首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Growing genetic regulatory networks from seed genes   总被引:2,自引:0,他引:2  
MOTIVATION: A number of models have been proposed for genetic regulatory networks. In principle, a network may contain any number of genes, so long as data are available to make inferences about their relationships. Nevertheless, there are two important reasons why the size of a constructed network should be limited. Computationally and mathematically, it is more feasible to model and simulate a network with a small number of genes. In addition, it is more likely that a small set of genes maintains a specific core regulatory mechanism. RESULTS: Subnetworks are constructed in the context of a directed graph by beginning with a seed consisting of one or more genes believed to participate in a viable subnetwork. Functionalities and regulatory relationships among seed genes may be partially known or they may simply be of interest. Given the seed, we iteratively adjoin new genes in a manner that enhances subnetwork autonomy. The algorithm is applied using both the coefficient of determination and the Boolean-function influence among genes, and it is illustrated using a glioma gene-expression dataset. AVAILABILITY: Software for the seed-growing algorithm will be available at the website for Probabilistic Boolean Networks: http://www2.mdanderson.org/app/ilya/PBN/PBN.htm  相似文献   

3.
Eriksson R  Olsson B 《Bio Systems》2004,76(1-3):217-227
In this paper, we focus on the task of adapting genetic regulatory models based on gene expression data from microarrays. Our approach aims at automatic revision of qualitative regulatory models to improve their fit to expression data. We describe a type of regulatory model designed for this purpose, a method for predicting the quality of such models, and a method for adapting the models by means of genetic programming. We also report experimental results highlighting the ability of the methods to infer models on a number of artificial data sets. In closing, we contrast our results with those of alternative methods, after which we give some suggestions for future work.  相似文献   

4.
A major part of biological processes can be modeled as dynamical systems (DS), that is, as a time-varying state. In this article, we advocate a declarative approach for prototyping the simulation of DS. We introduce the concepts of collection, stream and fabric. A fabric is a multi-dimensional object that represents the successive values of a structured set of variables. A declarative programming language, called 8 1/2 has been developed to support the concept of fabrics. Several examples of working 8 1/2 programs are given to illustrate the relevance of the fabric data structure for simulation applications and to show how recursive fabric definitions can be easily used to model various biological phenomena in a natural way (a resolution of PDE, a simulation in artificial life, the Turing diffusion-reaction process and various examples of genetic networks). In the conclusion, we recapitulate several lessons we have learned from the 8 1/2 project.  相似文献   

5.
We present an approximation scheme for deriving reaction rate equations of genetic regulatory networks. This scheme predicts the timescales of transient dynamics of such networks more accurately than does standard quasi-steady state analysis by introducing prefactors to the ODEs that govern the dynamics of the protein concentrations. These prefactors render the ODE systems slower than their quasi-steady state approximation counterparts. We introduce the method by examining a positive feedback gene regulatory network, and show how the transient dynamics of this network are more accurately modeled when the prefactor is included. Next, we examine the repressilator, a genetic oscillator, and show that the period, amplitude, and bifurcation diagram defining the onset of the oscillations are better estimated by the prefactor method. Finally, we examine the consequences of the method to the dynamics of reduced models of the phage lambda switch, and show that the switching times between the two states is slowed by the presence of the prefactor that arises from protein multimerization and DNA binding.  相似文献   

6.
Chen PC  Chen JW 《Bio Systems》2007,90(2):535-545
This paper presents an approach for controlling gene networks based on a Markov chain model, where the state of a gene network is represented as a probability distribution, while state transitions are considered to be probabilistic. An algorithm is proposed to determine a sequence of control actions that drives (without state feedback) the state of a given network to within a desired state set with a prescribed minimum or maximum probability. A heuristic is proposed and shown to improve the efficiency of the algorithm for a class of genetic networks.  相似文献   

7.
8.
Structural systems identification of genetic regulatory networks   总被引:2,自引:0,他引:2  
MOTIVATION: Reverse engineering of genetic regulatory networks from experimental data is the first step toward the modeling of genetic networks. Linear state-space models, also known as linear dynamical models, have been applied to model genetic networks from gene expression time series data, but existing works have not taken into account available structural information. Without structural constraints, estimated models may contradict biological knowledge and estimation methods may over-fit. RESULTS: In this report, we extended expectation-maximization (EM) algorithms to incorporate prior network structure and to estimate genetic regulatory networks that can track and predict gene expression profiles. We applied our method to synthetic data and to SOS data and showed that our method significantly outperforms the regular EM without structural constraints. AVAILABILITY: The Matlab code is available upon request and the SOS data can be downloaded from http://www.weizmann.ac.il/mcb/UriAlon/Papers/SOSData/, courtesy of Uri Alon. Zak's data is available from his website, http://www.che.udel.edu/systems/people/zak.  相似文献   

9.
Coarse-grained reverse engineering of genetic regulatory networks   总被引:4,自引:0,他引:4  
Wahde M  Hertz J 《Bio Systems》2000,55(1-3):129-136
We have modeled genetic regulatory networks in the framework of continuous-time recurrent neural networks. A method for determining the parameters of such networks, given expression level time series data, is introduced and evaluated using artificial data. The method is also applied to a set of actual expression data from the development of rat central nervous system.  相似文献   

10.
Robustness and evolvability in genetic regulatory networks   总被引:3,自引:0,他引:3  
Living organisms are robust to a great variety of genetic changes. Gene regulation networks and metabolic pathways self-organize and reaccommodate to make the organism perform with stability and reliability under many point mutations, gene duplications and gene deletions. At the same time, living organisms are evolvable, which means that these kind of genetic perturbations can eventually make the organism acquire new functions and adapt to new environments. It is still an open problem to determine how robustness and evolvability blend together at the genetic level to produce stable organisms that yet can change and evolve. Here we address this problem by studying the robustness and evolvability of the attractor landscape of genetic regulatory network models under the process of gene duplication followed by divergence. We show that an intrinsic property of this kind of networks is that, after the divergence of the parent and duplicate genes, with a high probability the previous phenotypes, encoded in the attractor landscape of the network, are preserved and new ones might appear. The above is true in a variety of network topologies and even for the case of extreme divergence in which the duplicate gene bears almost no relation with its parent. Our results indicate that networks operating close to the so-called "critical regime" exhibit the maximum robustness and evolvability simultaneously.  相似文献   

11.
An evolutionary model of genetic regulatory networks is developed, based on a model of network encoding and dynamics called the Artificial Genome (AG). This model derives a number of specific genes and their interactions from a string of (initially random) bases in an idealized manner analogous to that employed by natural DNA. The gene expression dynamics are determined by updating the gene network as if it were a simple Boolean network. The generic behaviour of the AG model is investigated in detail. In particular, we explore the characteristic network topologies generated by the model, their dynamical behaviours, and the typical variance of network connectivities and network structures. These properties are demonstrated to agree with a probabilistic analysis of the model, and the typical network structures generated by the model are shown to lie between those of random networks and scale-free networks in terms of their degree distribution. Evolutionary processes are simulated using a genetic algorithm, with selection acting on a range of properties from gene number and degree of connectivity through periodic behaviour to specific patterns of gene expression. The evolvability of increasingly complex patterns of gene expression is examined in detail. When a degree of redundancy is introduced, the average number of generations required to evolve given targets is reduced, but limits on evolution of complex gene expression patterns remain. In addition, cyclic gene expression patterns with periods that are multiples of shorter expression patterns are shown to be inherently easier to evolve than others. Constraints imposed by the template-matching nature of the AG model generate similar biases towards such expression patterns in networks in initial populations, in addition to the somewhat scale-free nature of these networks. The significance of these results on current understanding of biological evolution is discussed.  相似文献   

12.
13.
14.
MOTIVATION: Methods available for the inference of genetic regulatory networks strive to produce a single network, usually by optimizing some quantity to fit the experimental observations. In this article we investigate the possibility that multiple networks can be inferred, all resulting in similar dynamics. This idea is motivated by theoretical work which suggests that biological networks are robust and adaptable to change, and that the overall behavior of a genetic regulatory network might be captured in terms of dynamical basins of attraction. RESULTS: We have developed and implemented a method for inferring genetic regulatory networks for time series microarray data. Our method first clusters and discretizes the gene expression data using k-means and support vector regression. We then enumerate Boolean activation-inhibition networks to match the discretized data. Finally, the dynamics of the Boolean networks are examined. We have tested our method on two immunology microarray datasets: an IL-2-stimulated T cell response dataset and a LPS-stimulated macrophage response dataset. In both cases, we discovered that many networks matched the data, and that most of these networks had similar dynamics. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

15.
Multivariate analysis of noise in genetic regulatory networks   总被引:4,自引:0,他引:4  
Stochasticity is an intrinsic property of genetic regulatory networks due to the low copy numbers of the major molecular species, such as, DNA, mRNA, and regulatory proteins. Therefore, investigation of the mechanisms that reduce the stochastic noise is essential in understanding the reproducible behaviors of real organisms and is also a key to design synthetic genetic regulatory networks that can reliably work. We use an analytical and systematic method, the linear noise approximation of the chemical master equation along with the decoupling of a stoichiometric matrix. In the analysis of fluctuations of multiple molecular species, the covariance is an important measure of noise. However, usually the representation of a covariance matrix in the natural coordinate system, i.e. the copy numbers of the molecular species, is intractably complicated because reactions change copy numbers of more than one molecular species simultaneously. Decoupling of a stoichiometric matrix, which is a transformation of variables, significantly simplifies the representation of a covariance matrix and elucidates the mechanisms behind the observed fluctuations in the copy numbers. We apply our method to three types of fundamental genetic regulatory networks, that is, a single-gene autoregulatory network, a two-gene autoregulatory network, and a mutually repressive network. We have found that there are multiple noise components differently originating. Each noise component produces fluctuation in the characteristic direction. The resulting fluctuations in the copy numbers of the molecular species are the sum of these fluctuations. In the examples, the limitation of the negative feedback in noise reduction and the trade-off of fluctuations in multiple molecular species are clearly explained. The analytical representations show the full parameter dependence. Additionally, the validity of our method is tested by stochastic simulations.  相似文献   

16.
Robust stability of stochastic delayed genetic regulatory networks   总被引:1,自引:0,他引:1  
Gene regulation is an intrinsically noisy process, which is subject to intracellular and extracellular noise perturbations and environment fluctuations. In this paper, we consider the robust stability analysis problem of genetic regulatory networks with time-varying delays and stochastic perturbation. Different from other papers, the genetic regulate system considers not only stochastic perturbation but also parameter disturbances, it is in close proximity to the real gene regulation process than determinate model. Based on the Lyapunov functional theory, sufficient conditions are given to ensure the stability of the genetic regulatory networks. All the stability conditions are given in terms of LMIs which are easy to be verified. Illustrative examples are presented to show the effectiveness of the obtained results.  相似文献   

17.
18.
Probabilistic Boolean networks (PBNs) have recently been introduced as a promising class of models of genetic regulatory networks. The dynamic behaviour of PBNs can be analysed in the context of Markov chains. A key goal is the determination of the steady-state (long-run) behaviour of a PBN by analysing the corresponding Markov chain. This allows one to compute the long-term influence of a gene on another gene or determine the long-term joint probabilistic behaviour of a few selected genes. Because matrix-based methods quickly become prohibitive for large sizes of networks, we propose the use of Monte Carlo methods. However, the rate of convergence to the stationary distribution becomes a central issue. We discuss several approaches for determining the number of iterations necessary to achieve convergence of the Markov chain corresponding to a PBN. Using a recently introduced method based on the theory of two-state Markov chains, we illustrate the approach on a sub-network designed from human glioma gene expression data and determine the joint steadystate probabilities for several groups of genes.  相似文献   

19.

Background  

The reconstruction of genetic regulatory networks from microarray gene expression data has been a challenging task in bioinformatics. Various approaches to this problem have been proposed, however, they do not take into account the topological characteristics of the targeted networks while reconstructing them.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号