首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amplitude and pitch fluctuations of natural soundscapes often exhibit "1/f spectra", which means that large, abrupt changes in pitch or loudness occur proportionally less frequently in nature than gentle, gradual fluctuations. Furthermore, human listeners reportedly prefer 1/f distributed random melodies to melodies with faster (1/f0) or slower (1/f2) dynamics. One might therefore suspect that neurons in the central auditory system may be tuned to 1/f dynamics, particularly given that recent reports provide evidence for tuning to 1/f dynamics in primary visual cortex. To test whether neurons in primary auditory cortex (A1) are tuned to 1/f dynamics, we recorded responses to random tone complexes in which the fundamental frequency and the envelope were determined by statistically independent "1/f(gamma) random walks," with gamma set to values between 0.5 and 4. Many A1 neurons showed clear evidence of tuning and responded with higher firing rates to stimuli with gamma between 1 and 1.5. Response patterns elicited by 1/f(gamma) stimuli were more reproducible for values of gamma close to 1. These findings indicate that auditory cortex is indeed tuned to the 1/f dynamics commonly found in the statistical distributions of natural soundscapes.  相似文献   

2.
Standard electrophysiology and virtual auditory stimuli were used to investigate the influence of interaural time difference on the azimuthal tuning of neurons in the core and the lateral shell of the central nucleus of the inferior colliculus of the barn owl. The responses of the neurons to virtual azimuthal stimuli depended in a periodic way on azimuth. Fixation of the interaural time difference, while leaving all other spatial cues unchanged, caused a loss of periodicity and a broadening of azimuthal tuning. This effect was studied in more detail in neurons of the core. The azimuthal range tested and the frequency selectivity of the neurons were additional parameters influencing the changes induced by fixating the interaural time difference. The addition of an interaural time difference to the virtual stimuli resulted in a shift of the tuning curves that correlated with the interaural time difference added. In this condition, tuning strength did not change. These results suggest that interaural time difference is an important determinant of azimuthal tuning in all neurons of the core and lateral shell of the central nucleus of the inferior colliculus, and is the only determinant in many of the neurons from the core.  相似文献   

3.
We present seismic and auditory frequency tuning curves of individual bullfrog, Rana catesbeiana, saccular and amphibian papilla axons that responded to both seismic and auditory stimuli. In this study we found: 1) most saccular axons respond well to auditory stimuli with moderate signal strength (50-70 dB SPL) as well as to seismic stimuli; 2) most amphibian papilla axons respond well to seismic stimuli as well as to auditory stimuli, and their seismic sensitivities are comparable to those of saccular axons (responding to sinusoidal stimuli with peak accelerations in the range 0.001 to 0.1 cm/S2); 3) the responses to both seismic and auditory stimuli from both saccule and amphibian papilla are tuned, i.e. the strength of the response varies with the frequency of the stimulus; and this tuning is clearly not the result of second order resonance; 4) in individual axons the tuning properties for seismic stimuli often are not the same as those for auditory stimuli, a fact that may provide clues about how the stimulus signal energy is transferred to the hair cells in each case.  相似文献   

4.
Sound localization is a computational process that requires the central nervous system to measure various auditory cues and then associate particular cue values with appropriate locations in space. Behavioral experiments show that barn owls learn to associate values of cues with locations in space based on experience. The capacity for experience-driven changes in sound localization behavior is particularly great during a sensitive period that lasts until the approach of adulthood. Neurophysiological techniques have been used to determine underlying sites of plasticity in the auditory space-processing pathway. The external nucleus of the inferior colliculus (ICX), where a map of auditory space is synthesized, is a major site of plasticity. Experience during the sensitive period can cause large-scale, adaptive changes in the tuning of ICX neurons for sound localization cues. Large-scale physiological changes are accompanied by anatomical remodeling of afferent axons to the ICX. Changes in the tuning of ICX neurons for cue values involve two stages: (1) the instructed acquisition of neuronal responses to novel cue values and (2) the elimination of responses to inappropriate cue values. Newly acquired neuronal responses depend differentially on NMDA receptor currents for their expression. A model is presented that can account for this adaptive plasticity in terms of plausible cellular mechanisms. Accepted: 17 April 1999  相似文献   

5.
Individual neurons in the antennal lobe of the cockroach not only respond to warming, cooling and the odor of lemon oil but they also integrate the responses to simultaneously occurring temperature and olfactory stimuli. This integration results in an increase or decrease of the neuron's activity as compared to its responses to the temperature stimuli presented alone. The mean gain for a change in temperature in the warm and cold direction is 9.5 (imp s(-1)) degrees C(-1) and 10.2 (imp s(-1)) degrees C(-1), respectively. Thus, the average neuron elevates its impulse frequency by 1 imp s(-1) when temperature is increased by 0.1 degree C or decreased by 0.09 degree C. Examination of response scatter reveals that the difference required between two warm or two cold stimuli to be discriminated is 0.5 degree C. Similar values for gain and resolving power are obtained for the enhanced responses to the warm-odor and the cold-odor stimulus combinations. The neurons described are: (1) local interneurons innervating a number of glomeruli distributed within the antennal lobe, and (2) projection neurons collecting information from single glomeruli at 140-280 microm from the surface of the antennal lobe and providing links with the calyces of the mushroom bodies and the lateral lobe of the protocerebrum.  相似文献   

6.
Eye position influences auditory responses in primate inferior colliculus   总被引:9,自引:0,他引:9  
Groh JM  Trause AS  Underhill AM  Clark KR  Inati S 《Neuron》2001,29(2):509-518
We examined the frame of reference of auditory responses in the inferior colliculus in monkeys fixating visual stimuli at different locations. Eye position modulated the level of auditory responses in 33% of the neurons we encountered, but it did not appear to shift their spatial tuning. The effect of eye position on auditory responses was substantial-comparable in magnitude to that of sound location. The eye position signal appeared to interact with the auditory responses in at least a partly multiplicative fashion. We conclude that the representation of sound location in primate IC is distributed and that the frame of reference is intermediate between head- and eye-centered coordinates. The information contained in these neurons appears to be sufficient for later neural stages to calculate the positions of sounds with respect to the eyes.  相似文献   

7.
在自然环境中,人和动物常在一定的背景噪声下感知信号声刺激,然而,关于低强度的弱背景噪声如何影响听皮层神经元对声刺激频率的编码尚不清楚.本研究以大鼠听皮层神经元的频率反应域为研究对象,测定了阈下背景噪声对79个神经元频率反应域的影响.结果表明,弱背景噪声对大鼠初级听皮层神经元的听反应既有抑制性影响、又有易化性影响.一般来说,抑制性影响使神经元的频率调谐范围和最佳频率反应域缩小,易化性影响使神经元的频率调谐范围和最佳频率反应域增大.对于少数神经元,弱背景噪声并未显著改变其频率调谐范围,但却改变了其最佳频率反应域范围.弱背景噪声对63.64%神经元的特征频率和55.84%神经元的最低阈值无显著影响.神经元频率调谐曲线的尖部比中部更容易受到弱背景噪声的影响.该研究结果有助于我们进一步理解复杂声环境下大脑听皮层对听觉信息的编码机制.  相似文献   

8.
1. Echo delay is the primary cue used by echolocating bats to determine target range. During target-directed flight, the repetition rate of pulse emission increases systematically as range decreases. Thus, we examined the delay tuning of 120 neurons in the auditory cortex of the bat, Myotis lucifugus, as repetition rate was varied. 2. Delay sensitivity was exhibited in 77% of the neurons over different ranges of pulse repetition rates (PRRs). Delay tuning typically narrowed and eventually disappeared at higher PRRs. 3. Two major types of delay-sensitive neurons were found: i) delay-tuned neurons (59%) had a single fixed best delay, while ii) tracking neurons (22%) changed their best delay with PRR. 4. PRRs from 1-100/s were represented by the population of delay-sensitive neurons, with the majority of neurons delay-sensitive at PRRs of at least 10-20/s. Thus, delay-dependent neurons in Myotis are most active during the search phase of echolocation. 5. Delay-sensitive neurons that also responded to single sounds were common. At PRRs where delay sensitivity was found, the responses to single sounds were reduced and the responses to pulse-echo pairs at particular delays were greater than the single-sound responses. In facilitated neurons (53%), the maximal delay-dependent response was always larger than the best single-sound responses, whereas in enhanced neurons (47%), these responses were comparable. The presence of neurons that respond maximally to single sounds at one PRR and to pulse-echo pairs with particular echo delays at other PRRs suggests that these neurons perform echo-ranging in conjunction with other biosonar functions during target pursuit.  相似文献   

9.
Recent findings have pointed out the role of neurotrophic factors in the survival and maintenance of neurons of the auditory system. Basic fibroblast growth factor (bFGF, FGF-2) is a potent neurotrophic molecule whose actions can be seen in the central and peripheral nervous systems. In the present study, FGF-2 immunoreactivity was analyzed in the auditory pathways of the adult rat, employing a well-characterized polyclonal antibody against FGF-2. In the cochlea, FGF-2 immunoreactivity was observed in the inner and outer hair cells of the organ of Corti, spiral ganglion neurons, spiral limbus, and stria vascularis. Stereological methods employing optical fractionator revealed the presence of 84.5, 15, and 0.5% of spiral ganglion neurons possessing FGF-2 immunoreactivity of strong, moderate, and weak intensity, respectively. In the central auditory pathways, FGF-2 immunoreactivity was found in the cytoplasm of the neurons of the cochlear nuclei, trapezoid body nuclei, medial geniculate nucleus, and inferior colliculus. The two-color immunoperoxidase method showed FGF-2 immunoreactivity in the nuclei of astrocytes throughout the central auditory pathway. Computer-assisted microdensitometric image analysis revealed higher levels of specific mean gray values of FGF-2 immunoreactivity in the trapezoid body and ventral cochlear nucleus and also in the spiral ganglion and inner hair cells. Sections incubated with FGF-2 antibody preabsorbed with human recombinant FGF-2 showed no immunoreaction in the majority of the studied regions, exhibiting only a slight immunoreactive product in the hair cells of the organ of Corti. Furthermore, no changes in immunoreactivity were observed in sections incubated with FGF-2 antiserum preincubated with human recombinant acidic FGF (FGF-1). The findings suggest that FGF-2 may exert paracrine and autocrine actions on neurons of the central and peripheral auditory systems and may be of importance in the mechanism of hearing diseases.  相似文献   

10.
In the rat, somatostatin immunoreactivity was identified in neurons of the central nucleus of the amygdala that were retrogradely labeled by injection of fluorescent dyes into the nucleus tractus solitarius and dorsal motor nucleus of the vagus nerve. The double-labeled neurons are located in the medial subdivision of the central nucleus and appear to comprise less than one fifth of the descending pathway. These results suggest that somatostatin may act as a neurotransmitter in a pathway which mediates cardiovascular and other autonomic responses to fear-producing and other emotional stimuli.  相似文献   

11.
Speech and other communication signals contain components of frequency and amplitude modulations (FM, AM) that often occur together. Auditory midbrain (or inferior colliculus, IC) is an important center for coding time-varying features of sounds. It remains unclear how IC neurons respond when FM and AM stimuli are both presented. Here we studied IC neurons in the urethane-anesthetized rats when animals were simultaneously stimulated with FM and AM tones. Of 122 units that were sensitive to the dual stimuli, the responses could be grossly divided into two types: one that resembled the respective responses to FM or AM stimuli presented separately ("simple" sensitivity, 45% of units), and another that appeared markedly different from their respective responses to FM or AM tones ("complex" sensitivity, 55%). These types of combinational sensitivities were further correlated with individual cell's frequency tuning pattern (response area) and with their common response pattern to FM and AM sounds. Results suggested that such combinational sensitivity could reflect local synaptic interactions on IC neurons and that the neural mechanisms could underlie more developed sensitivities to acoustic combinations found at the auditory cortex.  相似文献   

12.
The effect of stimulation of cortical association (orbito-frontal, parietal) and projection (auditory, sensomotor) areas on the activity of Purkinje neurons of the cerebellar cortex was studied in adult cats anesthetized with pentobarbital, with or without chloralose. These responses were compared with those to peripheral stimuli. Definite similarity was found between the responses of Purkinje cells to different cortical (association and projection) stimuli as regards both the types of responses of the neurons and their ability to respond. No similarity was observed in the responses of Purkinje cells to peripheral (visual, auditory, electrodermal) stimulation. Whereas almost identical numbers of neurons (over 50%) were excited in response to the different forms of cortical stimulation, the ability of the neurons to respond to peripheral stimuli differed considerably: 44.6% of neurons responded to electrodermal stimulation, 34.2% to auditory, and 18.8% to visual.Medical Institute, Kemerovo. Translated from Neirofiziologiya, Vol. 8, No. 5, pp. 483–489, September–October, 1976.  相似文献   

13.
The responses of single neurons of the auditory center in the frog mesencephalon to tonal stimuli of varying frequencies have been studied. It has been found that some neurons which respond to the signal of the characteristic frequency (CF) by a long-lasting discharge respond to tones of higher frequencies only at the start of stimulation. It is shown, that the tones giving rise to a phasic response inhibit impulsation brought about by the action of the CF tone.Acoustics Institute, Moscow. Translated from Neirofiziologiya, Vol. 2, No. 3, pp. 236–241, May–June, 1970.  相似文献   

14.
This study is a continuation of a long-term investigation of the auditory circuit in the oyster toadfish, Opsanus tau. Input from the auditory periphery projects to the ipsilateral descending octaval nucleus (DON). Ipsilateral and contralateral DONs project to the auditory midbrain, where a previous study indicated that both frequency tuning and directional sharpening are present. To better understand the transformation of auditory information along the auditory pathway, we have examined over 400 units in the DON to characterize frequency and directional information encoded in the dorsolateral division of the nucleus. Background activity was primarily low (<10 spikes/s) or absent. The maximum coefficient of synchronization was equivalent to the periphery (R = 0.9) and substantially better than in the midbrain. The majority of DON units (79%) responded best to stimulus frequencies of 84-141 Hz and were broadly tuned. DON cells retain or enhance the directional character of their peripheral input (s); however, characteristic axes were distributed in all quadrants around the fish, providing further evidence that binaural computations may first occur in the DON of this species.  相似文献   

15.
Acoustic responses were recorded extracellularly from single neurons in the thalamic central posterior nucleus (CP). Spontaneous activity, best sensitivity, and sharpness of tuning (Q10db) of CP neurons ranged from 0 to 36 spikes/s, -40 to 5 dB re: 1 dyne/cm2, and 0.18 to 1.80, respectively. The distribution of characteristic frequency (CF) was nonuniform with a mode at 195 Hz. Temporal response patterns of CP neurons (N = 60) were categorized into three groups: phasic (25%), tonic chopper-like (22%), and tonic nonchopper-like (53%) on the basis of peri-stimulus time and inter-spike interval histograms. Most CP neurons (90%) did not phase-lock to tones, and none phase-locked strongly. The properties of CP neurons are similar to those of the midbrain torus semicircularis neurons in spontaneous rates, best sensitivities, nonuniform CF distributions, and in exhibiting level-independent best frequencies. Both CP and toral neurons show a diversity of response patterns resembling those found in the mammalian central auditory system. However, CP neurons have broader tuning and less phase-locking than toral neurons, suggesting different roles in auditory processing. While peripheral frequency analysis is enhanced at the midbrain level, the integration of frequency-selective channels in the thalamus may function in the processing of wideband spectra characteristic of natural sound sources.Abbreviations BF best frequency - BS best sensitivity - CF characteristic frequency - CP central posterior nucleus - ISIH inter-spike interval histogram - PSTH peri-stimulus-time histogram - RA response area  相似文献   

16.
Representation of color stimuli in awake macaque primary visual cortex   总被引:5,自引:0,他引:5  
We investigated the responses of single neurons in primary visual cortex (area V1) of awake monkeys to chromatic stimuli. Chromatic tuning properties, determined for homogeneous color patches presented on a neutral gray background, varied strongly between cells. The continuum of preferred chromaticities and tuning widths indicated a distributed representation of color signals in V1. When stimuli were presented on colored backgrounds, chromatic tuning was different in most neurons, and the changes in tuning were consistent with some degree of sensitivity of the neurons to the chromatic contrast between stimulus and background. Quantitatively, the average response changes matched the magnitudes of color induction effects measured in human subjects under corresponding stimulus conditions.  相似文献   

17.
In the auditory system, the stimulus-response properties of single neurons are often described in terms of the spectrotemporal receptive field (STRF), a linear kernel relating the spectrogram of the sound stimulus to the instantaneous firing rate of the neuron. Several algorithms have been used to estimate STRFs from responses to natural stimuli; these algorithms differ in their functional models, cost functions, and regularization methods. Here, we characterize the stimulus-response function of auditory neurons using a generalized linear model (GLM). In this model, each cell's input is described by: 1) a stimulus filter (STRF); and 2) a post-spike filter, which captures dependencies on the neuron's spiking history. The output of the model is given by a series of spike trains rather than instantaneous firing rate, allowing the prediction of spike train responses to novel stimuli. We fit the model by maximum penalized likelihood to the spiking activity of zebra finch auditory midbrain neurons in response to conspecific vocalizations (songs) and modulation limited (ml) noise. We compare this model to normalized reverse correlation (NRC), the traditional method for STRF estimation, in terms of predictive power and the basic tuning properties of the estimated STRFs. We find that a GLM with a sparse prior predicts novel responses to both stimulus classes significantly better than NRC. Importantly, we find that STRFs from the two models derived from the same responses can differ substantially and that GLM STRFs are more consistent between stimulus classes than NRC STRFs. These results suggest that a GLM with a sparse prior provides a more accurate characterization of spectrotemporal tuning than does the NRC method when responses to complex sounds are studied in these neurons.  相似文献   

18.
Roitman MF  Wheeler RA  Carelli RM 《Neuron》2005,45(4):587-597
The nucleus accumbens (NAc) is a key component of the brain's reward pathway, yet little is known of how NAc cells respond to primary rewarding or aversive stimuli. Here, naive rats received brief intraoral infusions of sucrose and quinine paired with cues in a classical conditioning paradigm while the electrophysiological activity of individual NAc neurons was recorded. NAc neurons (102) were typically inhibited by sucrose (39 of 52, 75%) or excited by quinine (30 of 40, 75%) infusions. Changes in firing rate were correlated with the oromotor response to intraoral infusions. Most taste-responsive neurons responded to only one of the stimuli. NAc neurons developed responses to the cues paired with sucrose and quinine. Thus, NAc neurons are innately tuned to rewarding and aversive stimuli and rapidly develop responses to predictive cues. The results indicate that the output of the NAc is very different when rats taste rewarding versus aversive stimuli.  相似文献   

19.
Summary Acoustic stimuli near 60 kHz elicit pronounced resonance in the cochlea of the mustached bat (Pteronotus parnellii parnellii). The cochlear resonance frequency (CRF) is near the second harmonic, constant frequency (CF2) component of the bat's biosonar signals. Within narrow bands where CF2 and third harmonic (CF3) echoes are maintained, the cochlea has sharp tuning characteristics that are conserved throughout the central auditory system. The purpose of this study was to examine the effects of temperature-related shifts in the CRF on the tuning properties of neurons in the cochlear nucleus and inferior colliculus.Eighty-two single and multi-unit recordings were characterizedin 6 awake bats with chronically implanted cochlear microphonic electrodes. As the CRF changed with body temperature, the tuning curves of neurons sharply tuned to frequencies near the CF2 and CF3 shifted with the CRF in every case, yielding a change in the unit's best frequency. The results show that cochlear tuning is labile in the mustached bat, and that this lability produces tonotopic shifts in the frequency response of central auditory neurons. Furthermore, results provide evidence of shifts in the frequency-to-place code within the sharply tuned CF2 and CF3 regions of the cochlea. In conjunction with the finding that biosonar emission frequency and the CRF shift concomitantly with temperature and flight, it is concluded that the adjustment of biosonar signals accommodates the shifts in cochlear and neural tuning that occur with active echolocation.Abbreviations BF best frequency - CF characteristic frequency - CF2, CF3 second and third harmonic, constant frequency components of the biosonar signal - CM cochlear microphonic - CN cochlear nucleus - CRF cochlear resonance frequency - IC inferior colliculus - MT minimum threshold - OAE otoacoustic emission - Q10dB BF (or CF) divided by the response bandwidth at 10 dB above MT  相似文献   

20.
Primary auditory cortex (A1) exhibits a tonotopic representation of characteristic frequency (CF). The receptive field properties of A1 neurons emerge from a combination of thalamic inputs and intracortical connections. However, the mechanisms that guide growth of these inputs during development and shape receptive field properties remain largely unknown. We previously showed that Eph family proteins help establish tonotopy in the auditory brainstem. Moreover, other studies have shown that these proteins shape topography in visual and somatosensory cortices. Here, we examined the contribution of Eph proteins to cortical organization of CF, response thresholds and sharpness of frequency tuning. We examined mice with null mutations in EphB2 and EphB3, as these mice show significant changes in auditory brainstem connectivity. We mapped A1 using local field potential recordings in adult EphB2(-/-);EphB3(-/-) and EphB3(-/-) mice, and in a central A1 location inserted a 16-channel probe to measure tone-evoked current-source density (CSD) profiles. Based on the shortest-latency current sink in the middle layers, which reflects putative thalamocortical input, we determined frequency receptive fields and sharpness of tuning (Q(20)) for each recording site. While both mutant mouse lines demonstrated increasing CF values from posterior to anterior A1 similar to wild type mice, we found that the double mutant mice had significantly lower Q(20) values than either EphB3(-/-) mice or wild type mice, indicating broader tuning. In addition, we found that the double mutants had significantly higher CF thresholds and longer onset latency at threshold than mice with wild type EphB2. These results demonstrate that EphB receptors influence auditory cortical responses, and suggest that EphB signaling has multiple functions in auditory system development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号