首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atrial fibrillation (AF) often occurs in the presence of an underlying disease. These underlying diseases cause atrial remodelling, which make the atria more susceptible to AF. Stretch is an important mediator in the remodelling process. The aim of this study was to develop an atrial cell culture model mimicking remodelling due to atrial pressure overload. Neonatal rat atrial cardiomyocytes (NRAM) were cultured and subjected to cyclical stretch on elastic membranes. Stretching with 1 Hz and 15% elongation for 30 min. resulted in increased expression of immediate early genes and phosphorylation of Erk and p38. A 24‐hr stretch period resulted in hypertrophy‐related changes including increased cell diameter, reinduction of the foetal gene program and cell death. No evidence of apoptosis was observed. Expression of atrial natriuretic peptide, brain natriuretic peptide and growth differentiation factor‐15 was increased, and calcineurin signalling was activated. Expression of several potassium channels was decreased, suggesting electrical remodelling. Atrial stretch‐induced change in skeletal α‐actin expression was inhibited by pravastatin, but not by eplerenone or losartan. Stretch of NRAM results in elevation of stress markers, changes related to hypertrophy and dedifferentiation, electrical remodelling and cell death. This model can contribute to investigating the mechanisms involved in the remodelling process caused by stretch and to the testing of pharmaceutical agents.  相似文献   

2.
The effects of a 50-Hz extremely low frequency magnetic field on cultured K562 cells growing in suspension were studied by means of scanning electron microscopy and electron paramagnetic resonance spectroscopy. Exposure of K562 cells at 2.5 mT for periods to 96 hours induced significant changes in cell-surface structure and physiology without modification of proliferative capability as indicated by quantitative analysis. Thus extremely low frequency fields seem able to induce injurious, sublethal cell alterations, and the plasma membrane seems to play an important role in this effect. © 1993 Wiley-Liss, Inc.  相似文献   

3.
4.
5.
N(G)-nitro-D-arginine-methyl ester (D-NAME) is considered to be an inactive enantiomer of L-NAME and is generally used as the negative control for NO synthase inhibition with L-NAME. With the aim to compare the effects of 4-week L-NAME and D-NAME treatments on hemodynamic and cardiovascular structural parameters, four groups of male Wistar rats were investigated: the controls and groups administered 40 and 20 mg/kg/day of L-NAME and 40 mg/kg/day of D-NAME. At the end of the experiment, myocardial NO synthase activity decreased by 42, 24 and 25%; aortic NO synthase activity decreased by 35, 15 and 13% vs. controls in the L-NAME 40, L-NAME 20 and D-NAME 40 groups, respectively. The DNA concentrations in the myocardium and the aorta increased significantly after L-NAME and D-NAME treatments. The inhibition of NO synthase was accompanied by a significant elevation in systolic blood pressure in all three groups. The LVW/BW ratio increased by 27, 14 and 13% vs. controls in the L-NAME 40, L-NAME 20 and D-NAME 40 groups, respectively. The aortic wall mass, measured as the cross-sectional area, increased by 45, 17 and 25% vs. controls in the L-NAME 40, L-NAME 20 and D-NAME 40 groups, respectively. Myocardial fibrosis represented 0.94% in the controls, but 7.96, 4.70 and 5.25% in L-NAME 40, L-NAME 20 and D-NAME 40 groups, respectively. It is concluded that D-NAME, although less affective than L-NAME, inhibits NO synthase activity resulting in hemodynamic and structural changes in the cardiovascular system similar to the changes induced by half the dose of L-NAME. Thus, the consideration of D-NAME as an inactive enantiomer and its use as the negative control needs to be reevaluated.  相似文献   

6.
Castanospermine (1,6,7,8-tetrahydroxyoctahydroindolizine) is a potent time-dependent inhibitor of the sucrase-isomaltase complex purified from rat small intestine, in vitro. First-order kinetics for the inactivation of sucrase and isomaltase by castanospermine were observed. Protection studies showed that castanospermine competes for the glucosyl subsite with the substrates of sucrase and isomaltase. The second-order rate constants (k1) for the association reaction between castanospermine and the protein complex were calculated to be 6.5 X 10(3) and 0.3 X 10(3) M-1 s-1 for sucrase and isomaltase, respectively. Only barely detectable reactivation of the inhibited isomaltase was detectable over 24 h, whereas about 30% reactivation of the inhibited sucrase was observed in 24 h (k2 = 3.6 X 10(-6) s-1). These results suggest that castanospermine functions as a transition-state analog that binds extremely tightly to sucrase and isomaltase.  相似文献   

7.
Cryptosin, a new cardenolide, was found to preferentially bind to Na,K-ATPase enzyme (7), which is believed to be the ouabain binding site on cardiac sarcolemmal membrane. CD spectral studies revealed that cryptosin, in the presence of Na+ and Mg++ ions, bind to Na,K-ATPase and induce a dose-dependent change in the backbone structure of cardiac Na,K-ATPase.  相似文献   

8.
Thermal stability and internal dynamics of myosin heads in fiber bundles from rabbit psoas muscle has been studied by electron paramagnetic resonance (EPR) spectroscopy and differential scanning calorimetry (DSC). Using ADP, ATP and orthovanadate (V(i)), three intermediate states of the ATP hydrolysis cycle were simulated in glycerinated muscle fibers. DSC transitions contained three overlapping endotherms in each state. Deconvolution showed that the transition temperature of 58.4 degrees C was almost independent of the intermediate state of myosin, while nucleotide binding shifted the melting temperatures of 54.0 and 62.3 degrees C, and changed the enthalpies. These changes suggest global rearrangements of the internal structure in myosin head. In the presence of ADP and ADP plus V(i), the conventional EPR spectra showed changes in the ordering of the probe molecules, suggesting local conformational and motional changes in the internal structure of myosin heads. Saturation transfer EPR measurements reported increased rotational mobility of spin labels in the presence of ATP plus orthovanadate corresponding to a weakly binding state of myosin to actin.  相似文献   

9.
Teng N  Wang J  Chen T  Wu X  Wang Y  Lin J 《The New phytologist》2006,172(1):92-103
Leaves of Arabidopsis thaliana grown under elevated or ambient CO2 (700 or 370 micromol mol(-1), respectively) were examined for physiological, biochemical and structural changes. Stomatal characters, carbohydrate and mineral nutrient concentrations, leaf ultrastructure and plant hormone content were investigated using atomic absorption spectrophotometry, transmission electron microscopy and enzyme-linked immunosorbent assay (ELISA). Elevated CO2 reduced the stomatal density and stomatal index of leaves, and also reduced stomatal conductance and transpiration rate. Elevated CO2 increased chloroplast number, width and profile area, and starch grain size and number, but reduced the number of grana thylakoid membranes. Under elevated CO2, the concentrations of carbohydrates and plant hormones, with the exception of abscisic acid, increased whereas mineral nutrient concentrations declined. These results suggest that the changes in chloroplast ultrastructure may primarily be a consequence of increased starch accumulation. Accelerated A. thaliana growth and development in elevated CO2 could in part be attributed to increased foliar concentrations of plant hormones. The reductions in mineral nutrient concentrations may be a result of dilution by increased concentrations of carbohydrates and also of decreases in stomatal conductance and transpiration rate.  相似文献   

10.
Mutants of Bacillus subtilis unable to grow on 0.1 p. cent sucrose were shown on the basis of enzymatic characterization and genetic mapping to be affected in either of two adjacent loci sacA and sacP. The sacP locus is defined by mutations impairing the activity of a phosphorylating sucrose transport system and the sacA locus by sucrase defective mutations. Proteins showing a crossreaction with antibodies directed against purified sucrase have been detected in crude extracts of two sacA mutants. According to these results it is proposed that sacA is the structural gene of sucrase and that the sacA and sacP loci are part of an operon.  相似文献   

11.
12.
S Schacher  P G Montarolo 《Neuron》1991,6(5):679-690
FMRFamide evokes both short-term and long-term inhibition of synapses between mechanosensory and motor neurons in Aplysia. We report here, using dissociated cell culture and low-light epifluorescence video microscopy, that depression lasting 24 hr of sensorimotor synapses evoked by four brief applications of FMRFamide is accompanied by a significant loss of sensory cell varicosities and neurites. These structural changes in the sensory cells require the presence of the target motor cell L7. Because the loss of structures known to contain transmitter release sites correlates significantly with the changes in the amplitude of the excitatory postsynaptic potential in L7, our results suggest that the structural changes evoked by FMRFamide reflect a loss of synaptic contacts. Thus, long-term depression parallels long-term facilitation of the sensorimotor synapse produced by serotonin in that both forms of heterosynaptic plasticity involve target-dependent modulation of the number of presynaptic varicosities.  相似文献   

13.
In order to understand how the phosphorylation of histones affects the chromatin structure, we used electron microscopy, sedimentation velocity, circular dichroism and electric birefringence to monitor the salt-induced filament reversible solenoid transition of phosphorylated and native chromatin. Phosphorylation in vitro of chicken erythrocyte chromatin by cyclic-AMP-dependent protein kinase from porcine heart led to the modification of the histones H3 and H5 only, which were modified at a level of one phosphate and about three phosphate groups per molecule, respectively. In contrast to circular dichroism and sedimentation studies, which tend to suggest that phosphorylation of H3 and H5 does not affect chromatin structure, electron microscopy reveals that phosphorylation causes a relaxation of structure at low ionic strength. Electric birefringence and relaxation time measurements clearly prove that local structural changes are induced in chromatin: we observe a decrease of the steady-state birefringence with the appearance of a negative contribution in the signal and a marked increase of the flexibility of fibres. The component with the negative birefringence presents very short relaxation times, like those exhibited by small DNA fragments or individual nucleosomes. Two possibilities are then suggested. First, the conformational change is consistent with what would be expected from the presence of DNA segments loosely associated with the core histone H3. That the length of such segments could correspond to about one to two base-pairs per nucleosome strongly suggests that phosphorylation induces changes affecting some specific H3-DNA interactions only. This result could corroborate previous observations indicating that the N-terminal region of H3, where the site of phosphorylation is located, plays a decisive role in maintaining the superstructure of chromatin. Second, phosphorylation could introduce hinge points between each nucleosome. In this case, the negative birefringence results from partial orientation of the swinging nucleosomes. A possible mode of action of phosphorylation might be to weaken structural restraints imposed by histone H3, thus facilitating further condensation of chromatin.  相似文献   

14.
Type IV pili are cell surface organelles found on many Gram-negative bacteria. They mediate a variety of functions, including adhesion, twitching motility, and competence for DNA uptake. The type IV pilus is a helical polymer of pilin protein subunits and is capable of rapid polymerization or depolymerization, generating large motor forces in the process. Here we show that a specific interaction between the outer membrane secretin PilQ and the type IV pilus fiber can be detected by far-Western analysis and sucrose density gradient centrifugation. Transmission electron microscopy of preparations of purified pili, to which the purified PilQ oligomer had been added, showed that PilQ was uniquely located at one end of the pilus fiber, effectively forming a "mallet-type" structure. Determination of the three-dimensional structure of the PilQ-type IV pilus complex at 26-angstroms resolution showed that the cavity within the protein complex was filled. Comparison with a previously determined structure of PilQ at 12-angstroms resolution indicated that binding of the pilus fiber induced a dissociation of the "cap" feature and lateral movement of the "arms" of the PilQ oligomer. The results demonstrate that the PilQ structure exhibits a dynamic response to the binding of its transported substrate and suggest that the secretin could play an active role in type IV pilus assembly as well as secretion.  相似文献   

15.
Cofactor for acrosome reaction-inducing substance (Co-ARIS) is a steroidal saponin from the starfish Asterias amurensis. Saponins exist in many plants and few animals as self-defensive chemicals, but Co-ARIS has been identified as a cofactor for inducing the acrosome reaction (AR). In A. amurensis, the AR is induced by the cooperative action of egg coat components (ARIS, Co-ARIS, and asterosap); however, the mechanism of action of Co-ARIS is obscure. In this study we elucidated the membrane dynamics involved in the action of Co-ARIS. We found that cholesterol specifically inhibited the Co-ARIS activity for AR induction and detected the binding of labeled compounds with sperm using radioisotope-labeled Co-ARIS. Co-ARIS treatment did not reduce the content of sperm sterols, however, the condition was changed and localization of GM1 ganglioside on the periacrosomal region disappeared. We then developed a caveola-breaking assay, a novel method to detect the effect of chemicals on microdomains of culture cell, and confirmed the disturbance of somatic cell caveolae in the presence of Co-ARIS. Finally, by atomic force microscopy observations and surface plasmon resonance measurements using an artificial membrane, we revealed that Co-ARIS colocalized with GM1 clusters on the microdomains. Through this study, we revealed a capacitation-like event for AR in starfish sperm.  相似文献   

16.
Bacteria employ a modified two-component system for chemotaxis, where the receptors form ternary complexes with CheA histidine kinases and CheW adaptor proteins. These complexes are arranged in semi-ordered arrays clustered predominantly at the cell poles. The prevailing models assume that these arrays are static and reorganize only locally in response to attractant binding. Recent studies have shown, however, that these structures may in fact be much more fluid. We investigated the localization of the chemotaxis signaling arrays in Bacillus subtilis using immunofluorescence and live cell fluorescence microscopy. We found that the receptors were localized in clusters at the poles in most cells. However, when the cells were exposed to attractant, the number exhibiting polar clusters was reduced roughly 2-fold, whereas the number exhibiting lateral clusters distinct from the poles increased significantly. These changes in receptor clustering were reversible as polar localization was reestablished in adapted cells. We also investigated the dynamic localization of CheV, a hybrid protein consisting of an N-terminal CheW-like adaptor domain and a C-terminal response regulator domain that is known to be phosphorylated by CheA, using immunofluorescence. Interestingly, we found that CheV was localized predominantly at lateral clusters in unstimulated cells. However, upon exposure to attractant, CheV was found to be predominantly localized to the cell poles. Moreover, changes in CheV localization are phosphorylation-dependent. Collectively, these results suggest that the chemotaxis signaling arrays in B. subtilis are dynamic structures and that feedback loops involving phosphorylation may regulate the positioning of individual proteins.  相似文献   

17.
A new octanordammarane triterpene, 3β,15α-dihydroxymansumbinol (1) and a novel A-ring contracted oleanane triterpenoid, 2-formyl-(A)1–19α-hydroxy-1-norolean-2,12-dien-28-oic acid (2) were isolated from the roots extract of Rosa rugosa along with fifteen known compounds (317). Their structures were elucidated by extensive spectroscopic analysis, including 1D and 2D NMR, and FTICRMS. The MeOH extract, as well as CH2Cl2 and EtOAc fractions at a concentration of 0.5 mg/mL showed potent sucrase inhibitory activity, with inhibition percentage values of 84.67 ± 5.37%, 87.50 ± 2.78%, and 81.91 ± 2.90%, respectively. In addition, compounds 713 (1.0 mM) showed potent sucrase inhibitory activity (61.88 ± 3.19% to 84.70 ± 3.07% inhibition), which was comparable to that of the positive control, acarbose, with an inhibition percentage value of 50.96 ± 2.97%. Compounds 1, 2, 4, and 1417 showed moderate and/or weak inhibitory activities at the same concentration. The α-glucosidase inhibitory activities of the extracts and purified compounds may provide a novel opportunity to develop a new class of antidiabetic agents.  相似文献   

18.
Sarcoplasmic reticulum (SR) isolated from the deep red portion of the gastrocnemius muscle of Sprague-Dawley rats after a single bout of prolonged exercise was shown to have depressed Ca(2+)-stimulated Mg(2+)-dependent ATPase activity over a temperature range of 15 to 42.5 degrees C when compared to SR obtained from control muscle. Inclusion of the calcium ionophore, A23187, failed to restore the depressed ATPase activity from SR of exercised muscle to control values, but it did normalize the stimulatory effect of temperature on ATPase activity. This depression was also manifested as an increased activation energy when the data were converted to an Arrhenius plot. SR vesicles from both groups showed no differences or discontinuities in plots of steady-state fluorescence anisotropy. When the binding characteristics of the fluorescent probe, fluorescein isothiocyanate (FITC), were analyzed, SR vesicles prepared from exercised muscle displayed a 40% reduction in binding capacity with no apparent change in Kd. These findings support the conclusion that a single bout of exercise induces a structural change in the Ca(2+)-ATPase protein of rat red gastrocnemius muscle that is not a direct result of gross lipid alterations or increased muscle temperature.  相似文献   

19.
Divalent cations were found to inhibit the light-induced 515-nm absorption change in chloroplasts with half-maximal effects occurring between 0.3 and 0.7 mm. Monovalent cations were also effective but higher concentrations (~ 30–40 mm) were required for half-maximal effects. Divalent and monovalent cations also caused absorption changes of chloroplasts in the dark which superficially resemble 515-nm absorption changes. However, they can be correlated with volume changes and represent a combination of turbidity and pigment-absorption changes (flattening) which result from shrinkage. Half-maximal effects occurred at 0.8–1.2 mm for divalent cations and between 15 and 20 mm for monovalent cations. The relationship between salt-induced and osmotic-induced structural changes is also discussed.  相似文献   

20.
To examine the biochemical mechanism by which hsp90 exerts its essential positive function on certain signal transduction proteins, we characterized the effects of molybdate and geldanamycin on hsp90 function and structure. Molybdate inhibited hsp90-mediated p56lck biogenesis and luciferase renaturation while enforcing salt-stable interactions with these substrates. Molybdate also reduced the amount of free hsp90 present in cell lysates, inhibited hsp90's ability to bind geldanamycin, and induced resistance to proteolysis at a specific region within the C-terminal domain of hsp90. In contrast, the hsp90 inhibitor geldanamycin prevented hsp90 from assuming natural or molybdate-induced conformations that allow salt-stable interactions with substrates. When these compounds were applied sequentially, the order of addition determined the effects observed, indicating that these agents had opposing effects on hsp90. We conclude that a specific region within the C-terminal domain of hsp90 (near residue 600) determines the mode by which hsp90 interacts with substrates and that the ability of hsp90 to cycle between alternative modes of interaction is obligatory for hsp90 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号