首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Immature oocytes of the starfish, Asterina pectinifera, are polyspermic. Spermatozoa can enter immature oocytes upon insemination, but the changes associated with the fertilization process in oocytes matured with 1-methyladenine (1-MeAde), such as the formation of aster and pronucleus, were not observed. After immature oocytes, previously inseminated, were matured with 1-MeAde, the formation of the sperm monaster was observed during germinal vesicle breakdown (GVBD). Amphiasters and pronuclei were formed after the formation of the second polar body. The acquisition by oocytes of the capacity to undergo the normal process of fertilization, therefore, occurs during the course of oocyte maturation. After injection of the cytoplasm of maturing oocytes into inseminated immature oocytes, the formation of aster and pronucleus was observed, suggesting that maturation-promoting factor (MPF) may be involved in establishing the cytoplasmic conditions (cytoplasmic maturity) necessary for the fertilization process to occur. In contrast, when enucleated, inseminated halves of immature oocytes were treated with 1-MeAde, only monasters were formed, while in the nucleated halves both amphiasters and sperm pronuclei were formed. Thus, germinal vesicle material is required for the formation of amphiaster and sperm pronucleus but not for the formation of monaster. It is possible that the amount of MPF produced in enucleated halves was sufficient only for the formation of the monaster but not for the formation of the amphiaster and pronucleus, since it has been previously established that germinal vesicle material is necessary for the amplification of MPF. The formation of the monaster in the enucleated halves at a time corresponding to GVBD in nucleated controls suggests that the amount of MPF needed for this event is rather small. For the induction of subsequent fertilization process, large amounts of MPF may be required to establish the necessary cytoplasmic conditions, although other possible role of nuclear material is not excluded.  相似文献   

2.
In a previous study we have shown that the addition of growth hormone (GH) during in vitro maturation accelerates nuclear maturation, induces cumulus expansion, and promotes subsequent cleavage and embryonic development. The aim of this study was to investigate whether the promotory effect of GH on subsequent cleavage and blastocyst formation is due to an improved fertilization and whether this effect is caused by an improved cytoplasmic maturation of the oocyte. Therefore, bovine cumulus oocyte complexes (COCs) were cultured for 22 hours in M199 supplemented with 100 ng/ml bovine GH (NIH-GH-B18). Subsequently the COCs were fertilized in vitro. Cultures without GH served as controls. To verify whether the promoted fertilization is caused by the effect of GH on cumulus expansion or oocyte maturation, cumulus cells were removed from the oocytes after in vitro maturation (IVM) and denuded MII oocytes were selected and fertilized in vitro. Both IVM and in vitro fertilization (IVF) were performed at 39°C in a humidified atmosphere with 5% CO2 in air. At 18 hours after the onset of fertilization, the nuclear stage of the oocytes was assessed using 4,6-diamino-2-phenylindole (DAPI) staining. Oocytes with either an metaphase I (MI) or MII nuclear stage and without penetrated sperm head were considered unfertilized; oocytes with two pronuclei, zygotes, and cleaved embryos were considered normally fertilized; and oocytes with more than two pronuclei were considered polyspermic. To evaluate cytoplasmic maturation, the distribution of cortical granules 22 hours after the onset of IVM, and sperm aster formation 8 hours after the onset of fertilization were assessed. In addition, to assess the sperm-binding capacity, COCs were fertilized in vitro, and 1 hour after the onset of fertilization the number of spermatozoa bound to the oocytes was counted. The addition of GH during IVM significantly (P < 0.001) enhanced the proportion of normal fertilized oocytes. Removal of the cumulus cells prior to fertilization and selection of the MII oocytes did not eliminate the positive effect of GH on fertilization. No effect of GH on the sperm-binding capacity of the oocyte was observed. In addition, GH supplementation during IVM significantly (P < 0.001) enhanced the migration of cortical granules and sperm aster formation. It can be concluded that the promotory effect of GH on the developmental competence of the oocyte is due to a higher fertilization rate as a consequence of an improved cytoplasmic maturation. Mol. Reprod. Dev. 49:444–453, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
This work was undertaken in order to examine M-phase promoting factor (MPF) and mitogen-activated protein kinases (MAPK) activities during meiotic progression of cat oocytes cultured in two different media for two different incubation times and preovulatory cat oocytes that reached MII in vivo. Oocytes recovered from ovaries of ovariectomized cats were cultured either in TCM 199 or SOF for 24 h and 40 h. In vivo matured oocytes were recovered by follicular aspiration from ovaries of domestic cats ovariectomized 24 h to 26 h after hormonal treatment. Results showed that the kinetic of MPF and MAPK activity was similar during meiotic progression of cat oocytes matured in TCM 199 and SOF. After 24 h of incubation, MII oocytes had significantly (p < 0.001) higher MPF and MAPK levels than MII oocytes cultured for 40 h in both culture media. MPF and MAPK activity was significantly (p < 0.01) lower in the oocytes matured in vitro than in those matured in vivo. This study provides evidence that the two different maturation media did not determine differences in MPF and MAPK fluctuations and levels during meiotic progression of cat oocytes and that the time of maturation influenced the level of the two kinases. Moreover, it shows that MPF and MPK activity is higher in in vivo matured oocytes than in in vitro matured oocytes, suggesting a possible incomplete cytoplasmic maturation after culture.  相似文献   

4.
We examined some differences between prepubertal and adult ovine oocytes; in particular we analyzed the functional status of the cumulus-oocyte complex, protein synthesis during in vitro maturation, and because no information is available on prepubertal and adult sheep, maturation-promoting factor (MPF) fluctuations throughout meiotic progression both in prepubertal and adult sheep oocytes. After 24 h of maturation, percentages of MII oocytes were similar between prepubertal and adult animals. Electron microscopy examinations showed that prepubertal oocytes had fewer transzonal projections than adult oocytes. Methionine uptake was significantly lower in prepubertal cumulus-enclosed oocytes examined through meiotic progression. On the contrary, denuded prepubertal oocytes showed a higher methionine incorporation in the first 4 h of incubation compared with adult oocytes. We also found some differences in MPF activity between prepubertal and adult oocytes at MII stage. In fact, prepubertal MII oocytes had a significantly lower level of MPF activity than adult oocytes did and, after fusion with germinal vesicle oocytes, they were unable to induce nuclear breakdown and chromosome condensation 1-2 h post-fusion, whereas adult MII oocytes could induce these processes. Our findings show that the lesser competence of prepubertal oocytes could be due to morphological anomalies and alterations in physiological activity and that oocytes do not reach full developmental competence until puberty.  相似文献   

5.
To determine the role of calcium and calmodulin in mouse oocyte maturation, we examined the distribution of intracellular calcium during mouse oocyte maturation by using Mira Cal Imaging System. The calcium was present homogeneously in oocytes with intact germinal vesicle (GV) and accumulated around the nuclear region after GV breakdown(GVBD). The high level of calcium disappeared 6 hours later after GVBD. In the presence of 50 mumol/L BAPTA/AM, we failed to observe this phenomena. All eggs treated with 20 mumol/L W7, an antagonist of calmodulin, 50 mumol/L BAPTA/AM, a calcium chelator, could not develop to metaphase II (MII), although GVBD was not affected. We also detected the activity of a cytoplasmic maturation-promoting factor (MPF). W7 and BAPTA/AM had no effects on the rise of MPF activity in the course of maturation. We suggest that compartment distribution of calcium around nuclear region plays an important role in mouse oocyte maturation.  相似文献   

6.
Bogliolo L  Ledda S  Leoni G  Naitana S  Moor RM 《Cloning》2000,2(4):185-196
The maturation promoting factor (MPF) and mitogen-activated protein kinase (MAPK) are the key regulators of both meiotic and mitotic cell cycles. Knowledge of the dynamics of these two kinases during the transition from meiosis to mitosis would be of great importance for cloning by nuclear transfer. In this study, experiments were designed to assay the changes of MPF and MAP kinase activity of in vitro matured ovine oocytes after chemical activation and culture in 0 mM or 2 mM 6-dimethylaminopurine (6-DMAP) for 12 h. Moreover, to determine the biological significance of the fluctuations of MPF, activated oocytes were fused with GV-staged partners. The biochemical results showed that the high MPF activity of MII oocytes fell to basal level precipitously within the first hour after activation, started to increase at 6-8 h, rising to 80 +/- 4% of MII after 12 h. MAPK activity decreased to a low level 4 h after activation, increased between 6-12 h, but remained below 30 +/- 3.6% of MII values. The incubation with 6-DMAP had no effect on the kinetics of MPF and MAP kinase activity. Fusion of MII oocytes to GV partners induced rapid breakdown of the GV, whereas no breakdown occurred when GV were fused with eggs in the first hours post activation. Interestingly, the high biochemical levels of MPF activity at 8-12 h after activation were not able to induce GVBD in fusion partners.  相似文献   

7.
The cytoplasmic localisation of factors capable of influencing the behaviour of nuclei has long been considered a potential mechanism for generating cell differences during development. Yoshio Masui was instrumental in identifying two cytoplasmic factors, maturation promoting factor (MPF) and cytostatic factor (CSF), defining the first biological assay for their isolation and characterisation. These biological assays involved the transfer of cytoplasm between amphibian oocytes, MPF being able to promote meiotic maturation (progression to MII) and CSF to stabilise the MII state. Masui was subsequently involved in developing a ‘cell-free’ system with the potential for analysis not just of MPF and CSF, but many aspects of nucleo-cytoplasmic interaction. Masui and Markert initially showed that MPF activity could be generated in enucleate oocytes following progesterone stimulation, indicating a cytoplasmic origin. Masui subsequently showed that MPF activity was distributed unevenly through the egg of Rana pipiens during maturation. In this review we will consider the historical context in which the MPF assays were established, then briefly consider some of the molecular components that are now known to influence MPF activation. We will then consider evidence for the asymmetric activation of MPF and the possibility that the nucleus contributes to MPF activation in early embryos.  相似文献   

8.
This study assessed the impact of various cryoprotectant (CPA) exposures on nuclear and cytoplasmic maturation in the immature cat oocyte as a prerequisite to formulating a successful cryopreservation protocol. In experiment 1, immature oocytes were exposed to 0, 0.75, 1.5, or 3.0 M of 1,2-propanediol (PrOH) or 1,2-ethanediol (EG) at room temperature (25 degrees C) or 0 degrees C for 30 min. After CPA removal and in vitro maturation, percentage of oocytes reaching metaphase II (MII) was reduced after exposure to 3.0 M PrOH at 0 degrees C or 3.0 M EG at both temperatures. All CPA exposures increased MII spindle abnormalities compared to control, except 1.5 M PrOH at 25 degrees C. In experiments 2 and 3, immature oocytes were exposed to CPA conditions yielding optimal nuclear maturation that either had caused spindle damage (0.75 M PrOH, 1.5 M EG, and 3.0 M PrOH at 25 degrees C) or not (1.5 M PrOH at 25 degrees C). After maturation and insemination in vitro, oocytes were cultured for 7 days to assess treatment influence on developmental competence. CPA exposure did not affect fertilization, but the high incidence of MII spindle abnormalities resulted in a low percentage of cleaved embryos. Blastocyst formation and quality were influenced by both CPA types (EG was more detrimental than PrOH) and concentration (3.0 M was more detrimental than 1.5 M). Overall, cat oocytes appear to be highly sensitive to CPA except after exposure to 1.5 M PrOH at 25 degrees C, a treatment that still allowed approximately 60% of the oocytes to reach MII and approximately 20% to form blastocysts.  相似文献   

9.
In amphibian oocytes, it is known that germinal vesicle (GV) materials are essential for sperm head decondensation but not for activation of MPF (CDK1 and cyclin B). However, in large animals, the role of GV materials in maturation and fertilization is not defined. In this study, we prepared enucleated pig oocytes at the GV stage and cultured them to examine the activation and inactivation of CDK1 and MAP kinase during maturation and after electro-activation. Moreover, enucleated GV-oocytes after maturation culture were inseminated or injected intracytoplasmically with spermatozoa to examine their ability to decondense the sperm chromatin. Enucleated oocytes showed similar activation/inactivation patterns of CDK1 and MAP kinase as sham-operated oocytes during maturation and after electro-stimulation or intracytoplasmic sperm injection. During the time corresponding to MI/MII transition of sham-operated oocytes, enucleated oocytes inactivated CDK1. However, penetrating sperm heads in enucleated oocytes did not decondense enough to form male pronuclei. To determine whether the factor(s) involved in sperm head decondensation remains associated with the chromatin after GV breakdown (GVBD), we did enucleation soon after GVBD (corresponding to pro-metaphase I, pMI) to remove only chromosomes. The injected sperm heads in pMI-enucleated oocytes decondensed and formed the male pronuclei. These results suggest that in pig oocytes, GV materials are not required for activation/inactivation of CDK1 and MAP kinase, but they are essential for male pronucleus formation.  相似文献   

10.
Summary The objective of this study was to evaluate synchronous and asynchronous pronucleus (PN) formation and the related patterns of juxtapositional nucleolus (n) formation in immature (prophase I [PI] and metaphase I [MI]) and mature (metaphase II [MII]) oocytes after fertilization, both ultrastructurally and at the level of light microscope. A single dose of 15 IU gonadotrophin was injected subcutaneously to twenty four 26-wk-old, female Wistar rats to induce ovulation. Human chorionic gonadotrophin (4 IU) was administered 40 h later, and after 4–6 h the ovaries were dissected, and the oocytes were aspirated. A total of 214 rat oocytes were classified according to a maturation index as follows: group I, 80 PI oocytes; group II, 50 MI oocytes; and group III, 84 MII oocytes. Immature oocytes were in vitro matured for 18–36 h. Spermatozoa were acquired by microepididymal sperm aspiration and processed using swim-up technique. Intracytoplasmic sperm injection was performed on mature oocytes after 2 h of incubation and on in vitro matured (IVM) oocytes 4 h after maturation. Pronuclear synchronization [both pronucleases (PNs) centrally located, equal sized, with equal numbers and sizes of juxtapositional nucleoli (Nn)] was observed in fertilized oocytes. Asynchronous PN formation (diversity between male and female PNs, related to dimensions, localization, and the number of Nn) in groups I, II, and III was found in 75, 86, and 47% of preembryos, respectively. There was a significant difference of synchronous pronuclear formation between mature and IVM oocytes (P<0.05). In IVM oocytes, asynchronous PN formation is high, and juxtapositional pronucleolar patterns are observed to be low by transmission electron microscope (TEM).  相似文献   

11.
12.
Mammalian oocytes are arrested at the G2/M transition of the first meiotic division from which, after reaching full size and subsequent to an LH surge, they undergo final maturation. Oocyte maturation, which involves germinal vesicle breakdown, progression through metaphase I (MI), and arrest at MII, is triggered and regulated by the coordinated action of two kinases, maturation promoting factor (MPF) and mitogen activated protein kinase (MAPK). The importance of the role of MPF in mammalian oocyte maturation is well established, while the role of MAPK, although well understood in mouse oocytes, has not been fully elucidated in oocytes of large domestic species, especially bovine oocytes. Here we show that injection of MKP-1 mRNA, which encodes a dual specificity MAPK phosphatase, into germinal vesicle stage bovine oocytes prevents the activation of MAPK during maturation. Despite the lack of MAPK activity, MKP-1-injected oocytes resume and progress through meiosis, although they are unable to arrest at MII stage and, by 22-26-hour post-maturation, exhibit decondensed pronucleus-like chromatin, a clear sign of parthenogenetic activation. MKP-1-injected bovine oocytes exhibit normal activation of MPF activity; however, by 18-hour post-maturation, MPF activity starts to decline and by 22-26 hr MPF activity is absent. MKP-1-injected oocytes also show disorganized MII spindles with poorly aligned chromosomes. In summary, our results demonstrate that in bovine oocytes MAPK activity is required for MII arrest, maintenance of MPF activity, and spindle organization.  相似文献   

13.
The present study was conducted to clarify the relationship between histone H1 kinase (H1K) activity and events associated with in vitro fertilization of pig follicular oocytes matured in vitro. Histone H1 kinase has been shown to be homologous with a maturation promoting factor (MPF). Cumulus-oocyte complexes obtained from prepubertal gilts were cultured for 46 h in a modified Waymouth's MB752/1 medium and were then inseminated in vitro with frozen-thawed and preincubated epididymal boar spermatozoa. At 4, 6, 8 and 10 h post insemination, the oocytes were stained with 10 microg/ml Hoechst-33342 and examined under a fluorescent microscope for the stage of fertilization, according to morphological changes of oocyte nuclear chromatin and the extent of sperm penetration. Sperm penetration was observed to occur within 4 h post insemination (20.5%), and the percentage of fertilized oocytes increased (P < 0.01) to 72.9% at 8 h post insemination. Pronuclear formation was observed from 6 h post insemination (3.3%) and the percentage increased (P < 0.01) to 46.8% at 10 h post insemination. In each examination period, H1K activities in unfertilized oocytes at metaphase-II remained unchanged (112.0 fmol/h/oocyte) and were higher (P < 0.01) than those in fertilized oocytes (30.1 fmol/h/oocyte). The H1K activity in fertilized oocytes such as oocytes emitting a second polar body, oocytes with an enlarging sperm head(s) and oocytes with multiple pronuclei did not differ significantly. These results suggest that MPF in pig oocytes is inactivated shortly after sperm penetration and is maintained at the basal level throughout pronuclear formation.  相似文献   

14.
Cell fusions have been used to determine the biological activity of the MPF complex in murine oocytes during their progression through anaphase and telophase to metaphase II. Oocytes (1) at metaphase I, (2) during the anaphase-telophase transition, or (3) at metaphase II were fused to germinal vesicle-staged (immature) oocytes. The hybrids were cultured for 1 h in the presence of db cAMP before fixation and nuclear evaluation. Metaphase I oocytes invariably induced germinal vesicle breakdown (GVBD) in the immature partner. By contrast, anaphase/telophase oocytes never induced GVBD in immature oocytes. The capacity to induce GVBD reappears after the formation of the second metaphase plate. In a second study, histone H1 kinase activity was measured during mouse oocyte maturation in single oocytes. H1 kinase activity was low in GV oocytes, increased sharply at MI, declined during anaphase and telophase and increased again at MII. After egg activation, H1 kinase activity was reduced to basal levels. These results provide direct evidence that a drop in activity of MPF in murine oocytes occurs concomitantly with the exit from metaphase I; MPF activity remains low until the cell re-enters metaphase.  相似文献   

15.
To determine whether the nuclei of early growing stage porcine oocytes can mature to the MII stage, we examined meiotic competence of nuclei that had been fused with enucleated GV oocytes using the nuclear transfer method. In vitro matured oocytes were enucleated and then fused with early growing oocytes (30-40 μm in diameter) from 5 to 7-wk-old piglets using the hemagglutinating virus of Japan (HVJ). Reconstructed oocytes were cultured for 24 h to the MII stage. Although these oocytes extruded the first polar body, they did not contain normal haploid chromosomes, and the spindles were misaligned or absent at the metaphase II (MII) stage. Furthermore, maturation promoting factor (MPF) activity levels were low in oocytes reconstructed with early growing oocytes at metaphase I (MI) and MII. In contrast, mitogen-activated protein kinase (MAPK) activity was detected between the MI and MII stages, although at slightly lower levels. In conclusion, the nuclei of early growing oocytes did not accomplish normal meiotic division in matured oocytes due to misaligned or absent spindle formation.  相似文献   

16.
Immature oocytes were collected from immature female rats (60-65 g) 40 h after injection with 6 IU pregnant mare's serum gonadotropin (PMSG). Oocytes were matured cumulus-intact (CI) or cumulus-free (CF) in medium supplemented with 0.5% bovine serum albumin (BSA) or 5-20% serum for periods of up to 24 h. After assessment for nuclear maturation, the oocytes were exposed to epididymal sperm for fertilization in vitro. In vitro-matured and ovulated oocytes undergoing fertilization were transferred to unilaterally pregnant recipients for embryonic and fetal development. The presence of cumulus cells and serum shortened (by 2 h) the time required for polar body emission by in vitro-matured oocytes and also helped to increase significantly the penetrability of the oocytes by spermatozoa. A high proportion (45.6%) of fertilized oocytes showed evidence of abnormal fertilization following maturation in the absence of cumulus cells. Oocytes matured CI before fertilization were able to develop to viable fetuses (57.8%) in proportions similar to ovulated oocytes (55.0%) after in vitro fertilization. These findings indicate an essential role for cumulus cells in promoting normal cytoplasmic maturation of oocytes necessary for pronuclear formation and subsequent developmental capability.  相似文献   

17.
Oocyte cryopreservation is a potentially valuable technique for salvaging the germ-line when a valuable mare dies, but facilities for in vitro embryo production or oocyte transfer are not immediately available. This study examined the influence of maturation stage and freezing technique on the cryopreservability of equine oocytes. Cumulus oocyte complexes were frozen at the immature stage (GV) or after maturation in vitro for 30 hr (MII), using either conventional slow freezing (CF) or open pulled straw vitrification (OPS); cryoprotectant-exposed and untreated nonfrozen oocytes served as controls. After thawing, GV oocytes were matured in vitro, and MII oocytes were incubated for 0 or 6 hr, before staining to examine meiotic spindle quality by confocal microscopy. To assess fertilizability, CF MII oocytes were subjected to intracytoplasmic sperm injection (ICSI) and cultured in vitro. At 12, 24, and 48 hr after ICSI, injected oocytes were fixed to examine their progression through fertilization. Both maturation stage and freezing technique affected oocyte survival. The meiosis resumption rate was higher for OPS than CF for GV oocytes (28% vs. 1.2%; P < 0.05), but still much lower than for controls (66%). Cryopreserving oocytes at either stage induced meiotic spindle disruption (37%-67% normal spindles vs. 99% in controls; P < 0.05). Among frozen oocytes, however, spindle quality was best for oocytes frozen by CF at the MII stage and incubated for 6 hr post-thaw (67% normal); since this combination of cryopreservation/IVM yielded the highest proportion of oocytes reaching MII with a normal spindle (35% compared to <20% for other groups), it was used when examining the effects of cryopreservation on fertilizability. In this respect, the rate of normal fertilization for CF MII oocytes after ICSI was much lower than for controls (total oocyte activation rate, 26% vs. 56%; cleavage rate at 48 hr, 8% vs. 42%: P < 0.05). Thus, although IVM followed by CF yields a respectable percentage of normal-looking MII oocytes (35%), their ability to support fertilization is severely compromised.  相似文献   

18.
Changes in MPF and MAPK activities during meiotic maturation of goat oocytes were investigated. Detection of MPF activity occurred concomitantly with GVBD, increased at MI, decreased during anaphase-telophase I transition, and increased thereafter in MII oocytes. The appearance of MAPK activity was delayed compared to MPF activity. MAPK activity increased after GVBD and persisted during the MI-MII transition. Whether MAPK was implicated in goat oocyte meiotic competence was also investigated by using oocytes from different follicle size categories that arrest at specific stages of the maturation process (GV, GVBD, MI, and MII). Results indicate that the ability of goat oocytes to resume meiosis is not directly related to the presence of Erk2. The ability to phosphorylate MAPK is acquired by the oocyte during follicular growth after the ability to resume meiosis. GVBD-arrested oocytes exhibited a high level of MPF activity after 27 hr of culture. However, 28% of oocytes from this group contained inactive MAPK, and 72% exhibited high MAPK activity. In addition, 29% of GVBD-arrested oocytes contained a residual interphasic network without recruitment of microtubules around the condensed chromosomes; 71% of GVBD-arrested oocytes displayed recruitment of microtubules near the condensed chromosomes and contained asters of microtubules distributed throughout the cytoplasm. These results indicate that oocytes arrested at GVBD were not exactly at the same point in the meiotic cell cycle progression, and suggest that MAPK could be implicated in the regulation of microtubule organization. The data presented here suggest that in goat oocytes, MAPK is not implicated in the early events of meiosis resumption, but rather in post-GVBD events such as spindle formation and MII arrest. © 1996 Wiley-Liss Inc.  相似文献   

19.
20.
It is reported that okadaic acid (OA)-sensitive phosphatase is related to mitogen-activated protein kinase (MAPK)/p90rsk activation in mammalian oocytes. OA is also involved in the positive feedback loop between M phase-promoting factor (MPF) and cdc25c in Xenopus oocytes during meiotic maturation. However, the effect of phosphatase inhibition by OA on MPF and MAPK activities at the MII/G1 in oocytes remains unknown. The aim of this study is to clarify the relationship between OA-sensitive phosphatase and mitosis MII/G1 transition in mouse oocytes. MII-arrested oocytes were, isolated from mice, inseminated and cultured in TYH medium (control group) or TYH medium supplemented with 2.5 μM of OA (OA group). Histone H1 kinase and myelin basic protein (MBP) kinase activities were measured as indicators of MPF and p42 MAPK activities after insemination. Phosphorylation of cdc25c after insemination was analized in OA and control group by western blotting. Seven hours after insemination a pronucleus (PN) was formed in 84.1% (69/85) of oocytes in the control group. However, no PN was formed in oocytes of the OA group (p < 0.001). Although MPF and MAPK activities in the control group significantly decreased at 3, 4, 5, and 7 h after insemination, these decreases were significantly inhibited by OA addition (p < 0.05). Furthermore, OA addition prevented cdc25c dephosphorylation 7 h after insemination. In conclusion, OA-sensitive phosphatase correlates with inactivation of MPF and MAPK, and with the dephosphorylation of cdc25c at the MII/G1 transition in mouse oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号