首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In mice heterozygous for the cyclooxygenase-2 gene (COX-2+/-) the body weight was enhanced by 33% as compared to homozygous COX-2-/- mice. The weights of the gonadal fat pads in COX-2+/- mice were enhanced by 3.5 to 4.7 fold as compared to COX-2-/- mice and by 1.5 to 3.5 fold as compared to wild-type controls+/+ Serum leptin levels and leptin release by cultured adipose tissue of COX-2+/- mice were both elevated as compared to either control or COX-2-/- animals. The basal release of PGE2 or 6 keto PGF1alpha per fat pad over a 24 h incubation of adipose tissue was reduced by 80% and 95% respectively in tissue from COX-2-/- mice. NS-398, a specific COX-2 inhibitor, inhibited leptin release by 27% in adipose tissue from control mice, 31% in tissue from COX-1-/- mice and by 23% in tissue from COX-2+/- mice while having no effect on leptin release by adipose tissue from COX-2-/- mice. These data indicate that heterozygous COX-2 mice develop obesity which is not secondary to a defect in leptin release by adipose tissue.  相似文献   

2.
3.
Atopic asthma is a chronic inflammatory pulmonary disease characterised by recurrent episodes of wheezy, laboured breathing with an underlying Th2 cell-mediated inflammatory response in the airways. It is currently treated and, more or less, controlled depending on severity, with bronchodilators e.g. long-acting beta agonists and long-acting muscarinic antagonists or anti-inflammatory drugs such as corticosteroids (inhaled or oral), leukotriene modifiers, theophyline and anti-IgE therapy. Unfortunately, none of these treatments are curative and some asthmatic patients do not respond to intense anti-inflammatory therapies. Additionally, the use of long-term oral steroids has many undesired side effects. For this reason, novel and more effective drugs are needed. In this review, we focus on the CD4+ Th2 cells and their products as targets for the development of new drugs to add to the current armamentarium as adjuncts or as potential stand-alone treatments for allergic asthma. We argue that in early disease, the reduction or elimination of allergen-specific Th2 cells will reduce the consequences of repeated allergic inflammatory responses such as lung remodelling without causing generalised immunosuppression.  相似文献   

4.
Chronic hypoxia causes pulmonary hypertension and right ventricular hypertrophy associated with pulmonary vascular remodeling. Because hypoxia might promote generation of oxidative stress in vivo, we hypothesized that oxidative stress may play a role in the hypoxia-induced cardiopulmonary changes and examined the effect of treatment with the antioxidant N-acetylcysteine (NAC) in rats. NAC reduced hypoxia-induced cardiopulmonary alterations at 3 wk of hypoxia. Lung phosphatidylcholine hydroperoxide (PCOOH) increased at days 1 and 7 of the hypoxic exposure, and NAC attenuated the increase in lung PCOOH. Lung xanthine oxidase (XO) activity was elevated from day 1 through day 21, especially during the initial 3 days of the hypoxic exposure. The XO inhibitor allopurinol significantly inhibited the hypoxia-induced increase in lung PCOOH and pulmonary hypertension, and allopurinol treatment only for the initial 3 days also reduced the hypoxia-induced right ventricular hypertrophy and pulmonary vascular thickening. These results suggest that oxidative stress produced by activated XO in the induction phase of hypoxic exposure contributes to the development of chronic hypoxic pulmonary hypertension.  相似文献   

5.

Background

Pulmonary arterial hypertension (PAH) is a proliferative arteriopathy associated with a glycolytic shift during heart metabolism. An increase in glycolytic metabolism can be detected in the right ventricle during PAH. Expression levels of glycolysis genes in the right ventricle during glycolysis that occur in monocrotaline (MCT)-induced pulmonary hypertension (PH) remain unknown.

Methods

PH was induced by a single subcutaneous injection of MCT (50 mg/kg) into rats, eventually causing right heart failure. Concurrently, a control group was injected with normal saline. The MCT-PH rats were randomly divided into three groups according to MCT treatment: MCT-2 week, 3 week, and 4 week groups (MCT-2w, 3w, 4w). At the end of the study, hemodynamics and right ventricular hypertrophy were compared among experimental groups. Expression of key glycolytic candidate genes was screened in the right ventricle.

Results

We observed an increase in mean pulmonary arterial pressure, right ventricular systolic pressure and right ventricular hypertrophy index three weeks following MCT injection. Alterations in the morphology and structure of right ventricular myocardial cells, as well as the pulmonary vasculature were observed. Expression of hexokinase 1 (HK1) mRNA began to increase in the right ventricle of the MCT-3w group and MCT-4w group, while the expression of lactate dehydrogenase A (LDHA) was elevated in the right ventricle of the MCT-4w group. Hexokinase 2(HK2), pyruvate dehydrogenase complex α1 (PDHα1), and LDHA mRNA expression showed no changes in the right ventricle. HK1 mRNA expression was further confirmed by HK1 protein expression and immunohistochemical analyses. All findings underlie the glycolytic phenotype in the right ventricle.

Conclusions

There was an increase in the protein and mRNA expression of hexokinase-1 (HK1) three and four weeks after the injection of monocrotaline in the right ventricle, intervention of HK1 may be amenable to therapeutic intervention.  相似文献   

6.
7.
X-linked adrenoleukodystrophy (X-ALD) is a hereditary disorder of peroxisomal metabolism biochemically characterized by the accumulation of very long chain fatty acids (VLCFA), particularly hexacosanoic acid (C26:0) and tetracosanoic acid (C24:0) in different tissues and in biological fluids. The disease is clinically characterized by central and peripheral demyelination and adrenal insufficiency, which is closely related to the increased concentrations of these fatty acids. However, the mechanisms underlying the brain damage in X-ALD are poorly known. Considering that free radical generation is involved in various neurodegenerative disorders, like Parkinson disease, multiple sclerosis and Alzheimer's disease, in the present study we evaluated various oxidative stress parameters, namely chemiluminescence, thiobarbituric acid reactive species (TBA-RS), total radical-trapping antioxidant potential (TRAP), and total antioxidant reactivity (TAR) in plasma of X-ALD patients, as well as the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) in erythrocytes and fibroblasts from these patients. It was verified a significant increase of plasma chemiluminescence and TBA-RS, reflecting induction of lipid peroxidation, as well as a decrease of plasma TAR, indicating a deficient capacity to rapidly handle an increase of reactive species. We also observed a significant increase of erythrocytes GPx activity and of catalase and SOD activities in fibroblasts from the patients studied. It is therefore proposed that oxidative stress may be involved in pathophysiology of X-ALD.  相似文献   

8.
Although oxidative stress is known to contribute to endothelial dysfunction-associated systemic vascular disorders, its role in pulmonary vascular disorders is less clear. Our previous studies, using isolated pulmonary arteries taken from lambs with surgically created heart defect and increased pulmonary blood flow (Shunt), have suggested a role for reactive oxygen species (ROS) in the endothelial dysfunction of pulmonary hypertension, but in vivo data are lacking. Thus the initial objective of this study was to determine whether Shunt lambs had elevated levels of ROS generation and whether this was associated with alterations in antioxidant capacity. Our results indicate that superoxide, but not hydrogen peroxide, levels were significantly elevated in Shunt lambs. In addition, we found that the increase in superoxide generation was not associated with alterations in antioxidant enzyme expression or activity. These data suggested that there is an increase in superoxide generation rather than a decrease in scavenging capacity in the lung. Thus we next examined the expression of various subunits of the NADPH oxidase complex as a potential source of the superoxide production. Results indicated that the expression of Rac1 and p47(phox) is increased in Shunt lambs. We also found that the NADPH oxidase inhibitor diphenyliodonium (DPI) significantly reduced dihydroethidium (DHE) oxidation in lung sections prepared from Shunt but not Control lambs. As DPI can also inhibit endothelial nitric oxide synthase (eNOS) superoxide generation, we repeated this experiment using a more specific NADPH oxidase inhibitor (apocynin) and an inhibitor of NOS (3-ethylisothiourea). Our results indicated that both inhibitors significantly reduced DHE oxidation in lung sections prepared from Shunt but not Control lambs. To further investigate the mechanism by which eNOS becomes uncoupled in Shunt lambs, we evaluated the levels of dihydrobiopterin (BH(2)) and tetrahydrobiopterin (BH(4)) in lung tissues of Shunt and Control lambs. Our data indicated that although BH(4) levels were unchanged, BH(2) levels were significantly increased. Finally, we demonstrated that the addition of BH(2) produced an increase in superoxide generation from purified, recombinant eNOS. In conclusion our data demonstrate that the development of pulmonary hypertension in Shunt lambs is associated with increases in oxidative stress that are not explained by decreases in antioxidant expression or activity. Rather, the observed increase in oxidative stress is due, at least in part, to increased expression and activity of the NADPH oxidase complex and uncoupled eNOS due to elevated levels of BH(2).  相似文献   

9.
Sclerotium-forming filamentous fungi are of great agriculturaland biological interest because they can be viewed as modelsof simple metamorphosis. They differentiate by asexually producingsclerotia but the processes involved in sclerotial metamorphosiswere poorly understood. In 1997, it was shown for the firsttime that the sclerotial differentiation state in Sclerotiumrolfsii concurred with increasing levels of lipid peroxides.This finding prompted the development of a theory supportingthat sclerotial metamorphosis is induced by oxidative stress.Growth factors that reduce or increase oxidative stress areexpected to inhibit or promote sclerotium metamorphosis, respectively.This theory has been verified by a series of published dataon the effect of certain hydroxyl radical scavengers on sclerotialmetamorphosis, on the identification and quantification of certainendogenous antioxidants (such as ascorbic acid, ß-carotene)in relation to the fungal undifferentiated and differentiatedstates, and on their inhibiting effect on sclerotial metamorphosisas growth nutrients. In 2004–2005, we developed assaysfor the measurement of certain redox markers of oxidative stress,such as the thiol redox state, the small-sized fragmented DNA,and the superoxide radical. These new advances allowed us toinitiate studies on the exact role of glutathione, hydrogenperoxide, and superoxide radical on sclerotial metamorphosis.The emerging data, combined with similar data from other better-studiedfungi, allowed us to make some preliminary postulations on theROS-dependent biochemical signal transduction pathways in sclerotiogenicfilamentous fungi.  相似文献   

10.
The mitochondrial form of thioredoxin, thioredoxin 2 (Txn2), plays an important role in redox control and protection against ROS-induced mitochondrial damage. To evaluate the effect of reduced levels of Txn2 in vivo, we measured oxidative damage and mitochondrial function using mice heterozygous for the Txn2 gene (Txn2(+/-)). The Txn2(+/-) mice showed approximately 50% decrease in Trx-2 protein expression in all tissues without upregulating the other major components of the antioxidant defense system. Reduced levels of Txn2 resulted in decreased mitochondrial function as shown by reduced ATP production by isolated mitochondria and reduced activity of electron transport chain complexes (ETCs). Mitochondria isolated from Txn2(+/-) mice also showed increased ROS production compared to wild type mice. The Txn2(+/-) mice showed increased oxidative damage to nuclear DNA, lipids, and proteins in liver. In addition, we observed an increase in apoptosis in liver from Txn2(+/-) mice compared with wild type mice after diquat treatment. Our results suggest that Txn2 plays an important role in protecting the mitochondria against oxidative stress and in sensitizing the cells to ROS-induced apoptosis.  相似文献   

11.
Epileptic seizures can occur as a result of mitochondrial dysfunction. Mitochondria have vital functions such as energy generation, control of cell death, neurotransmitter synthesis, and free radical production. Which of these critical mitochondrial functions contributes to epileptic seizures is unknown. We demonstrate here that a subset of mice with partial deficiency of the mitochondrial superoxide dismutase (Sod2(-/+)) show increased incidence of spontaneous and handling-induced seizures that correlates with chronic mitochondrial oxidative stress (increased aconitase inactivation and 8-hydroxy-2'-deoxyguanosine formation in mitochondria) and diminished mitochondrial oxygen utilization. Before the age at which spontaneous seizures appear in a subset of the mice, Sod2(-/+) mice demonstrated increased susceptibility to behavioral seizures, mitochondrial aconitase inactivation, and neurodegeneration induced by the administration of kainate. These data suggest that chronic mitochondrial oxidative stress initiated by superoxide (O(2)(.-)) radicals is sufficient to increase seizure susceptibility due to aging, environmental stimulation, or excitotoxin administration. Sod2(-/+) mice showed an age-related decrease in the expression of glial glutamate transporters (GLT-1 and GLAST), suggesting that oxidant-induced inhibition of glutamate transport may play a mechanistic role in rendering some Sod2(-/+) mice susceptible to seizures. In summary, mitochondrial oxidative stress and resultant dysfunction may be an important mechanism underlying certain seizure disorders.  相似文献   

12.
Colice, Gene L., Nicholas Hill, Yan-Jie Lee, Hongkai Du,James Klinger, James C. Leiter, and Lo-Chang Ou. Exaggerated pulmonary hypertension with monocrotaline in rats susceptible tochronic mountain sickness. J. Appl.Physiol. 83(1): 25-31, 1997.Hilltop (H) strainSprague-Dawley rats are more susceptible to chronic mountain sicknessthan are the Madison (M) strain rats. It is unclear what role pulmonaryvascular remodeling, polycythemia, and hypoxia-induced vasoconstrictionplay in mediating the more severe pulmonary hypertension that developsin the H rats during chronic hypoxia. It is also unclear whether theincreased sensitivity of the H rats to chronic mountain sickness isspecific for a hypoxia effect or, instead, reflects a generalpropensity toward the development of pulmonary hypertension.Monocrotaline (MCT) causes pulmonary vascular remodeling and pulmonaryhypertension. We hypothesized that the difference in the pulmonaryvascular response to chronic hypoxia between H and M rats reflects anincreased sensitivity of the H rats to any pulmonary hypertensivestimuli. Consequently, we expected the two strains to also differ intheir susceptibility to MCT-induced pulmonary hypertension. Pulmonaryarterial pressures in conscious H and M rats were measured 3 wk after asingle dose of MCT, exposure to a simulated high altitude of 18,000 ft(barometric pressure = 380 mmHg), and administration of a single doseof saline as a placebo. The H rats had significantlyhigher pulmonary arterial pressures and right ventricular weights afterMCT and chronic hypoxia than did the M rats. The H rats also had morepulmonary vascular remodeling, i.e., greater wall thickness as apercentage of vessel diameter, after MCT and chronic hypoxia than didthe M rats. The H rats had significantly lower arterialPO2 than did the M rats after MCT,but the degree of hypoxemia was mild [arterialPO2 of 72.5 ± 0.8 (SE) Torr for Hrats vs. 77.4 ± 0.8 Torr for M rats after MCT]. The H ratshad lower arterial PCO2 and largerminute ventilation values than did the M rats after MCT. Theseventilatory differences suggest that MCT caused more severe pulmonaryvascular damage in the H rats than in the M rats. These data supportthe hypothesis that the H rats have a general propensity to developpulmonary hypertension and suggest that differences in pulmonaryvascular remodeling account for the increased susceptibility of H rats,compared with M rats, to both MCT and chronic hypoxia-induced pulmonaryhypertension.

  相似文献   

13.
Because of the increasing evidence that H63D HFE polymorphism appears in higher frequency in neurodegenerative diseases, we evaluated the neurological consequences of H63D HFE in vivo using mice that carry H67D HFE (homologous to human H63D). Although total brain iron concentration did not change significantly in the H67D mice, brain iron management proteins expressions were altered significantly. The 6-month-old H67D mice had increased HFE and H-ferritin expression. At 12 months, H67D mice had increased H- and L-ferritin but decreased transferrin expression suggesting increased iron storage and decreased iron mobilization. Increased L-ferritin positive microglia in H67D mice suggests that microglia increase iron storage to maintain brain iron homeostasis. The 6-month-old H67D mice had increased levels of GFAP, increased oxidatively modified protein levels, and increased cystine/glutamate antiporter (xCT) and hemeoxygenase-1 (HO-1) expression indicating increased metabolic and oxidative stress. By 12 months, there was no longer increased astrogliosis or oxidative stress. The decrease in oxidative stress at 12 months could be related to an adaptive response by nuclear factor E2-related factor 2 (Nrf2) that regulates antioxidant enzymes expression and is increased in the H67D mice. These findings demonstrate that the H63D HFE impacts brain iron homeostasis, and promotes an environment of oxidative stress and induction of adaptive mechanisms. These data, along with literature reports on humans with HFE mutations provide the evidence to overturn the traditional paradigm that the brain is protected from HFE mutations. The H67D knock-in mouse can be used as a model to evaluate how the H63D HFE mutation contributes to neurodegenerative diseases.  相似文献   

14.
Alcoholic cardiomyopathy has been known for a long time, but there is little mechanistic insight into this important clinical problem. The present study was undertaken using a mouse model to test the hypothesis that alcohol exposure induces cardiac injury through induction of oxidative stress. Adult female Friend Virius B-type (FVB) mice were treated with ethanol by gavage at a dose of 5 g/kg. Six hours after the treatment, ethanol-induced myocardial injury was observed, as indicated by a significant increase in serum creatine phosphokinase activity, a common biomarker of myocardial injury, and myocardial ultrastructural alterations, predominantly mitochondrial swelling and cristae disarray and reduction in numbers. The myocardial injury was associated with a significant increase in the myocardial lipid peroxidation, determined by measuring thiobarbituric acid reactive substances (TBARS), and a significant increase in protein oxidation as measured by a protein carbonyl content assay. Acute alcohol exposure decreased glutathione (GSH) content in the heart, more so in the mitochondria than in the cytosol. These alcohol-induced myocardial injuries and oxidative stresses were all significantly inhibited by supplementation with N-acetyl-L-cysteine (NAC) prior to alcohol exposure. However, NAC did not affect the rise in blood alcohol concentrations following alcohol exposure. This study thus demonstrates that acute alcohol administration causes myocardial injury through, at least in part, the induction of oxidative stress. A rapid decrease in mitochondrial GSH content may be partially responsible for the observed mitochondrial damage.  相似文献   

15.
Triptolide, a diterpene triepoxide, is one of the major components of most functional extracts of Tripterygium wilfordii Hook f, which is known to have various biological effects, including immunosuppressive, anti-inflammatory and anti-tumor functions. We studied the inhibitory effect of triptolide on endotoxemia (ETM)-induced oxidative stress, which was induced in C57BL/6 mice by lipopolysaccharide (LPS) and D-galactosamine (D-GalN). Pretreatment with triptolide decreased the reactive oxygen species (ROS) levels, mortality rate and liver injury after LPS/D-GalN injection. We utilized comprehensive proteomics to identify alterations in liver protein expression during pretreatment with triptolide or N-acetylcysteine (NAC) after LPS/D-GalN injection, 44 proteins were found to be related to oxidative stress, mitochondria, metabolism and signal transduction, and 23 proteins of them seemed to be significantly up- or down-regulated. Furthermore, both triptolide and NAC inhibited activation of c-jun NH2-terminal kinases (JNK) and mitogen-activated protein kinase p38 (p38), phosphorylation of inhibitor of nuclear factor-kappa B (IκB) and activation of nuclear factor-κB (NF-κB). These results demonstrated that triptolide inhibited the activation of JNK and p38 by decreasing ROS levels, which in turn inhibited the hepatic injury. In addition, we set and validated the phosphorylation model of extracellular signal-regulated kinase (ERK) and proposed that triptolide probably induced ERK phosphorylation through inhibiting its dephosphorylation rates. These results showed that triptolide can effectively reduce the oxidative stress and partially rescue the damage in the liver induced by LPS/D-GalN.  相似文献   

16.
Of particular concern for the health of astronauts during space travel is radiation from protons and high atomic number (Z), high energy particles (HZE particles). Space radiation is known to induce oxidative stress in astronauts after extended space flight. In the present study, the total antioxidant status was used as a biomarker to evaluate oxidative stress induced by proton and HZE particle radiation in the plasma of CBA mice and the protective effect of dietary supplement agents. The results indicate that exposure to proton and HZE particle radiation significantly decreased the plasma level of total antioxidants in the irradiated CBA mice. Dietary supplementation with l-selenomethionine (SeM) or a combination of selected antioxidant agents (which included SeM) could partially or completely prevent the decrease in the total antioxidant status in the plasma of animals exposed to proton or HZE particle radiation. These findings suggest that exposure to space radiation may compromise the capacity of the host antioxidant defense system; this adverse biological effect can be prevented at least partially by dietary supplementation with agents expected to have effects on antioxidant activities.  相似文献   

17.
Cigarette smoke (CS) is a rich source of radicals, predisposing the cell to oxidative stress resulting in inflammation. Chronic inflammation is a recognized risk factor for carcinogenesis. Cyclooxygenase-2 (COX-2) is a mediator of inflammatory pathway and may, therefore, contribute to carcinogenesis. There are several reports that suggest the association between CS and COX-2 associated risk to cancer. In the present study, we examined the role of celecoxib (a selective COX-2 inhibitor) in modulating the oxidative stress caused by CS inhalation in mice. CS exposure for a period of 10 weeks caused oxidative stress in the pulmonary and hepatic tissues, as evident from the increase in lipid peroxidation levels (LPO) and decrease in reduced glutathione (GSH) levels. Celecoxib (125 mg/kg body weight for 8 weeks) administration to CS inhaling mice reduced the oxidative stress by decreasing the LPO levels and enhancing the GSH levels in comparison to the CS-exposed group. CS exposure repressed the enzymatic antioxidant defense system, as evident from the decrease in catalase (CAT) and superoxide dismutase (SOD) activities. Co-adminstration of celecoxib considerably reversed the changes in the enzymatic antioxidant defense system. Histopathological studies of lungs showed that CS exposure induced alveolar wall destruction and air space enlargement. In co-treated group, the alveolar septa were thicker than normal with apparent infiltration of inflammatory cells. In CS-exposed group, hepatic tissue exhibited vacuolization and macrophage infiltration. Co-treatment with celecoxib restored the normal histoarchitechture in hepatic tissues of CS inhaling mice. Thus, the present study demonstrated that celecoxib adminstration reduced the oxidative stress-mediated risk to carcinogenesis, due to its ability to boost the antioxidant defense system.  相似文献   

18.
Hypertension is accompanied by increased levels of reactive oxygen species, which may contribute to progressive renal injury and dysfunction. Here we tested the hypothesis that sensitivity to exogenous hydrogen peroxide (H2O2) is enhanced in immortalized renal proximal tubular epithelial cells from spontaneously hypertensive rats (SHR) compared to normotensive control Wistar Kyoto rats (WKY). We found that SHR cells were more sensitive to H2O2-induced cell death than WKY cells. Lower survival in SHR cells correlated with increased DNA fragmentation, chromatin condensation, and caspase-3 activity, indicating apoptosis. H2O2 degradation was slower in SHR than in WKY cells, suggesting that reduced antioxidant enzyme activity might be the basis for their increased sensitivity. In fact, catalase activity was downregulated in SHR cells, whereas glutathione peroxidase activity was similar in both cell types. We next examined whether MAPK signaling pathways contributed to H2O2-mediated apoptosis. Inhibition of c-Jun NH2-terminal kinase (JNK) with SP600125 partially rescued H2O2-induced apoptosis in WKY but not in SHR cells. In addition, p54 JNK2 isoform was robustly phosphorylated by H2O2, this effect being more pronounced in SHR cells. Together, these results suggest that the survival disadvantage of SHR cells upon exposure to H2O2 stems from impaired antioxidant mechanisms and activated JNK proapoptotic signaling pathways.  相似文献   

19.
Apoptosis and necrosis are two forms of cell death that can occur in response to various agents and oxidative damage. In addition to necrosis, apoptosis contributes to muscle fiber loss in various muscular dystrophies as well participates in the exudative diathesis in chicken, pathology caused by dietary deficiency of vitamin E and selenium, which affects muscle tissue. We have used chicken skeletal muscle cells and bovine fibroblasts to study molecular events involved in the cell death induced by oxidative stress and apoptotic agents. The effect of vitamin E on cell death induced by oxidants was also investigated. Treatment of cells with anti-Fas antibody (50 to 400 ng/mL), staurosporine (0.1 to 100 microM) and TNF-alpha (10 and 50 ng/mL) resulted in a little loss of Trypan blue exclusion ability. Those stimuli conducted cells to apoptosis detected by an enhancement in caspase activity upon fluorogenic substrates but this activity was not fully blocked by the caspase inhibitor Z-VAD-fmk. Oxidative stress induced by menadione (10, 100 and 250 muM) promoted a significant reduction in cell viability (10%, 20% and 35% for fibroblasts; 20%, 30% and 75% for muscle cells, respectively) and caused an increase in caspase activity and DNA fragmentation. H2O2 also promoted apoptosis verified by caspase activation and DNA fragmentation, but in higher doses induced necrosis. Vitamin E protected cells from death induced by low doses of oxidants. Although it was ineffective in reducing caspase activity in fibroblasts, this vitamin diminished the enzyme activity in muscle cells. These data suggested that oxidative stress could activate apoptotic mechanisms; however the mode of cell death will depend on the intensity and duration of the stimulus, and on the antioxidant status of the cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号