首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Comprehensive conformational analysis of the biologically active nucleoside 2',3'-didehydro-2',3'-dideoxyaguanosine (d4G) has been performed at the MP2/6-311++G(d,p)//DFT B3LYP/6-31G(d,p) level of theory. The energetic, geometrical and polar characteristics of twenty d4G conformers as well as their conformational equilibrium were investigated. The electron density topological analysis allowed us to establish that the d4G molecule is stabilized by nine types of intramolecular interactions: O5'H...N3, O5'H...C8, C8H...O5', C2'H...N3, C5'H1...N3, C5'H2...N3, C8H...H1C5', C8H...H2'C5' and N2H1...O5'. The obtained results of conformational analysis permit us to think that d4G may be a terminator of the DNA chain synthesis in the 5'-3' direction. Thus it can be inferred that d4G competes with canonical 2'-deoxyaguanosine in binding an active site of the corresponding enzyme.  相似文献   

2.
3.
As many as 13 types of intramolecular hygrogen bonds are determined in 89 conformers of 2'-deoxycytidine nucleoside by means of quantum-chemical analysis (at DFT B3LYP/6-31G(d,p) theory level) of electron density topology with Atoms-in-Molecules (AIM) theory. The total number of H-bonds is 168 and their types are C1'H...O2, C2'H2...O5', C2'H2...O2, C3'H...O2, C5'H1...O2, C5'H2...O2, C6H...O4', C6H...O5', C3'H...HC6, O3'H...O5', O5'H...O3', O5'H...O4' and O5'H...O2. Conformational, geometric and electron-topological properties of H-bonds are presented.  相似文献   

4.
The aim of this work is to cast some light on the H-bonds in double-stranded DNA in its AI and BI forms. For this purpose, we have performed the MP2 and DFT quantum chemical calculations of the canonical nucleoside conformers, relative to the AI and BI DNA forms, and their Watson-Crick pairs, which were regarded as the simplest models of the double-stranded DNA. Based on the atoms-in-molecules analysis (AIM), five types of the CH···O hydrogen bonds, involving bases and sugar, were detected numerically from 1 to 3 per a conformer: C2'H···O5', C1'H···O2, C6H···O5', C8H···O5', and C6H···O4'. The energy values of H-bonds occupy the range of 2.3-5.6 kcal/mol, surely exceeding the kT value (0.62 kcal/mol). The nucleoside CH···O hydrogen bonds appeared to "survive" turns of bases against the sugar, sometimes in rather large ranges of the angle values, pertinent to certain conformations, which points out to the source of the DNA lability, necessary for the conformational adaptation in processes of its functioning. The calculation of the interactions in the dA·T nucleoside pair gives evidence, that additionally to the N6H···O4 and N1···N3H canonical H-bonds, between the bases adenine and thymine the third one (C2H···O2) is formed, which, though being rather weak (about 1 kcal/mol), satisfies the AIM criteria of H-bonding and may be classified as a true H-bond. The total energy of all the CH···O nontraditional intramolecular H-bonds in DNA nucleoside pairs appeared to be commensurable with the energy of H-bonds between the bases in Watson-Crick pairs, which implies their possible important role in the DNA shaping.  相似文献   

5.
The non-detectability of NH...N hydrogen bonds in nucleic acids due to exchange broadened imino/amino protons has recently been addressed via the use of non-exchangeable protons for detecting internucleotide 2hJ(NN) couplings. In these applications, the appropriate non-exchangeable proton is separated by two bonds from the NH...N bond. In this paper, we extend the scope of this approach to protons which are separated by four bonds from the NH...N moiety. Specifically, we consider the case of the commonly occurring sheared G x A mismatch alignment, in which we use the adenine H2 proton to report on the (A)N6H6(1.2)...N3(G) hydrogen bond, in the presence of undetectable, exchange broadened N6H6(1.2) protons. Two sequences, the 'straight-through' (H6)N6N3H2 and 'out-and-back' H2N6N3 experiments, are presented for observing these correlations in H2O and D2O solution, respectively. The sequences are demonstrated on two uniformly 15N,13C labelled DNA samples: d(G1G2G3T4T5C6A7G8G9)2, containing a G3 x (C6-A7) triad involving a sheared G3 x A7 mismatch, and d(G1G2G3C4A5G6G7T8)4, containing an A5 x (G3 x G6 x G3 x G6) x A5 hexad involving a sheared G3 x A5 mismatch.  相似文献   

6.
Wang F  Li F  Ganguly M  Marky LA  Gold B  Egli M  Stone MP 《Biochemistry》2008,47(27):7147-7157
Site-specific insertion of 5-(3-aminopropyl)-2'-deoxyuridine (Z3dU) and 7-deaza-dG into the Dickerson-Drew dodecamers 5'-d(C (1)G (2)C (3)G (4)A (5)A (6)T (7)T (8)C (9) Z (10)C (11)G (12))-3'.5'-d(C (13)G (14)C (15)G (16)A (17)A (18)T (19)T (20)C (21) Z (22)C (23)G (24))-3' (named DDD (Z10)) and 5'-d(C (1)G (2)C (3)G (4)A (5)A (6)T (7) X (8)C (9) Z (10)C (11)G (12))-3'.5'-d(C (13)G (14)C (15)G (16)A (17)A (18)T (19) X (20)C (21) Z (22)C (23)G (24))-3' (named DDD (2+Z10)) (X = Z3dU; Z = 7-deaza-dG) suggests a mechanism underlying the formation of interstrand N+2 DNA cross-links by nitrogen mustards, e.g., melphalan and mechlorethamine. Analysis of the DDD (2+Z10) duplex reveals that the tethered cations at base pairs A (5).X (20) and X (8).A (17) extend within the major groove in the 3'-direction, toward conserved Mg (2+) binding sites located adjacent to N+2 base pairs C (3).Z (22) and Z (10).C (15). Bridging waters located between the tethered amines and either Z (10) or Z (22) O (6) stabilize the tethered cations and allow interactions with the N + 2 base pairs without DNA bending. Incorporation of 7-deaza-dG into the DDD (2+Z10) duplex weakens but does not eliminate electrostatic interactions between tethered amines and Z (10) O (6) and Z (22) O (6). The results suggest a mechanism by which tethered N7-dG aziridinium ions, the active species involved in formation of interstrand 5'-GNC-3' cross-links by nitrogen mustards, modify the electrostatics of the major groove and position the aziridinium ions proximate to the major groove edge of the N+2 C.G base pair, facilitating interstrand cross-linking.  相似文献   

7.
5-[1'-[3"-Aminoacetyl-2"-methyl-6",8"-dihalosubstitutedquinazolin-4"(3"H)-onyl]-thiosemicarbazido]-2-oxo/thiobarbituric acids 3a-3h and 5-[2'-amino-5'-[3"-aminomethylene-2"-methyl-6",8"-dihalosubstitutedquinazolin-4"(3"H)-onyl]-1',3',4'-thiadiazol-2'-yl]-2-oxo/thiobarbituric acid 5a-5h were prepared by incorporating 1-[3'-aminoacetyl-2'-methyl-6",8"-dihalosubstituted-quinazolin-4'(3'H)-onyl]-thiosemicarbazides 2a-2d and 2-amino-5-[3'-aminomethylene-2'-methyl-6',8'-dihalosubstituted-quinazolin-4'(3'H)-onyl]-1,3,4-thiadiazoles 4a-4 h respectively at 5(th) position of 2-oxo/thiobarbituric acids (via Mannich reaction). All the newly synthesized compounds were screened for their anti-convulsant activity in MES and PTZ models and were compared with standard drugs phenytoin sodium and sodium valproate. Interestingly, these compounds were found to be devoid of sedative and hypnotic activities when tested. Out of the compounds studied, the most active compound 5h, that is 5-[2'-amino-5'-[3"-aminomethylene-2"-methyl-6",8"-dibromoquinazolin-4"(3"H)-onyl]-1',3',4'-thiadiazol-2'-yl]-2-thiobarbituric acid showed activity (90%) more potent than the standard drug.  相似文献   

8.
The 2',3'-cyclic nucleotide 3'-phosphodiesterase which hydrolyzes nucleoside 2',3'-cyclic phosphates (N greater than p) to nucleoside 2'-phosphates has been purified 16,000-fold to near homogeneity from wheat germ. The purified enzyme is a single polypeptide with a molecular weight of 23,000-24,000. It has a pH optimum of 7.0. The apparent Km values for A greater than p, G greater than p, C greater than p, and U greater than p are 13.1, 9.2, 25.2, and 25.3 mM, respectively. Vmax values for A greater than p, G greater than p, C greater than p, and U greater than p are 2090, 280, 2140, and 600 mumol/min/mg of purified protein, respectively. Wheat germ 2',3'-cyclic nucleotide 3'-phosphodiesterase does not hydrolyze 2',3'-cyclic esters in cyclic phosphate-terminated oligoribonucleotides or in nucleoside 5'-phosphate, 2',3'-cyclic phosphate (pN greater than p). This is in contrast to the 3'-phosphodiesterase activity associated with a wheat germ RNA ligase which hydrolyzes cyclic phosphate-terminated oligonucleotides and pN greater than p substrates much more efficiently than nucleoside 2',3'-cyclic phosphates. The enzyme characterized in this work appears to be the only known 2',3'-cyclic nucleotide 3'-phosphodiesterase specific for 2',3'-cyclic mononucleotides.  相似文献   

9.
A detailed 220-MHz NMR study has been made of the conformational properties for the homodinucleotide adenylyl-3' leads to 5'-adenosine, ApA, in D2O. Unambiguous signal assignments of all proton signals were made with the aid of selectively deuterated nucleotidyl units, ApA, ApA, and D-8ApA, and complete, accurate sets of NMR parameters were derived by simulation-iteration methods. Sets of limiting chemical shifts and coupling values were also obtained for ApA and constituent monomers 3'-AMP and 5'-AMP at infinite dilution and at identical ionization states for assessment of dimerization effects. Conformational properties were evaluated quantitatively for most of the conformational bonds of ApA and these are consistent with two compact folded dynamically averaged structures, a base-stacked right helical structure, I, characterized as anti, C3'-endo, g-, w,w' (320,330 degrees), g'g', gg, C3'-endo, anti, and a more loosely base-stacked loop structure, II, with anti, C3'-endo, g-, w,w' (80 degrees, 50 degrees), g'g', gg, C3'-endo, anti orientations. Dimerization produces a number of nucleotidyl conformational changes including a shift in ribose equilibrium C2'-endo (S) in equilibrium C3'-endo (N) in favor of C3'-endo in both Ap- and -pA (60:40 vs. 35:65 in monomers), a change in glycosidic torsion angle chiCN toward 0 degrees, and a greater locking-in of rotamers along bonds involved in the phosphodiester backbone. Moreover, there is clear evidence that the transitions from S leads to N forms and chiCN leads to 0 degrees are directly related to base stacking in ApA. Finally, ApA exists in solution as an equilibrium between I, II and an unstacked form(s) with as yet undetermined conformational features. Since C4'-C5', C5'-O5', and C3'-O3' bonds possess exceptional conformational stabilities, it is proposed that destacking occurs primarily by rotation about P-O5' and/or O3'-P. Predominant factors influencing the overall ApA conformation are thus base-base interaction and flexibility about P-O5' and O3'-P, with change of ribose conformation occurring in consequence of an alteration of chiCN, the latter in turn being governed by the need for maximum eta overlap of stacked adenine rings.  相似文献   

10.
There has been much recent interest in the self-association of short deoxyguanosine-rich motifs within single-stranded DNAs to generate monovalent cation modulated four-stranded helical segments called G-quadruplexes stabilized by hydrogen-bonded G-tetrad alignments. We have addressed structural aspects of this novel alignment and report on multinuclear 1H, 31P and 13C nuclear magnetic resonance studies on the d(G2T4CG2) deoxynonanucleotide with Na cation as counterion in aqueous solution at low temperature. This sequence forms stable structures even though it cannot align by Watson-Crick hydrogen bond formation (see the paper on d(G2T5G2) describing optical and calorimetric measurements by Jin, R., Breslauer, K. J., Jones, R. A. & Gaffney, B. L. (1990), Science, 250, 543-546). The four narrow exchangeable protons detected between 11.5 and 12.0 parts per million (p.p.m.), which are common to the d(G2T4CG2) deoxynonanucleotide and the d(G2TCG2) deoxyhexanucleotide sequences, are assigned to deoxyguanosine imino protons hydrogen-bonded to carbonyl acceptor groups. These narrow imino protons are not detected for d(IGN5IG) and d(I2N5G2), where two deoxyguanosine residues are replaced by two deoxyinosine residues in the deoxynonanucleotide sequences. This implies that the 2-amino protons of deoxyguanosine must also participate in hydrogen bond formation and stabilize the structured conformation of d(G2T4CG2) in Na cation-containing solution. We have completely assigned the base and sugar H1', H2',2', H3', and H4' protons of the d(G2T4CG2) oligomer following analysis of two-dimensional nuclear Overhauser enhancement spectroscopy and two-dimensional correlated spectroscopy data sets in 0.1 M-NaCl, 10 mM-sodium phosphate, 2H2O solution at 0 degree C. The relative magnitude of the nuclear Overhauser enhancements (NOEs) between the base H8 and its own sugar H1' protons of individual deoxyguanosine residues establishes that G1 and G8 adopt syn orientations while G2 and G9 adopt anti orientations about the glycosidic bond in the d(G1-G2-T3-T4-T5-T6-C7-G8-G9) sequence in both Na and K cation-containing aqueous solution. Consequently, any structure proposed for the tetramolecular complex of d(G2T4CG2) must exhibit alternating G(syn) and G(anti) glycosidic torsion angles within each strand. The directionality and magnitude of the observed NOEs are consistent with the G(syn)-G(anti) steps adopting right-handed helical conformations in solution. We also note that the H8 protons of G1 and G8 (7.35 to 7.45 p.p.m.) in a syn alignment are shifted significantly upfield from the H8 protons of G2 and G9 (8.0 to 8.3 p.p.m.) in an anti alignment.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The hydration in the minor groove of double stranded DNA fragments containing the sequences 5'-dTTAAT, 5'-dTTAAC, 5'-dTTAAA and 5'-dTTAAG was investigated by studying the decanucleotide duplex d(GCATTAATGC)2 and the singly cross-linked decameric duplexes 5'-d(GCATTAACGC)-3'-linker-5'-d(GCGTTAATGC)-3' and 5'-d(GCCTTAAAGC)-3'-linker-5'-d(GCTTTAAGGC)-3' by NMR spectroscopy. The linker employed consisted of six ethyleneglycol units. The hydration water was detected by NOEs between water and DNA protons in NOESY and ROESY spectra. NOE-NOESY and ROE-NOESY experiments were used to filter out intense exchange cross-peaks and to observe water-DNA NOEs with sugar 1' protons. Positive NOESY cross-peaks corresponding to residence times longer than approximately 0.5 ns were observed for 2H resonances of the central adenine residues in the duplex containing the sequences 5'-dTTAAT and 5'-dTTAAC, but not in the duplex containing the sequences 5'-dTTAAA and 5'-dTTAAG. In all nucleotide sequences studied here, the hydration water in the minor groove is significantly more mobile at both ends of the AT-rich inner segments, as indicated by very weak or negative water-A 2H NOESY cross-peaks. No positive NOESY cross-peaks were detected with the G 1'H and C 1'H resonances, indicating that the minor groove hydration water near GC base pairs is kinetically less restrained than for AT-rich DNA segments. Kinetically stabilized minor groove hydration water was manifested by positive NOESY cross-peaks with both A 2H and 1'H signals of the 5'-dTTAA segment in d(GCATTAATGC)2. More rigid hydration water was detected near T4 in d(GCATTAATGC)2 as compared with 5'-d(GCATTAACGC)-3'-linker-5'-d(GCGTTAATGC)-3', although the sequences differ only in a single base pair. This illustrates the high sensitivity of water-DNA NOEs towards small conformational differences.  相似文献   

12.
B3LYP/6-31G(d,p) level of theory is used to carry out a detailed gas phase conformational analysis of non-ionized (neutral) pyrrolysine molecule about its nine internal back-bone torsional angles. A total of 13 minima are detected from potential energy surface exploration corresponding to the nine internal back-bone torsional angles. These minima are then subjected to full geometry optimization and vibrational frequency calculations at B3LYP/6-31++G(d,p) level. Characteristic intramolecular hydrogen bonds present in each conformer, their relative energies, theoretically predicted vibrational spectra, rotational constants and dipole moments are systematically reported. Single point calculations are carried out at B3LYP/6-311++G(d,p) and MP2/6-31++G(d,p) levels. Six types of intramolecular H-bonds, viz. O…H–O, N…H-O, O…H–N, N…H–N, O…H–C and N…H–C, are found to exist in the pyrrolysine conformers; all of which contribute to the stability of the conformers. The vibrational frequencies are found to shift invariably toward the lower side of frequency scale corresponding to the presence of intramolecular H-bond interactions in the conformers.  相似文献   

13.
在研究转基因香石竹品系月之霓裳(Moonshade)、月之伊人(Moonlite)中外源基因F3’5’H的表达中,本文克隆了F3’5’H全长基因1.5kb,构建获得工程菌株Escherichia coli BL21(DE3)(+F3'5'H)。SDS-PAGE分析的结果显示,该菌株高效表达出F3’5’H重组蛋白,约占菌体总蛋白的30%。用经纯化的F3’5’H重组蛋白作为抗原,制备F3’5’H重组蛋白的抗血清,经ELISA免疫学分析表明,该抗血清的效价为1:25600。Western blot结果表明F3’5’H重组蛋白具有良好的IgG结合活性,且抗血清与转基因香石竹品系月之霓裳和月之伊人中的外源基因F3’5’H所表达的蛋白发生明显的抗原抗体反应。这样,月之霓裳和月之伊人用于评价转基因香石竹品系的环境安全性在我国也得到了验证。  相似文献   

14.
The disaccharide, alpha-maltose, forms the molecular basis for the analysis of the structure of starch, and determining the conformational energy landscape as the molecule oscillates around the glycosidic bonds is of importance. Thus, it is of interest to determine, using density functionals and a medium size basis set, a relaxed isopotential contour map plotted as a function of the phi(H) and psi(H) dihedral angles. The technical aspects include the method of choosing the starting conformations, the choice of scanning step size, the method of constraining the specific dihedral angles, and the fitting of data to obtain well defined contour maps. Maps were calculated at the B3LYP/6-31+G( *) level of theory in 5 degrees intervals around the (phi(H),psi(H))=(0 degrees ,0 degrees ) position, out to approximately +/-30 degrees or greater, for gg-gg'-c, gg-gg'-r, gt-gt'-c, gt-gt'-r, tg-tg'-c, and tg-tg'-r conformers, as well as one-split gg(c)-gg'(r) conformer. The results show that the preferred conformation of alpha-maltose in vacuo depends strongly upon the hydroxyl group orientations ('c'/'r'), but the energy landscape moving away from the minimum-energy position is generally shallow and transitions between conformational positions can occur without the addition of significant energy. Mapped deviations of selected parameters such as the dipole moment; the C1-O1-C4', H1-C1-O1, and H4'-C4'-O1 bond angles; and deviations in hydroxymethyl rotamers, O5-C5-C6-O6, O5'-C5'-C6'-O6', C5-C6-O6-H, and C5'-C6'-O6'-H', are presented. These allow visualization of the structural and energetic changes that occur upon rotation about the glycosidic bonds. Interactions across the bridge are visualized by deviations in H(O2)...O3', H(O3')...O2, and H1...H4' distances and the H(O2)-O2-C2-C1 and H'(O3')-O3'-C3'-C4' hydroxyl dihedral angles.  相似文献   

15.
A summary delineating the large scale synthetic studies to prepare labeled precursors of ribonucleosides-3',4',5',5'-2H4 and -2',3',4',5',5'-2H5 from D-glucose is presented. The recycling of deuterium-labeled by-products has been devised to give a high overall yield of the intermediates and an expedient protocol has been elaborated for the conversion of 3-O-benzyl-alpha,beta-D-allofuranose-3,4-d2 6 to 1-O-methyl-3-O-benzyl-2-O-t-butyldimethylsilyl-alpha,beta-D-ribofuranose-3,4,5,5'-d4 16 (precursor of ribonucleosides-3',4',5',5'-2H4) or to 1-O-methyl-3,5-di-O-benzyl-alpha,beta-D-ribofuranose-3,4,5,5'-d4 18 (precursor of ribonucleosides-3',4',5',5'-2H4).  相似文献   

16.
Solution structure of anti-AIDS drug, 2',3'-dideoxyinosine (ddI) has been assessed by NMR spectroscopy and pseudorotational analysis in conjunction with its analogues: 2',3'-dideoxyadenosine (ddA), 2',3'-dideoxyguanosine (ddG) and 2',3'-dideoxycytidine (ddC). The absence of 3'-hydroxyl groups in these compounds has prompted us to establish the relationship between proton-proton and corresponding endocyclic torsion angles in the 2',3'-dideoxyribofuranose moiety on the basis of five available crystal structures of 2',3'-dideoxynucleosides. A subsequent pseudorotational analysis on ddI (1), ddA (2), ddG (3) and ddC (4) shows that the twist C2'exo-C3'-endo forms of sugar are overwhelmingly preferred (75-80%) over the C2'-endo envelope forms. The phase angles (P) for North and South conformers with the corresponding puckering amplitude (psi m) for ddI (1), ddA (2) and ddG (3) are as follows: PN = 0.1 degrees, PS = 161 degrees and psi m = 34.1 degrees for ddI (1); PN = 1.4 degrees, PS = 160 degrees and psi m = 34.2 degrees for ddA (2) and PN = 2.4 degrees, PS = 163 degrees and psi m = 33.6 degrees for ddG (3). The predominant North conformer of ddC (4) is intermediate between twist C2'-exo-C3'-endo and C3'-endo envelope (P = 10.9 degrees) with a psi m of 34.7 degrees. Note that these preponderant North-sugar structures (approx. 75-80%) found in the solution studies of ddI (1), ddA (2), dG (3) and ddC (4) are not reflected in the X-ray crystal structures of 2',3'-dideoxyadenosine and 2',3'-dideoxycytidine. The constituent sugar residues in both of these crystal structures denosine and 2',3'-dideoxycytidine. The constituent sugar residues in both of these crystal structures are found to be in the South-type geometry (ddA crystalizes in C3'-exo envelope form, while ddC adopts the form intermediate between the C3'-exo envelope and C3'-endo-C4'-exo twist form). This means that X-ray structures of ddA (2) and ddC (4) only represent the minor conformer of the overall pseudorotamer population in solution. An assumption that the structure of the pentofuranose sugar (i.e. P and psi m) participating in conformational equilibrium described by the two-state model remains unchanged at different temperatures has been experimentally validated by assessing five unknown pseudorotational parameters with eight unique observables (3J1'2', 3J1'2", 3J2'3', 3J2'3", 3J2"3', 3J2"3", 3J3'4' and 3J3"4') for 2',3'-dideoxynucleosides.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
One- and two-dimensional nuclear magnetic resonance (NMR) experiments have been undertaken to investigate the conformation of the d(C1-G2-C3-G4-A5-A6-T7-T8-C9-O6meG10-C11-G12) self-complementary dodecanucleotide (henceforth called O6meG.C 12-mer), which contains C3.O6meG10 interactions in the interior of the helix. We observe intact base pairs at G2.C11 and G4.C9 on either side of the modification site at low temperature though these base pairs are kinetically destabilized in the O6meG.C 12-mer duplex compared to the G.C 12-mer duplex. One-dimensional nuclear Overhauser effects (NOEs) on the exchangeable imino protons demonstrate that the C3 and O6meG10 bases are stacked into the helix and act as spacers between the flanking G2.C11 and G4.C9 base pairs. The nonexchangeable base and H1', H2', H2', H3', and H4' protons have been completely assigned in the O6meG.C 12-mer duplex at 25 degrees C by two-dimensional correlated (COSY) and nuclear Overhauser effect (NOESY) experiments. The observed NOEs and their directionality demonstrate that the O6meG.C 12-mer is a right-handed helix in which the O6meG10 and C3 bases maintain their anti conformation about the glycosidic bond at the modification site. The NOEs between the H8 of O6meG10 and the sugar protons of O6meG10 and adjacent C9 exhibit an altered pattern indicative of a small conformational change from a regular duplex in the C9-O6meG10 step of the O6meG.C 12-mer duplex. We propose a pairing scheme for the C3.O6meG10 interaction at the modification site. Three phosphorus resonances are shifted to low field of the normal spectral dispersion in the O6meG.C 12-mer phosphorus spectrum at low temperature, indicative of an altered phosphodiester backbone at the modification site. These NMR results are compared with the corresponding parameters in the G.C 12-mer, which contains Watson-Crick base pairs at the same position in the helix.  相似文献   

18.
Exhaustive conformational analysis of the 5'-deoxyadenylic acid molecule, has been carried out by the quantum-mechanical density functional theory method at the MP2/6-311++G(d,p)//DFT B3LYP/6-31G(d,p) theory level. As many as 726 of its conformations have been revealed with the relative gas phase Gibbs energies under standard conditions from 0 to 12.1 kcal/mole. It has been shown, that the energetically most favorable conformation has north sugar puckering and synorientation of the nitrogenous base and is stabilized by intramolecular O(p1)H(p1)-N3 and O3'H-O(p) hydrogen bonds. Four conformations have been shown to have their geometry similar to that of AI-DNA and four - of BI-DNA. One conformer of the 5'-deoxyadenylic acid molecule is similar to its sodium salt hexahydrate structure in crystalline state resolved by the X-ray diffraction method and taken from literature. It is shown that effective charges of C4' and C5' atoms are the most sensitive to the molecule conformation ones. The role of the intramolecular OH-N hydrogen bonds in formation of the 5'-deoxyadenylic acid molecule structure has been demonstrated.  相似文献   

19.
The cellular slime mold Dictyostelium discoideum has an intracellular phosphodiesterase which specifically hydrolyzes cGMP. The enzyme is activated by low cGMP concentrations, and is involved in the reduction of chemoattractant-mediated elevations of cGMP levels. The interaction of 20 cGMP derivatives with the activator site and with the catalytic site of the enzyme has been investigated. Binding of cGMP to the activator site is strongly reduced (more than 80-fold) if cGMP is no longer able to form a hydrogen bond at N2H2 or O2'H. Modifications at N7, C8, O3' and O5' induce only a small reduction of binding affinity. A cyclic phosphate structure, as well as a negatively charged oxygen atom at phosphorus, are essential to obtain activation of the enzyme. Substitution of the axial exocyclic oxygen atom by sulphur is tolerated; modification of the equatorial oxygen atom reduces the binding activity of cGMP to the activator site by 90-fold. Binding of cGMP to the catalytic site is strongly reduced if cGMP is modified at N1H, C6O, C8 and O3', while modifications at N2H2, N3, N7, O2'H, and O5' have minor effects. Both exocyclic oxygen atoms are important to obtain binding of cGMP to the catalytic site. The results indicate that activation of the enzyme by cGMP and hydrolysis of cGMP occur at different sites of the enzyme. cGMP is recognized at these sites by different types of molecular interaction between cGMP and the protein. cGMP derivatives at concentrations which saturate the activator site do not induce the same degree of activation of the enzyme (activation 2.3-6.6-fold). The binding affinities of the analogues for the activator site and their maximal activation are not correlated. Our results suggest that the enzyme is activated because cGMP bound to the activator site stabilizes a state of the enzyme which has a higher affinity for cGMP at the catalytic site.  相似文献   

20.
Kinetic analysis of hydrolytic stability of 2',5'- and 3',5'-linked dinucleoside monophosphate (N(2)'pN and N(3)'pN) was successfully performed in aqueous solution at 175-240 degrees C using a new real-time monitoring method for rapid hydrothermal reactions. The half-lives of NpN were in the range 2-8 s at 240 degrees C and apparent activation energy decreases in the order U(2)'pU>A(2)'pA>G(2)'pG>U(3)pU approximately C(3)'pC>A(3)pA. The stability of phosphodiester bond was dependent on the types of base moiety and phosphodiester linkages, but no systematic correlation was found between the structure and stability. The interconversion of 2',5'-adenylyladenosine monophosphate (A(2)'pA) and 3',5'-adenylyladenosine monophosphate (A(3)'pA) was enhanced in the presence of D- or L-histidine. The rate constants of degradation of NpN were dissected into the rate constants of hydrolysis and interconversion between N(2)'pN and N(3)'pN using a computer program SIMFIT. Kinetic analysis supports the mechanism that imidazolium ion and imidazole catalyze interconversion and hydrolysis even under hydrothermal environments. The activation parameters for the hydrolysis and interconversion of NpN were systematically determined for the first time from the temperature dependence of the rate constants, where both DeltaH(app)( not equal ) and DeltaS(app)( not equal ) for 2',5'-linked NpN are larger than those for 3',5'-linked NpN. These parameters support the pseudorotation mechanism through pentacoordinate intermediate from 2',5'- and 3',5'-linked NpN, where the average value of DeltaH( not equal ) (pseudorotation) was estimated to be 30+/-18 kJ mol(-1) at 175-240 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号