首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malignantly transformed mouse fibroblasts synthesize and secrete large amounts of major excreted protein (MEP), a 39,000-dalton precursor to an acid protease (cathepsin L). To evaluate the possible role of this protease in the transformed phenotype, we transfected cloned genes for mouse or human MEP into mouse NIH 3T3 cells with an expression vector for the dominant, selectable human multidrug resistance (MDR1) gene. The cotransfected MEP sequences were efficiently coamplified and transcribed during stepwise selection for multidrug resistance in colchicine. The transfected NIH 3T3 cell lines containing amplified MEP sequences synthesized as much MEP as did Kirsten sarcoma virus-transformed NIH 3T3 cells. The MEP synthesized by cells transfected with the cloned mouse and human MEP genes was also secreted. Elevated synthesis and secretion of MEP by NIH 3T3 cells did not change the nontransformed phenotype of these cells.  相似文献   

2.
Modulation of the transport of a lysosomal enzyme by PDGF   总被引:2,自引:0,他引:2       下载免费PDF全文
The major excreted protein (MEP) of transformed mouse fibroblasts is the lysosomal protease, cathepsin L. MEP is also secreted by untransformed mouse cells in response to growth factors and tumor promoters, and is thought to play a role in cell growth and transformation. To determine the relationship between MEP synthesis and MEP secretion, we have examined these events in PDGF-treated NIH 3T3 cells. PDGF enhanced MEP synthesis and caused the diversion of MEP from the lysosomal delivery pathway to a secretory pathway. These two effects were found to be regulated independently at various times after growth factor addition. Short PDGF treatments (0.5 or 1 h) resulted in quantitative secretion of MEP although synthesis was near the control level. High levels of both synthesis and secretion occurred between 2 and 14 h of PDGF treatment. Between 18 and 30 h, the amount of secreted MEP returned to the low control level even though synthesis remained elevated. The secretion was specific for MEP; other lysosomal enzymes were not found in the media from PDGF-treated cells. PDGF-induced secretion of MEP was inhibited 84% by cycloheximide, suggesting that protein synthesis is required to elicit this effect. PDGF also caused a time-dependent increase in mannose 6-phosphate (Man-6-P) receptor-mediated endocytosis. These data support a model in which PDGF alters the distribution of Man-6-P receptors such that the Golgi concentration of receptors becomes limiting, thereby causing the selective secretion of the low affinity ligand, MEP.  相似文献   

3.
Studies in recent years have indicated that secretion of certain lysosomal hydrolases can be enhanced under various conditions. One such protein, the major excreted protein (MEP) of Kirsten virus-transformed NIH 3T3 (KNIH) fibroblasts, is a lysosomal cysteine protease whose synthesis and secretion are affected by viral transformation and growth factors. We have been studying the synthesis and transport of MEP in order to understand better the mechanisms responsible for regulation of lysosomal enzyme secretion. Synthesis of MEP in KNIH cells was found to be 25-fold greater than that in untransformed NIH cells, and 94% of the MEP made was secreted. This was in contrast to NIH cells which secreted only 11% of the newly synthesized MEP. The high level of secretion by the transformed cells was relatively specific in that most other lysosomal enzymes were retained. MEP isolated from both NIH and KNIH cells exhibited a low intrinsic affinity for the mannose-6-phosphate receptor which was at least 10-fold lower than that of other lysosomal enzymes. On the basis of these results, we suggest that both the high level of MEP synthesis and the intrinsic low affinity of MEP for the receptor are responsible for the specific increase in MEP secretion by transformed cells.  相似文献   

4.
The major excreted protein (MEP) of transformed mouse fibroblasts is a mannose 6-phosphate-containing glycoprotein whose synthesis and secretion are increased in malignantly transformed 3T3 cells and whose synthesis is increased by treatment of 3T3 cells with tumor promoters or growth factors. When pulse-labeled extracts from Kirsten virus-transformed NIH 3T3 (KNIH) cells were immunoprecipitated using an antibody against secreted MEP, one cellular protein was immunoprecipitated that had the same molecular weight and tryptic peptide map as the secreted protein. Pulse-chase labeling experiments showed that 50-60% of this 39,000-mol-wt form was secreted in transformed cells. Of the 40-50% remaining, approximately 5% was processed into two lower molecular weight forms (29,000 and 20,000) which are sequestered within the cell. Similar processing of these proteins was observed in the nontransformed parent NIH 3T3 (NIH) cells. However, in NIH cells, much less of the synthesized MEP was secreted. Measurements of steady-state levels of these three forms of cellular MEP by Western blot immunolocalization revealed approximately fourfold more MEP in KNIH cells than in NIH cells as well as differences in the relative distribution of MEP forms in transformed and nontransformed cells. Subcellular fractionation of KNIH cells on a Percoll gradient demonstrated a distribution of total MEP similar to that of several lysosomal enzymes. The light lysosomal/Golgi peak from these gradients contained both the precursor 39,000-mol-wt form of MEP and the 20,000-mol-wt form, whereas the heavy lysosomal peak was enriched in the 20,000-mol-wt form. The distribution of MEP forms was found to be similar in NIH cells except that the 29,000-mol-wt form was also seen to be enriched in the heavy lysosomal peak. This biochemical localization of MEP was confirmed by immunolocalization with light and electron microscopy. These data support the hypothesis that MEP is a lysosomal protein that is secreted by transformed cells.  相似文献   

5.
6.
7.
8.
The platelet-derived growth factor (PDGF) stimulates density-arrested BALB/c-3T3 cells to synthesize a protein (pII; Mr, 35,000) that is constitutively synthesized by spontaneously transformed BALB/c-3T3 (ST2-3T3) cells which do not require PDGF for growth. Antisera against a major excreted protein family (MEP) of retrovirus-transformed cells quantitatively precipitated cellular pII. PDGF-stimulated pII has the same molecular weight, a similar charge, and similar antigenic determinants as authentic MEP isolated from ST2-3T3 or retrovirus-transformed cells. MEP represented about 2% of the nonnuclear proteins synthesized by ST2-3T3 cells and 0.3 to 0.6% of the proteins synthesized by PDGF-treated BALB/c-3T3 cells, a three- to sixfold increase over the background. In BALB/c-3T3 cells, less PDGF was required for pII (MEP) synthesis than for DNA synthesis. PDGF induced a selective increase in pII (MEP) within 40 min. Such preferential synthesis was inhibited by brief treatment with actinomycin D, suggesting a requirement for newly formed RNA. The constitutive synthesis of pII (MEP) by ST2-3T3 cells was not inhibited by actinomycin D. Five spontaneously or chemical carcinogen-transformed tumorigenic BALB/c-3T3 cell lines were studied; they neither required PDGF for growth nor responded to it. These cell lines became arrested at confluence with a G1 DNA content. Each of these independently isolated lines synthesized pII (MEP) constitutively. Thus, the synthesis of pII (MEP) may be required, but is not sufficient, for PDGF-modulated DNA synthesis.  相似文献   

9.
10.
The major excreted protein (MEP) of malignantly transformed mouse fibroblasts is a secreted thiol proteinase. Sequencing of the MEP cDNA shows the coding region for the protein to be identical with the sequence for a mouse cysteine proteinase isolated from macrophages, but the MEP cDNA is polyadenylated at a different site in the 3' non-coding region. Strong homology of MEP with human cathepsin L suggests that MEP is the mouse analogue of cathepsin L. Amino acid sequencing of the N-terminus of the secreted form of MEP indicates that, during secretion, the polypeptide is cleaved between amino acids 17 and 18. We have placed the MEP cDNA in a eukaryotic expression vector and demonstrated the production of the 39 kDa polypeptide form of mouse MEP in monkey CV-1 cells.  相似文献   

11.
Jaagsiekte sheep retrovirus (JSRV) is a simple betaretrovirus causing a contagious lung cancer of sheep. JSRV encodes unspliced and spliced viral RNAs, among which unspliced RNA encodes Gag and Pol proteins and a singly spliced mRNA encodes Env protein. In another study we found that JSRV encodes a regulatory protein, Rej, that is responsible for synthesis of Gag polyprotein from unspliced viral RNA. Rej is encoded in the 5′ end of env, and it enhances nuclear export or accumulation of cytoplasmic unspliced viral RNA in 293T cells but not in most other cell lines (A. Hofacre, T. Nitta, and H. Fan, J. Virol. 83:12483-12498, 2009). In this study, we found that mutations in the 3′ end of env in the context of a cytomegalovirus-driven full-length JSRV expression construct abolished Gag protein synthesis and released viruses in 293T cells. These mutants also showed deficits in accumulation of unspliced viral RNA in the cytoplasm. These mutants defined a Rej-responsive element (RejRE). Inhibition of CRM1 but not Tap function prevented nuclear export/accumulation of cytoplasmic unspliced RNA in 293T cells, similarly to other complex retroviruses that express analogous regulator proteins (e.g., human immunodeficiency virus Rev). Structural modeling of the RejRE with Zuker M-fold indicated a region with a predicted stable secondary structure. Mutational analysis in this region indicated the importance of both secondary structures and primary nucleotide sequences in a central stem-bulge-stem structure. In contrast to 293T cells, mutations in the RejRE did not affect the levels of cytoplasmic unspliced RNA in 293 cells, although the unspliced RNA showed partial degradation, perhaps due to lack of translation. RejRE-containing RNA relocalized Rej protein from the nucleus to the cytoplasm in 293 and rat 208F cells, suggesting binding of Rej to the RejRE.Jaagsiekte sheep retrovirus (JSRV) is a betaretrovirus that causes ovine pulmonary adenocarcinoma, an infectious lung tumor of sheep (10, 29). Ovine pulmonary adenocarcinoma has morphological resemblance to a human lung cancer, bronchioloalveolar carcinoma, which is only weakly associated with cigarette smoking. In recent years, complete infectious and oncogenic molecular clones of JSRV have been isolated (30). We and others found that the JSRV envelope (Env) protein also functions as an oncogene in that it can induce morphological transformation of fibroblast and epithelial cell lines in culture and tumors in animals (1, 24, 34). Further studies have demonstrated that amino acids in the cytoplasmic tail of the Env transmembrane (TM) protein are important for transformation, as are multiple domains in the surface (SU) protein (17, 18).The nuclear export of mRNA is a critical step in gene expression. All retroviruses employ unspliced genome-length RNA as mRNA for synthesis of Gag and Pol proteins, while splicing yields mRNA(s) for Env (and other) proteins (15). Thus, genome-length mRNA for Gag and Pol is equivalent to an unspliced precursor for Env mRNA. A key issue for retroviruses is how they transport unspliced genome-length RNA to the cytoplasm. This is accomplished by two general mechanisms. The human immunodeficiency virus type 1 (HIV-1) Rev protein (encoded by a doubly spliced mRNA) specifically binds to a Rev-responsive element (RRE), located in RNA of the env gene. The Rev/RRE complex recruits the cellular CRM1/Xpo1 protein (as well as other cellular proteins), which results in transport of this RNA-protein complex to the cytoplasm (7). Similarly, human T-cell leukemia virus type 1 (HTLV-1) Rex protein binds a Rex-responsive element on viral RNA, resulting in export via the CRM1 pathway (21). The betaretroviruses mouse mammary tumor virus (MMTV) and human endogenous retrovirus K (HERV-K) also encode analogous regulatory proteins (Rem and Rec, respectively) (19, 22, 27).In contrast, the betaretroviruses Mason-Pfizer monkey virus (MPMV) and simian retrovirus (SRV) contain constitutive RNA export elements (constitutive transport elements [CTEs]) that facilitate nuclear export of unspliced RNA (4, 41). The MPMV CTE is located between env and the 3′ long terminal repeat (LTR); it binds to the cellular trans-acting factor NXF1/Tap, which directs nuclear export of the RNA-protein complex to the cytoplasm (14). Rous sarcoma virus and the related avian leukosis viruses contain direct repeat sequences flanking the src gene or in the 3′ untranslated region of their RNA (28). Structure-function analyses of these RNA-exporting elements revealed specific stem-loop structures that are important for activity and for binding of the host cell factors (3).Like other betaretroviruses, JSRV contains the standard genes gag, pro, pol, and env. In addition we recently found that JSRV also encodes a regulatory factor, Rej (17a). Rej is reminiscent of MMTV Rem and HERV-K Rec in that it is encoded in the 5′ end of env and it is required for efficient synthesis of Gag protein. We found that Rej is required for translation of unspliced viral RNA, and in 293T cells it also enhances accumulation of cytoplasmic unspliced viral RNA in the cytoplasm. In the results presented here, we show that JSRV RNA also contains a Rej-responsive element (RejRE) in the 3′ end of env that is required for translation of Gag protein and efficient export or accumulation of unspliced viral RNA in the cytoplasm in 293T cells. Mutational analyses of RejRE based on M-fold suggest that both primary sequences and secondary structures in this region play important roles in nuclear export or accumulation of unspliced viral RNA in the cytoplasm and Gag synthesis. This accumulation is independent of Tap but dependent on CRM1. Moreover, Rej protein was exported from the nucleus to the cytoplasm in cells expressing wild-type JSRV RNA but not RejRE mutants, suggesting binding of Rej protein to the RejRE.  相似文献   

12.
Treatment of chicken embryo frbroblasts (CEF) with the tumor promoter, phorbol myristate accetate (PMA), resulted in a rapid increase in their ability to synthesize the glycosaminoglycan, hyaluronic acid (HA), whereas the parent compound, phorbol, had no effect. CEF cultures incubated with PMA (100 ng/ml) for 6 h resulted in a 15-fold increase in HA synthetase activity compared with phorbol-treated control cultures. The incorporation of [3H]acetate into HA and chemical determination of this polymer also demonstrated increased synthesis of HA by cells treated with PMA. We have previously shown that CEF infected with a temperature-sensitive mutant of Rous sarcoma virus, LA24, exhibit increased synthesis of HA upon transformation. PMA treatment of cells transformed with RSV-LA24 results in a further 1.5-fold stimulation of HA synthesis. These data indicate that PMA causes an increased synthesis of HA in CEF which is analogous to the increased synthesis of HA found in virally transformed CEF.  相似文献   

13.
14.
Extract of saffron (Crocus sativis) has previously been shown to inhibit colony formation and cellular DNA and RNA synthesis by HeLa cells in vitro. In order to compare the sensitivity of malignant and non-malignant cells to saffron, we examined the effect of the extract on macromolecular synthesis in three human cell lines: A549 cells (derived from a lung tumor), WI-38 cells (normal lung fibroblasts) and VA-13 cells (WI-38 cells transformed in vitro by SV40 tumor virus). We found that the malignant cells were more sensitive than the normal cells to the inhibitory effects of saffron on both DNA and RNA synthesis. There was no effect on protein synthesis in any of the cells.  相似文献   

15.
J Pouysségur  R P Shiu  I Pastan 《Cell》1977,11(4):941-947
Following transformation of chick embryo fibroblasts (CEF) by avian RNA tumor viruses, two membrane polypeptides with apparent molecular weights of 90,000 and 75,000 daltons have been found to be increased (Stone, Smith and Joklik, 1974). We find that this alteration in membrane proteins is not directly related to transformation.The 90,000 and 75,000 dalton proteins are present in increased amounts in a 3T3 fibroblast mutant (AD6) defective in glycoprotein synthesis. Feeding the mutant N-acetylglucosamine, a metabolite that bypasses the metabolic block, restores the amount of these two proteins to the levels found in normal cells. The 75,000 dalton protein is markedly reduced, and the 90,000 dalton protein disappears and is replaced by a fully glycosylated derivative with a molecular weight of 92,000 daltons.Two glucose derivatives, glucosamine and 2-deoxyglucose, are known to interfere with the glycosylation process. The addition of these substances to normal CEF and 3T3 cells specifically induces the accumulation of the 90,000 and 75,000 dalton membrane polypeptides.Finally, the deprivation of glucose for 24–48 hr also induces the synthesis of the 90,000 and 75,000 dalton polypeptides in normal fibroblasts. The induction of these two proteins by glucose starvation suggests that they have a role in glucose utilization.  相似文献   

16.
17.
18.
Malignant transformation of mouse cells by a variety of agents or treatment with the tumor promoter 12-O-tetradecanoylphorbol 13-acetate or platelet-derived growth factor results in increased synthesis and secretion of a 39,000-dalton protein termed major excreted protein (MEP). We report here that secreted MEP is an acid-activable protease. The secreted precursor form of the protease is auto-activated at low pH and is able to digest a variety of proteins, including the extracellular matrix proteins fibronectin, collagen, and laminin. MEP protease activity has pH optimum of 3.3-3.6 and is temperature- and concentration-dependent. The activity is inhibited by sulfhydryl protease inhibitors such as leupeptin and iodoacetic acid and not by metallo-, seryl-, or carboxyprotease inhibitors. The MEP-derived protease has characteristics distinct from the cathepsins previously reported and thus may be a new acid-protease of mouse cells.  相似文献   

19.
We have compared the polypeptide products of the src gene of several strains of Rous sarcoma virus produced by in vitro translation of heat-denatured 70S virion RNA in the nuclease-treated reticulocyte lysate with those present in chick cells transformed by these viruses. We have done this by immunoprecipitation, using sera from rabbits injected at birth with Schmidt-Ruppin Rous sarcoma virus. In vitro translation results in the synthesis of at least nine polypeptides which appear to be encoded by the src gene. These range in size from 17,000 to 60,000 daltons. The sera from tumor-bearing rabbits precipitated these polypeptides arising from the in vitro translation of RNA from Schmidt-Ruppin Rous sarcoma virus of both subgroup A and subgroup D and from one stock of Prague Rous sarcoma virus of subgroup C. In each case, all of this family of related polypeptides could be precipitated except the smallest, the 17,000-dalton polypeptide. No precipitation of analogous polypeptides resulting from the translation of RNA from other strains of Rous sarcoma virus was observed. Cells transformed by these three strains of Rous sarcoma virus contain easily detectable amounts of a polypeptide, p60src, essentially identical to the 60,000-dalton in vitro product. With one exception, they do not contain significant amounts of polypeptides analogous to the smaller in vitro products which can be precipitated by these sera. Cells transformed by one stock of Schmidt-Ruppin Rous sarcoma virus of subgroup A did contain a 39,000-dalton polypeptide, which was related, by peptide mapping, to the 60,000-dalton polypeptide and was similar in size to a precipitable in vitro product. The 60,000-dalton polypeptide present in transformed cells appeared to be phosphorylated 10 to 25 min after its synthesis, metabolically very stable, and not derived from a precursor polypeptide. All immunoprecipitates from transformed cells which contained p60src also contained an 80,000-dalton phosphoprotein. This polypeptide is unrelated to p60src, as determined by peptide mapping, and may well be a host cell polypeptide which is specifically associated with p60src.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号