首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Among currently used cancer imaging methods, nuclear medicine modalities provide metabolic information, whereas modalities in radiology provide anatomical information. However, different modalities, having different acquisition times in separate machines, decrease the specificity and accuracy of images. To solve this problem, hybrid imaging modalities were developed as a new era, especially in the cancer imaging field. With widespread usage of hybrid imaging modalities, specific contrast agents are essentially needed to use in both modalities, such as single-photon emission computed tomography/computed tomography (SPECT/CT). Liposomes are one of the most desirable drug delivery systems, depending on their suitable properties. The aim of this study was to develop a liposomal contrast agent for the diagnosis and molecular imaging of tumor by SPECT/CT. Liposomes were prepared nanosized, coated with polyethylene glycol to obtain long blood circulation, and modified with monoclonal antibody 2C5 for specific tumor targeting. Although DTPA-PE and DTPA-PLL-NGPE (polychelating amphilic polymers; PAPs) were loaded onto liposomes for stable radiolabeling for SPECT imaging, iopromide was encapsulated into liposomes for CT imaging. Liposomes [(DPPC:PEG2000-PE:Chol:DTPA-PE), (PL 90G:PEG2000-PE:Chol:DTPA-PE), (DPPC:PEG2000-PE:Chol:PAPs), (PL 90G:PEG2000-PE:Chol:PAPs), (60:0.9:39:0.1% mol ratio)] were characterized in terms of entrapment efficiency, particle size, physical stability, and release kinetics. Additionally, in vitro cell-binding studies were carried out on two tumor cell lines (MCF-7 and EL 4) by counting radioactivity. Tumor-specific antibody-modified liposomes were found to be effective multimodal contrast agents by designating almost 3–8 fold more uptake than nonmodified ones in different tumor cell lines. These results could be considered as an important step in the development of tumor-targeted SPECT/CT contrast agents for cancer imaging.  相似文献   

2.
From the first measurements of the distribution of pulmonary blood flow using radioactive tracers by West and colleagues (J Clin Invest 40: 1-12, 1961) allowing gravitational differences in pulmonary blood flow to be described, the imaging of pulmonary blood flow has made considerable progress. The researcher employing modern imaging techniques now has the choice of several techniques, including magnetic resonance imaging (MRI), computerized tomography (CT), positron emission tomography (PET), and single photon emission computed tomography (SPECT). These techniques differ in several important ways: the resolution of the measurement, the type of contrast or tag used to image flow, and the amount of ionizing radiation associated with each measurement. In addition, the techniques vary in what is actually measured, whether it is capillary perfusion such as with PET and SPECT, or larger vessel information in addition to capillary perfusion such as with MRI and CT. Combined, these issues affect quantification and interpretation of data as well as the type of experiments possible using different techniques. The goal of this review is to give an overview of the techniques most commonly in use for physiological experiments along with the issues unique to each technique.  相似文献   

3.
New types of X-ray computed tomography (CT), fluorescent X-ray CT and phase-contrast X-ray CT are being developed for biomedical research. While fluorescent scanning X-ray CT (FXCT) can detect specific contrast elements, or endogenous iodine, at very low content (less than 400 pg iodine of tissue in a volume of 8 x 10(-6) ml), the phase-contrast X-ray CT (PCCT) is a highly sensitive imaging technique to differentiate between different biological tissue types (based on their specific gravity variation) without the use of a contrast agent. Therefore, we can expect functional diagnosis with FXCT, and high contrast, high resolution biological imaging with PCCT. In this paper, a human thyroid gland imaged by FXCT, and a metastatic human cancerous lesion depicted using PCCT are presented. The latter method used a newly manufactured, large, monolithic, X-ray interferometer, which is described in this paper in detail.  相似文献   

4.
Three-dimensional micro computed tomography (microCT) offers the opportunity to capture images liver structures and lesions in mice with a high spatial resolution. Non-invasive microCT allows for accurate calculation of vessel tortuosity and density, as well as liver lesion volume and distribution. Longitudinal monitoring of liver lesions is also possible. However, distinguishing liver lesions from variations within a normal liver is impossible by microCT without the use of liver- or tumor-specific contrast-enhancing agents. The combination of microCT for morphologic imaging with functional imaging, such as positron emission tomography (PET) or single photon emission tomography (SPECT), offers the opportunity for better abdominal imaging and assessment of structure discrepancies visible by functional imaging.This paper describes methods of current microCT imaging options for imaging of liver lesions compared to other imaging techniques in small animals.  相似文献   

5.

Background

Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT) or positron emission tomography (PET) with computed tomography (CT). Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR) on the image quality of the low-dose CT images.

Methodology/Principal Findings

Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU) values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88) and the contrast-to-noise ratio (CNR) was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04). In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001).

Conclusion/Significance

In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality.  相似文献   

6.
IntroductionSingle photon emission computed tomography combined with a low dose computed tomography (SPECT/CT), is a hybrid imaging integrating functional and anatomical data. The purpose of our study was to evaluate the contribution of the SPECT/CT over traditional planar imaging of patients with differentiated thyroid carcinoma (DTC).MethodsPost-therapy iodine 131 (131I) whole-body scan followed by cervico-thoracic SPECT/CT, were performed in 100 patients with DTC.ResultsAmong these 100 patients followed for a predominantly papillary DTC, planar imaging and SPECT/CT, were perfectly concordant in 70% of patients and discordant in the remaining 30%. The use of fusion imaging SPECT/CT compared to conventional planar imaging allowed us to correct our therapeutic approach in 27% (27/100 patients), according to the protocols of therapeutic management of our institute.ConclusionSPECT/CT is a hybrid imaging modality which provides better identification and more correct anatomic localization of the foci of radioiodine uptake with impact on therapeutic management.  相似文献   

7.
近年来,超声(ultrasound, US)、CT冠状动脉造影(CT coronary angiography, CCTA)、血管内超声(intravenous ultrasound,IVUS)、光学相干断层成像(optical coherence tomography, OCT)、多层螺旋CT成像(multi-slice computed tomography, MSCT)、单光子发射计算机断层成像(single-photon emission computed tomography, SPECT)、正电子发射计算机断层成像(positron emission computed tomography, PET)及心脏磁共振(cardiac magnetic resonance, CMR)等多种心血管成像技术能够提供与冠脉病变及心肌形态和功能相关的解剖学、血流动力学、细胞生物学及病理生理学等方面的重要信息,在缺血性心肌病的临床诊疗及预后评估中发挥着日益重要的作用。然而,如何恰当选择的多模态心血管影像技术是临床医师面临的一大难题。因此,本文在归纳总结主要心血管成像技术临床应用进展的基础上,对多模态心血管影像学在缺血性心肌病相关的冠脉解剖与斑块成像、心肌功能、心肌灌注及心肌活性显像中的临床应用价值进行综述。旨在帮助临床医师客观认识各种成像技术的优势与不足,从而制定最优化的选择方案。  相似文献   

8.
Over the past few decades, there have been significant advancements in the imaging techniques of positron emission tomography (PET) and single photon emission tomography (SPECT). These changes have allowed for the targeted imaging of cellular processes and the development of hybrid imaging systems (e.g., SPECT/CT and PET/CT), which provide both functional and structural images of biological systems. One area that has garnered particular attention is angiogenesis as it relates to ischemic heart disease and limb ischemia. Though the aforementioned techniques have benefits and consequences, they enable scientists and clinicians to identify regions that are vulnerable to or have been exposed to ischemic injury via non-invasive means. This literature review highlights the advancements in molecular imaging techniques and specific probes as they pertain to the process of angiogenesis in cardiovascular disease.  相似文献   

9.
Liver cancer is the fifth most common cause of cancer deaths worldwide. Noninvasive diagnosis is difficult and the disease heterogeneity reduces the accuracy of pathological assays. Improvement in diagnostic imaging of specific molecular disease markers has provided hope for accurate and early noninvasive detection of liver cancer. However, all current imaging technologies, including ultrasonography, computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging, are not specific targets for detection of liver cancer. The aim of this study was to test the feasibility of injecting a cocktail of specific molecular imaging agents to noninvasively image liver cancer. The target-specific cocktail contained agents for imaging the neovasculature (RGD peptide), matrix metalloproteinase (MMP), and glucose transport (18F-fluorodeoxyglucose [18F-FDG]). Imaging studies were performed in liver cancer cells and xenograft models. The distribution of MMP at the intracellular level was imaged by confocal microscopy. RGD, MMP, and 18F-FDG were imaged on tumor-bearing mice using PET, CT, X-ray, and multi-wavelength optical imaging modalities. Image data demonstrated that each agent bound to a specific disease target component. The same liver cancer xenograft contained multiple disease markers. Those disease markers were heterogenetically distributed in the same tumor nodule. The molecular imaging agents had different distributions in the whole body and inside the tumor nodule. All target-specific agents yielded high tumor-to-background ratios after injection. In conclusion, target-specific molecular imaging agents can be used to study liver cancer in vitro and in vivo. Noninvasive multimodal/multi-target-specific molecular imaging agents could provide tools to simultaneously study multiple liver cancer components.  相似文献   

10.
Emission tomography provides three-dimensional, quantitative images of the distribution of radiotracers used to mark physiological, metabolic, or pathological processes. Quantitative single photon emission computed tomography (SPECT) requires correction for the image-degrading effects due to photon attenuation and scatter. Phantom experiments have shown that radioactive concentrations can be assessed within some percentage of the true value when relevant corrections are applied. SPECT is widely spread, and radiotracers are available that are easy to use and comparably inexpensive. Compared with other methods, SPECT suffers from a lower spatial resolution, and the time required for image acquisition is longer than for some alternative methods. In contrast to some other methods, SPECT allows simultaneous imaging of more than one process, e.g., both regional blood flow and ventilation, for the whole lung. SPECT has been used to explore the influence of posture and clinical interventions on the spatial distribution of lung blood flow and ventilation. Lung blood flow is typically imaged using macroaggregates of albumin. Both radioactive gases and particulate aerosols labeled with radioactivity have been used for imaging of regional ventilation. However, all radiotracers are not equally suited for quantitative measurements; all have specific advantages and limitations. With SPECT, both blood flow and ventilation can be marked with radiotracers that remain fixed in the lung tissue, which allows tracer administration during conditions different from those at image registration. All SPECT methods have specific features that result from the used radiotracer, the manner in which it is administered, and how images are registered and analyzed.  相似文献   

11.
Micron-scale computed tomography (micro-CT) is an essential tool for phenotyping and for elucidating diseases and their therapies. This work is focused on preclinical micro-CT imaging, reviewing relevant principles, technologies, and applications. Commonly, micro-CT provides high-resolution anatomic information, either on its own or in conjunction with lower-resolution functional imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). More recently, however, advanced applications of micro-CT produce functional information by translating clinical applications to model systems (e.g. measuring cardiac functional metrics) and by pioneering new ones (e.g. measuring tumor vascular permeability with nanoparticle contrast agents). The primary limitations of micro-CT imaging are the associated radiation dose and relatively poor soft tissue contrast. We review several image reconstruction strategies based on iterative, statistical, and gradient sparsity regularization, demonstrating that high image quality is achievable with low radiation dose given ever more powerful computational resources. We also review two contrast mechanisms under intense development. The first is spectral contrast for quantitative material discrimination in combination with passive or actively targeted nanoparticle contrast agents. The second is phase contrast which measures refraction in biological tissues for improved contrast and potentially reduced radiation dose relative to standard absorption imaging. These technological advancements promise to develop micro-CT into a commonplace, functional and even molecular imaging modality.  相似文献   

12.
G Wang  J Zhang  H Gao  V Weir  H Yu  W Cong  X Xu  H Shen  J Bennett  M Furth  Y Wang  M Vannier 《PloS one》2012,7(6):e39700
We recently elevated interior tomography from its origin in computed tomography (CT) to a general tomographic principle, and proved its validity for other tomographic modalities including SPECT, MRI, and others. Here we propose "omni-tomography", a novel concept for the grand fusion of multiple tomographic modalities for simultaneous data acquisition in a region of interest (ROI). Omni-tomography can be instrumental when physiological processes under investigation are multi-dimensional, multi-scale, multi-temporal and multi-parametric. Both preclinical and clinical studies now depend on in vivo tomography, often requiring separate evaluations by different imaging modalities. Over the past decade, two approaches have been used for multimodality fusion: Software based image registration and hybrid scanners such as PET-CT, PET-MRI, and SPECT-CT among others. While there are intrinsic limitations with both approaches, the main obstacle to the seamless fusion of multiple imaging modalities has been the bulkiness of each individual imager and the conflict of their physical (especially spatial) requirements. To address this challenge, omni-tomography is now unveiled as an emerging direction for biomedical imaging and systems biomedicine.  相似文献   

13.
Multimodal bioluminescence (BLI) and single-photon emission computed tomography/computed tomography (SPECT/CT) imaging were investigated as means to monitor somatostatin receptor subtype 2 (SST2)-positive neuroendocrine tumors as both a subcutaneously implanted and a liver metastasis animal model in mice and rats. Ultimately, such a model will be of use for studying SST2-targeted peptide receptor radionuclide therapy (PRRT). CA20948 cells were transfected with a green fluorescent protein/luciferase plasmid construct. Cells were inoculated subcutaneously in the shoulder of nude mice: nontransfected cells in the left shoulder and transfected cells in the right shoulder. BLI, SPECT/CT imaging, biodistribution analysis, and ex vivo autoradiography of the tumors were performed. BLI and SPECT/CT imaging were also performed on an intrahepatic tumor model in the rat. Caliper volume measurement of transfected tumors could be correlated with BLI measurements (R2 = .76). SPECT/CT imaging showed high levels of accumulation of 111In-DTPA-octreotide in control and transfected tumors, which was confirmed by biodistribution analysis and autoradiography. Subcapsular inoculation of transfected cells in rat liver resulted in an intrahepatic tumor, which could be visualized by both SPECT/CT and BLI. Transfection of CA20948 tumor cells did not alter the growth properties of the cell line or the expression of SST2. Transfected tumors could be clearly visualized by BLI and SPECT/CT imaging. The transfected SST2-positive tumor cell line could represent a novel preclinical model for tumor monitoring in studies that aim at further optimizing PRRT for neuroendocrine tumors.  相似文献   

14.
Conventional non-invasive imaging modalities of atherosclerosis such as coronary artery calcium (CAC) and carotid intimal medial thickness (C-IMT) provide information about the burden of disease. However, despite multiple validation studies of CAC, and C-IMT, these modalities do not accurately assess plaque characteristics, and the composition and inflammatory state of the plaque determine its stability and, therefore, the risk of clinical events. [(18)F]-2-fluoro-2-deoxy-D-glucose (FDG) imaging using positron-emission tomography (PET)/computed tomography (CT) has been extensively studied in oncologic metabolism. Studies using animal models and immunohistochemistry in humans show that FDG-PET/CT is exquisitely sensitive for detecting macrophage activity, an important source of cellular inflammation in vessel walls. More recently, we and others have shown that FDG-PET/CT enables highly precise, novel measurements of inflammatory activity of activity of atherosclerotic plaques in large and medium-sized arteries. FDG-PET/CT studies have many advantages over other imaging modalities: 1) high contrast resolution; 2) quantification of plaque volume and metabolic activity allowing for multi-modal atherosclerotic plaque quantification; 3) dynamic, real-time, in vivo imaging; 4) minimal operator dependence. Finally, vascular inflammation detected by FDG-PET/CT has been shown to predict cardiovascular (CV) events independent of traditional risk factors and is also highly associated with overall burden of atherosclerosis. Plaque activity by FDG-PET/CT is modulated by known beneficial CV interventions such as short term (12 week) statin therapy as well as longer term therapeutic lifestyle changes (16 months). The current methodology for quantification of FDG uptake in atherosclerotic plaque involves measurement of the standardized uptake value (SUV) of an artery of interest and of the venous blood pool in order to calculate a target to background ratio (TBR), which is calculated by dividing the arterial SUV by the venous blood pool SUV. This method has shown to represent a stable, reproducible phenotype over time, has a high sensitivity for detection of vascular inflammation, and also has high inter-and intra-reader reliability. Here we present our methodology for patient preparation, image acquisition, and quantification of atherosclerotic plaque activity and vascular inflammation using SUV, TBR, and a global parameter called the metabolic volumetric product (MVP). These approaches may be applied to assess vascular inflammation in various study samples of interest in a consistent fashion as we have shown in several prior publications.  相似文献   

15.
Increasing attention has been focused on the use of nanostructures as contrast enhancement agents in medical imaging, especially in computed tomography (CT). To date, gold nanoparticles (GNPs) have been demonstrated to have great potential as contrast agents for CT imaging. This study was designed to evaluate any effect on X-ray attenuation that might result from employing GNPs with a variety of shapes, sizes, surface chemistries, and concentrations. Gold nanorods (GNRs) and spherical GNPs were synthesized for this application. X-ray attenuation was quantified by Hounsfield unit (HU) in CT. Our findings indicated that smaller spherical GNPs (13 nm) had higher X-ray attenuation than larger ones (60 nm) and GNRs with larger aspect ratio exhibited great effect on X-ray attenuation. Moreover, poly ethylene glycol (PEG) coating on GNRs declined X-ray attenuation as a result of limiting the aggregation of GNRs. We observed X-ray attenuation increased when mass concentration of GNPs was elevated. Overall, smaller spherical GNPs can be suggested as a better alternative to Omnipaque, a good contrast agent for CT imaging. This data can be also considered for the application of gold nanostructures in radiation dose enhancement where nanoparticles with high X-ray attenuation are applied.  相似文献   

16.
The purpose of this study was to design, synthesize, and initially characterize a representative set of novel constructs for large-molecular radiographic/computed tomography (CT) contrast agents, intended for a primarily intravascular distribution. A new assembly of well-known and biocompatible components consists of paired, symmetrical dendritic polylysines initiated from both ends of a poly(ethylene glycol) (PEG) core, yielding an array of multiple free amino groups to which were conjugated highly soluble and stable triiodophthalamide ("triiodo") moieties. An array of six dendritic contrast agents was synthesized originally, using three different PEG cores (3, 6, 12 kDa) with t-Boc lysine-generated dendrimer "amplifiers" (from three to five generations) containing 16 to 64 amino groups for conjugation with reactive triiodo moieties. A clinically used, nonionic, small molecular CT contrast agent, iobitridol, was derivatized via a hydroxyl protection/deprotection strategy, introducing a new carboxyl group available for conjugation to the lysine amino groups of dendrimers. Final products were purified by size exclusion chromatography and characterized by NMR, UV, HPLC, and elemental analysis. Preliminary evaluations were conducted for physicochemical characterization and in vivo CT contrast enhancement in a rat model. All six iodinated PEG-core dendrimer conjugates were synthesized in good yields, with a high degree of size monodispersity, large apparent molecular weight, favored physicochemical properties. A representative compound, PEG12000-carbamate-Gen4-IOB conjugate, 27% (w%) rich in iodine, demonstrated a desirable strong and persistent intravascular enhancement with a monoexponential blood half-life of approximately 35 min assayed by dynamic CT imaging and also showed high water solubility (>550 mg/mL at 25 degrees C), large apparent molecular size (comparable to a 143-kDa protein), high hydrophilicity (butanol-water partition coefficient 0.015), and stability to autoclaving conditions. This study showed the synthetic feasibility, desired basic characteristics, and potential utility for CT contrast enhancement achieved with a new type of iodinated, large-molecular PEG-core dendritic construct. Further development of this class of macromolecular contrast agents will be required to define the optimal formulation, pharmacology, safety profile, and the full range of diagnostic applications including tumor microvascular quantitative characterization by CT imaging.  相似文献   

17.
《Médecine Nucléaire》2007,31(11):604-609
Myocardial perfusion scintigraphy (MPS) is a well-established tool for coronary artery disease (CAD) detection and prognostic evaluation. By detecting viable myocardium in hypoperfused territories and assessing physiological significance of intermediate coronary stenosis after catheterization, MPS can help for decision-making. Electocardiogram (ECG) gated single photon emission computerized tomography (SPECT), bringing informations about left ventricular global function and segmental wall motion, has increased MPS diagnostic accuracy and offers additive and independent prognostic value. Nowadays, many improvements are in progress. Some, like new vasodilator agents as selective adenosine A2a receptor agonists might seem trivial, but others are more challenging. Indeed, the development of new SPECT detectors based on cadmium zinc telluride crystals or the availability of rubidium-82 generators for positron emission tomography (PET) will lead to increased spatial resolution, high sensitivity and time-saving imaging procedures. Moreover, integrated PET-CT systems allow efficient attenuation correction and offer the possibility for absolute quantification of myocardial blood flow. At last, the interest of combinating functional and anatomical data thanks to hybrid SPECT-CT or PET-CT scans will have to be evaluated.  相似文献   

18.
X-ray phase-contrast imaging shows improved soft-tissue contrast compared to standard absorption-based X-ray imaging. Especially the grating-based method seems to be one promising candidate for clinical implementation due to its extendibility to standard laboratory X-ray sources. Therefore the purpose of our study was to evaluate the potential of grating-based phase-contrast computed tomography in combination with a novel bi-lateral denoising method for imaging of focal liver lesions in an ex vivo feasibility study. Our study shows that grating-based phase-contrast CT (PCCT) significantly increases the soft-tissue contrast in the ex vivo liver specimens. Combining the information of both signals – absorption and phase-contrast – the bi-lateral filtering leads to an improvement of lesion detectability and higher contrast-to-noise ratios. The normal and the pathological tissue can be clearly delineated and even internal structures of the pathological tissue can be visualized, being invisible in the absorption-based CT alone. Histopathology confirmed the presence of the corresponding findings in the analyzed tissue. The results give strong evidence for a sufficiently high contrast for different liver lesions using non-contrast-enhanced PCCT. Thus, ex vivo imaging of liver lesions is possible with a polychromatic X-ray source and at a spatial resolution of ∼100 µm. The post-processing with the novel bi-lateral denoising method improves the image quality by combining the information from the absorption and the phase-contrast images.  相似文献   

19.
The enormous advances in our understanding of the progression of diseases at the molecular level have been supplemented by the new field of ‘molecular imaging’, which provides for in vivo visualization of molecular events at the cellular level in living organisms. Molecular imaging is a noninvasive assessment of gene and protein function, protein–protein interaction and/or signal transduction pathways in animal models of human disease and in patients to provide insights into molecular pathogenesis. Five major imaging techniques are currently available to assess the structural and functional alterations in vivo in small animals. These are (i) optical bioluminescence and fluorescence imaging techniques, (ii) radionuclide-based positron emission tomography (PET) and single photon emitted computed tomography (SPECT), (iii) X-ray-based computed tomography (CT), (iv) magnetic resonance imaging (MRI) and (v) ultrasound imaging (US). Functional molecular imaging requires an imaging probe that is specific for a given molecular event. In preclinical imaging, involving small animal models, the imaging probe could be an element of a direct (‘direct imaging’) or an indirect (‘indirect imaging’) event. Reporter genes are essential for indirect imaging and provide a general integrated platform for many different applications. Applications of multimodality imaging using combinations of bioluminescent, fluorescent and PET reporter genes in unified fusion vectors developed by us for recording events from single live cells to whole animals with high sensitivity and accurate quantification are discussed. Such approaches have immense potential to track progression of metastasis, immune cell trafficking, stem cell therapy, transgenic animals and even molecular interactions in living subjects.  相似文献   

20.
The objective of this study was the development of a dual-modality imaging device, namely 111In-core-cross-linked polymeric micelle (CCPM)-octreotide, for neuroendocrine tumor detection, using near-infrared fluoroscopy (NIRF) and single photon emission computed tomography (SPECT). The tumor targeting ability of the 111In-labeled CCPM-octreotide was evaluated in a tumor mouse model. SPECT/CT, NIRF and gamma imaging results showed high tumor uptake of 111In-labeled CCPM-octreotide. In contrast, there was a much lower signal in the same mouse model injected with 111In-labeled CCPM. The high accumulation of 111In-labeled CCPM-octreotide in U87 tumor was reduced after co-injection with an excess amount of CCPM-octreotide. These results suggested CCPM-octreotide’s potential applications in tumor diagnosis, drug delivery and molecular imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号