优化。该菌株的摇床发酵滤液以桔子果胶为底物时酶活力可达344.8U/mL。产酶最适培养基组成为:麦芽汁(糖度6%)中添加6%桔皮粉,2%硫酸铵(w/v)。最适培养条件:起始pH4(灭菌前),30℃,r/min,培养112h。Tween80可以促进C-491产酶。  相似文献   

3.
假单胞菌产脂肪酶条件的初步探索   总被引:4,自引:1,他引:3  
对假单胞菌(Pseudomonassp)2106菌株产脂肪酶条件的初步探索表明,该菌株脂肪酶为组成型,不受油脂类底物的诱导。碳源的种类(单糖、双糖、多糖)和浓度对产酶影响不大,氮源以豆饼粉和玉米浆混合添加最好。最适发酵温度为32℃,摇瓶转速140r/min。实验中还通过正交试验优化了产酶培养基组成。  相似文献   

4.
前期通过基因工程手段,构建了一株大肠杆菌工程菌E.coli WL204,该菌株可以有效利用木糖为底物发酵产L-乳酸。以废纸为发酵原料,研究该菌株利用木质纤维素发酵产乳酸的特性。原料以稀硫酸预处理后,经纤维素酶酶解,得到的水解液用Ca(OH)2脱毒后,接种E.coli WL204,在7L发酵罐中发酵72h,每100g废纸可以产生31g乳酸,糖酸转化率为79%。结果表明,E.coli WL204可以木质纤维素原料为底物发酵生产L-乳酸,具有一定的工业化开发潜力。  相似文献   

5.
探索Bacillus pumilusWHK4以羽毛粉为底物产酶的最佳条件和最佳培养基组成。以羽毛粉发酵培养基为基础,首先采用单因子试验考察底物浓度、初始pH、接种量、外加碳源、外加氮源对WHK4产酶活力的影响。在单因子试验的基础上采用正交试验设计对底物浓度、温度、初始pH、接种量、外加(NH4)2SO4、外加麦芽糖进行优化。结果显示:Bacillus pumilusWHK4最佳的产酶条件为初始pH7.38,菌龄16 h,接种量5%,37℃。最佳的培养基组成为:1 L基础发酵培养基,40.0 g羽毛粉,10.0 g(NH4)2SO4和10.0 g麦芽糖。在优化的条件下Bacillus pumilusWHK4 24 h产蛋白酶活力为每毫升90 U。对培养条件和培养基的优化为Bacillus pumilusWHK4产蛋白酶的分离纯化奠定了基础。  相似文献   

6.
以甘蔗渣和麸皮混合作为固态发酵产酶培养基,采用单因素优化实验对里氏木霉固态发酵产纤维素酶进行优化。结果表明,在50 m L体系培养基中,在底物绝干原料5.2 g、甘蔗渣与麸皮质量比7∶3、氮源((NH4)2SO4)7.5 g/L、产酶诱导物1.6 g/L、表面活性剂(聚乙二醇PEG6000)0.1 g、发酵起始p H 4.4、培养基中里氏木霉孢子接入量5×105个的条件下,温度30℃时发酵120 h,里氏木霉固态发酵产纤维素酶的酶活达76.39 IU/g,是起始优化前20.29 IU/g的3.76倍。  相似文献   

7.
不同产纤维素酶菌种特定底物培养产酶活力比较   总被引:1,自引:0,他引:1  
纤维素酶是由几种不同酶组成的复合酶系,由于酶催化反应底物的复杂性,从不同霉菌和不同底物发酵分离得到的纤维素酶组分和酶活力有着很大差别.本论文的主要目的主要是针对不同底物和不同霉菌进行产纤维素酶活力比较评价.实验选用CGMCC3.3002 和CICC13048 两种菌,使用液体发酵法在微晶纤维素和糠醛渣两种底物上进行产酶培养,在特定的时间测定其产的纤维素酶的纤维二糖酶活力、内切葡聚糖酶活力、外切葡聚糖酶活力以及滤纸酶活.产滤纸酶活比较高的菌株CGMCC3.3002,以糠醛渣为特定底物的滤纸酶活要高于微晶纤维素特定底物,且CGMCC3.3002 在微晶纤维素和糠醛渣底物的酶活力差异较大,该菌株可通过紫外诱变使其酶活力更高,有望用于糠醛渣生产燃料乙醇的过程中.  相似文献   

8.
嗜热真菌DSM10635生产耐热木聚糖酶的小试研究   总被引:3,自引:0,他引:3  
应用嗜热真菌Thermomyces lanuginosus DSM10635,采用固体发酵的方法探索耐热木聚糖酶的优化生产条件。在研究玉米芯,玉米皮,玉米秆,麸皮,松树屑,桦树屑等不同底物,在不同温度、玉米芯颗粒大小以及料水比条件下培养比较酶产量后,发现该嗜热真菌产耐热木聚糖酶的最佳底物为玉米芯或玉米皮,最佳培养温度为50℃--55℃,在加水量为1份玉米芯:2.8份水,玉米芯的颗粒直径大约为1mm时产酶量最高。实验结果显示,嗜热真菌DSM10635在优化后的培养条件下木聚糖酶产量可达到12525.80IU/g玉米芯。  相似文献   

9.
从土壤中筛选出一株能将苯基环氧乙烷立体选择性水解为R-苯基乙二醇的环氧化物水解酶的黑曲霉SQ-6。对其产酶发酵条件进行了研究,最佳碳、氮源分别为2.0%蔗糖和2.0%玉米浆,最适初始pH为4.0,该酶不需诱导,同时还研究了其他发酵条件对产酶的影响。使用含酶细胞进行底物苯基环氧乙烷转化,产物(R)-苯基乙二醇转化率为41%,ee值为99%。  相似文献   

10.
考察纳豆杆菌在7.5 L发酵罐中分批发酵产纳豆激酶的条件,纳豆激酶酶活采用四肽底物测定。结果表明:纳豆杆菌生长和产酶的适宜条件不一致。发酵过程中发酵罐搅拌转速控制为500 r/min不变,0~12 h时控制pH为8.0、温度为37℃;12~36 h调整pH为7.0、温度为30℃;16 h时补加外源C源,连续发酵36 h。该过程中发酵液中比酶活最高达到3 232 U/mL,与摇瓶发酵相比,比酶活提高了58%。  相似文献   

11.
重组人碱性成纤维细胞生长因子工程菌的发酵工艺研究   总被引:3,自引:0,他引:3  
对大肠杆菌表达的rh-bFGF工程菌的发酵条件进行了研究,探讨了发酵条件对工程菌表达外源蛋白量及细菌收率的影响,优化了影响发酵的各种条件,如培养基配方,pH值,补料,诱导表达时机等,形成了一套工程菌发酵表达外源蛋白成熟工艺,并从工业化角度对工程菌的高密度,高表达间的关系进行了探讨。  相似文献   

12.
Lignocellulosic biomass contains a variety of carbohydrates, and their conversion into ethanol by fermentation requires an efficient microbial platform to achieve high yield, productivity, and final titer of ethanol. In recent years, growing attention has been devoted to the development of cellulolytic and saccharolytic thermophilic bacteria for lignocellulosic ethanol production because of their unique properties. First of all, thermophilic bacteria possess unique cellulolytic and hemicellulolytic systems and are considered as potential sources of highly active and thermostable enzymes for efficient biomass hydrolysis. Secondly, thermophilic bacteria ferment a broad range of carbohydrates into ethanol, and some of them display potential for ethanologenic fermentation at high yield. Thirdly, the establishment of the genetic tools for thermophilic bacteria has allowed metabolic engineering, in particular with emphasis on improving ethanol yield, and this facilitates their employment for ethanol production. Finally, different processes for second-generation ethanol production based on thermophilic bacteria have been proposed with the aim to achieve cost-competitive processes. However, thermophilic bacteria exhibit an inherent low tolerance to ethanol and inhibitors in the pretreated biomass, and this is at present the greatest barrier to their industrial application. Further improvement of the properties of thermophilic bacteria, together with the optimization production processes, is equally important for achieving a realistic industrial ethanol production.  相似文献   

13.
发酵生物制氢研究进展   总被引:16,自引:0,他引:16  
综述了近年来发酵生物制氢领域的研究进展?在菌种方面,除了对现有产氢菌种的深入研究外,还采用生物学,分子生物学及生物信息学手段建立产氢菌种库;在氢酶的研究方面,已逐步从基因确定、功能研究拓展到基因工程构建高效产氢菌研究:而在与废弃生物质处理相结合的反应过程方面,研究主要集中在利用不同种类的废弃物的产氢和高效产氢反应器上。此外,还初步总结了目前对发酵制氢可行性和经济性的评价,并对其发展方向提出了新的看法。  相似文献   

14.
Consolidated bioprocessing (CBP) of cellulosic biomass is a promising source of ethanol. This process uses anaerobic bacteria, their own cellulolytic enzymes and fermentation pathways that convert the products of cellulose hydrolysis to ethanol in a single reactor. However, the engineering and economics of the process remain questionable. The ruminal fermentation is a very highly developed natural cellulose-degrading system. We propose that breakthroughs developed by cattle and other ruminant animals in cellulosic biomass conversion can guide future improvements in engineered CBP systems. These breakthroughs include, among others, an elegant and effective physical pretreatment; operation at high solids loading under non-aseptic conditions; minimal nutrient requirements beyond the plant biomass itself; efficient fermentation of nearly all plant components; efficient recovery of primary fermentation end-products; and production of useful co-products. Ruminal fermentation does not produce significant amounts of ethanol, but it produces volatile fatty acids and methane at a rapid rate. Because these alternative products have a high energy content, efforts should be made to recover these products and convert them to other organic compounds, particularly transportation fuels.  相似文献   

15.
模拟青霉素发酵过程中菌体生长动态的细胞自动机模型   总被引:4,自引:1,他引:3  
在青霉素发酵生产机理及其动力学微分方程模型的基础上,建立了模拟青霉素分批发酵过程中菌体生长动态的细胞自动机模型(CABGM)。CABGM采用三维细胞自动机作为菌体生长空间,采用Moore型邻域作为细胞邻域,其演化规则根据青霉素分批发酵过程中菌体生长机理和动力学微分方程模型设计。CABGM中的每一个细胞既可代表单个的青霉素产生菌,又可代表特定数量的青霉素产生菌,它具有不同的状态。对CABGM进行了统计特性的理论分析和仿真实验,理论分析和仿真实验结果均证明了CABGM能一致地复现动力学微分方程模型所描述的青霉素分批发酵菌体生长过程。最后,对所建模型在实际生产过程中的应用问题进行了分析,指出了需要进一步研究的问题。  相似文献   

16.
【目的】探究清香型白酒中不同乳酸菌和酵母菌的相互作用,了解不同菌株的发酵性能,为更深入地认识白酒发酵机理、实现发酵过程优化提供理论基础。【方法】利用程序控温和固态发酵模拟清香型白酒酿造环境,测定纯培养和共培养中菌株的理化指标、活菌数以及主要代谢产物的变化。【结果】Saccharomyces cerevisiae YJ1糖消耗快产乙醇和酯类物质多,Lactobacillus plantarum JMRS4糖消耗快产酸较多。共培养中乳酸菌对Saccharomyces cerevisiae YJ1的生长和产乙醇抑制较大,对Candida aaseri MJ7产乙醇几乎无影响。乳酸菌对Pichia kudriavzevii MJ14的生物量和乙醇代谢抑制作用较小,还对其产己酸乙酯、乙酸乙酯和异戊醇等代谢产物有促进作用;而反过来Pichia kudriavzevii MJ14对3株乳酸菌产乳酸均有抑制作用,对产乙酸则有促进作用。【结论】建立了一种固态培养方法,结合清香型白酒发酵温度变化规律,有效模拟了实际发酵环境。Pichia kudriavzevii MJ14在与乳酸菌共培养中受到的抑制较小并能有效抑制乳酸菌产乳酸,Saccharomyces cerevisiae YJ1能代谢产生多种风味物质,对清香型白酒酿造有重要意义。  相似文献   

17.
Plant biomass possesses a huge potential as a source for biofuel production. The main components of biomass are glucose and five-carbon sugar xylose. The yeast Saccharomyces cerevisiae that is used for industrial ethanol production from glucose is unable to xylose fermentation. Therefore a microorganism capable for efficient fermentation of both glucose and xylose has to be found in nature or constructed for economically feasible biomass conversion to ethanol. The active xylose fermentation could be performed by increasing the efficiency of initial stages of xylose metabolism. In this review the enzymes of initial stages of xylose metabolism in yeasts (xylose reductase, xylitol dehydrogenase, xylulokinase) and bacteria (xylose isomerase and xylulokinase) are characterized. The ways for construction of yeast strains capable of efficient alcoholic xylose fermentation are discussed.  相似文献   

18.
对解淀粉乳酸细菌及其产生的淀粉酶和发酵工艺等方面的国内外研究现状进行了综述。解淀粉乳酸细菌具有分泌淀粉酶的能力,可免去原料水解处理工序直接发酵淀粉质原料生产乳酸,可以简化生产工艺,并可节约设备投资,进而降低生产成本。解淀粉乳酸细菌主要分离自传统发酵食品,也可从有机废弃物和厨余垃圾中分离得到。介绍了解淀粉乳酸细菌直接利用淀粉质原料的机理,比较了解淀粉乳酸菌发酵生产L-乳酸的工艺。提出通过诱变育种和基因工程育种等方法获得更加高效的解淀粉乳酸细菌,并结合先进的发酵、分离技术来提高乳酸生产效率。  相似文献   

19.
Yield and productivity are critical for the economics and viability of a bioprocess. In metabolic engineering the main objective is the increase of a target metabolite production through genetic engineering. Metabolic engineering is the practice of optimizing genetic and regulatory processes within cells to increase the production of a certain substance. In the last years, the development of recombinant DNA technology and other related technologies has provided new tools for approaching yields improvement by means of genetic manipulation of biosynthetic pathway. Industrial microorganisms like Escherichia coli, Actinomycetes, etc. have been developed as biocatalysts to provide new or to optimize existing processes for the biotechnological production of chemicals from renewable plant biomass. The factors like oxygenation, temperature and pH have been traditionally controlled and optimized in industrial fermentation in order to enhance metabolite production. Metabolic engineering of bacteria shows a great scope in industrial application as well as such technique may also have good potential to solve certain metabolic disease and environmental problems in near future.  相似文献   

20.
Lactic acid is an industrially important product with a large and rapidly expanding market due to its attractive and valuable multi-function properties. The economics of lactic acid production by fermentation is dependent on many factors, of which the cost of the raw materials is very significant. It is very expensive when sugars, e.g., glucose, sucrose, starch, etc., are used as the feedstock for lactic acid production. Therefore, lignocellulosic biomass is a promising feedstock for lactic acid production considering its great availability, sustainability, and low cost compared to refined sugars. Despite these advantages, the commercial use of lignocellulose for lactic acid production is still problematic. This review describes the “conventional” processes for producing lactic acid from lignocellulosic materials with lactic acid bacteria. These processes include: pretreatment of the biomass, enzyme hydrolysis to obtain fermentable sugars, fermentation technologies, and separation and purification of lactic acid. In addition, the difficulties associated with using this biomass for lactic acid production are especially introduced and several key properties that should be targeted for low-cost and advanced fermentation processes are pointed out. We also discuss the metabolism of lignocellulose-derived sugars by lactic acid bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号