首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparison of published methods for the quantification of adherent cell numbers by the measurement of absorbance of bound stain indicates a wide variation in their sensitivity. This study aimed at comparing the sensitivities of five different staining procedures (Coomassie brilliant blue G in perchloric acid, Coomassie brilliant blue G in phosphoric acid, methylene blue, crystal violet, and toluidine blue) applied to three separate types of cultured fibroblasts (3T3 cells, Vero cells, and human gingival fibroblasts) at concentrations from 0.125 x 10(4) to 10 x 10(4) per well in 96-well microplates. Absorbance values of Coomassie blue-stained cells were measured in situ. Those of the remaining cells were measured after solubilization of the dye with 1% sodium dodecyl sulfate. All absorbance values were measured using an Elisa reader at 620 or 570 nm for crystal violet. The relationship between cell number and absorbance over the entire cell concentration range was best fitted with quadratic regression analysis, in contrast with the linear relationship described elsewhere. The order of sensitivity of the staining procedures was the same for each cell type: Coomassie blue in perchloric acid less than Coomassie blue in phosphoric acid less than methylene blue less than crystal violet less than toluidine blue. With the latter two stains absorbance values began to plateau at approximately 8 x 10(4) cells per well. However, staining with Coomassie blue in perchloric acid and methylene blue resulted in an almost linear relationship between cell number and absorbance over the entire concentration range tested.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
考马斯亮蓝是常用的聚丙烯酰胺凝胶蛋白电泳的染料,利用硝酸纤维素膜(NCF)对染料的吸附作用,将低浓度的考马斯亮蓝(0.025%)染色液直接对NCF上的转移蛋白带进行染色,经实验反复验证.它是一种较好的NCF上转移非特异性蛋白带的染色方法.  相似文献   

3.
SYPRO Ruby protein blot stain provides a sensitive, gentle, fluorescence-based method for detecting proteins on nitrocellulose or polyvinylidene difluoride (PVDF) membranes. SYPRO Ruby dye is a permanent stain composed of ruthenium as part of an organic complex that interacts noncovalently with proteins. Stained proteins can be excited by ultraviolet light of about 302 nm or with visible light of about 470 nm. Fluorescence emission of the dye is approximately 618 nm. The stain can be visualized using a wide range of excitation sources utilized in image analysis systems including a UV-B transilluminator, 488-nm argon-ion laser, 532-nm yttrium-aluminum-garnet (YAG) laser, blue fluorescent light bulb, or blue light-emitting diode (LED). The detection sensitivity of SYPRO Ruby protein blot stain (0.25-1 ng protein/mm(2)) is superior to that of amido black, Coomassie blue, and india ink staining and nearly matches colloidal gold staining. SYPRO Ruby protein blot stain visualizes proteins more rapidly than colloidal gold stain and the linear dynamic range is more extensive. Unlike colloidal gold stain, SYPRO Ruby protein blot stain is fully compatible with subsequent biochemical applications including colorimetric and chemiluminescent immunoblotting, Edman-based sequencing and mass spectrometry.  相似文献   

4.
Commercially available Coomassie Brilliant Blue R-250 (C.I. 42660) is a popular and useful dye that stains most proteins blue on polyacrylamide gels. Some proteins from brain (rubrophilin), collagens, histones and parotid gland proteins are distinctly red when stained with Coomassie Blue. Commonly used Coomassie Brilliant Blue R-250 preparations may contain more than 30 distinct colored and fluorescent components that can be separated on silica gel chromatographic columns. A specific component has been isolated on silica gel columns that stains rubrophilin and other proline-rich proteins a reddish color. Fast atom bombardment mass spectrometry of the isolated rubrophilin staining principle indicates a molecular weight of 634 as compared to 826 for the major dye in the original Coomassie Brilliant Blue R-250. Infrared spectrometry is consistent with a difference between the rubrophilin staining principle and Coomassie Brilliant Blue R-250 of a toluene sulfonic acid residue.  相似文献   

5.
The time required to visualize proteins using Coomassie Blue dye has been significantly reduced with the introduction of fast staining protocols based on staining with a Coomassie Blue dye solution at boiling temperatures. However, fast stainings suffer from high gel backgrounds, reducing the signal-to-noise ratio and limiting the number of detectable spots in the case of 2D SDS-PAGE. The aim of this work was to eliminate the high gel background, and thus improve fast staining protocols based on Coomassie Blue dye. We show that merely replacing water with a 4 mM EDTA washing solution at boiling temperatures, results in a transparent gel background within 50 to 60 minutes of destaining. Moreover, when a combination of imidazole-zinc reverse staining and Coomassie Blue-based fast staining is used the sensitivity is improved significantly; nanogram amounts of proteins can be detected using 1D SDS-PAGE, and about 30% to 60% more spots can be detected with 2D SDS-PAGE in plasma, platelet, and rat brain tissue samples. This work represents an optimized fast staining protocol with improved sensitivity, requiring between 60 to 75 minutes to complete protein visualization.  相似文献   

6.
The cationic dye, Alcian blue, previously used as a glycoprotein-specific stain on cellulose acetate and polyacrylamide gels, was found to be capable of staining a variety of purified proteins and each of the components of the human platelet presently identifiable with Coomassie blue R or periodic acid-Schiff (PAS) reagent in sodium alkyl sulfate-polyacrylamide gel electrophoretic preparations. Evidence was obtained to indicate that staining of detergent-protein complexes by Alcian blue occurs by virtue of the affinity of the stain for accessible sulfate groups of detergent molecules, especially sodium tetradecyl sulfate, hydrophobically associated with polypeptide chains. Thus, Alcian blue fails to stain nonglycosylated proteins when pure sodium dodecyl sulfate (C12) is used as the detergent, but does so readily when small quantities of sodium tetradecyl sulfate are also present. The advantages of using Alcian blue to determine platelet protein composition and to make quantitative comparisons between bands in sodium alkyl sulfate gels are discussed.  相似文献   

7.
Gel destaining following Coomassie Brilliant Blue (CBB) staining involves the use of toxic reagents. Here we demonstrate the efficacy of various paper adsorbents in adsorbing CBB. Kimwipes adsorbed the best, followed by Teri towels, multifold towels, and Whatman numbers 1 and 3 filter papers. Three Kimwipes completely adsorbed the dye released from a CBB-stained mini-gel. Nonradioactive destain solution can, therefore, be recycled for destaining CBB-stained gels. Stain removal with Kimwipes helps in reducing destain use and in reducing organic liquid waste, and it is 7.5-fold cheaper compared with an available method for CBB disposal. Following this, we determined the suitability of this procedure to remove the dye from a used CBB staining solution awaiting proper disposal by our Institutional Safety Office. The dye from a 0.05% CBB staining solution could be removed in 5 to 10 min using 75 Kimwipes. The CBB-adsorbed Kimwipes did not release the stain when squeezed dry even after incubation in various salts over 1 week and in water for 5 weeks. The CBB removed allows its easy disposal as solid waste and will not leach out from solid landfills. Thus, stain removal with Kimwipes helps in disposing CBB in an environmentally friendly manner and allows recycling of destaining solution.  相似文献   

8.
Protein extraction and the proteome of Lactobacillus delbrueckii subsp. bulgaricus were studied using different stains. The reversible silver staining technique was shown to be more sensitive than the irreversible silver stain. Coomassie colloidal was demonstrated to be as sensitive as reversible silver stain; however, the Coomassie colloidal blue solution developed a higher background and for sample preparation was more time-consuming.  相似文献   

9.
The paper contains results of staining DNA-aldehyde molecules with aqueous solutions of brilliant cresyl blue, thionin or neutral red, following Feulgen procedure and also reports on the use of aqueous solutions of these dyes, with primary amino group(s) in their molecules, for staining animal tissue nuclei after extraction of RNA with cold phosphoric acid. The pH of the dye solutions most suitable for optimum staining is 6.0. The time necessary for optimum staining of DNA-aldehydes and DNA-phosphate groups are 10 and 2 min respectively for tissues fixed in formalin, paraformaldehyde or Craf. Tissue fixed in Buin-fluid stain slower. The absorption curves of nuclei stained for DNA-aldehyde molecules and DNA-phosphate groups, stained with each of the three dyes are different from each other. The in vitro absorption curves of aqueous solutions of the three dyes have also been presented. Some implications of the results obtained are discussed.  相似文献   

10.
A procedure for quantitating proteins on Coomassie blue-stained polyacrylamide gels is presented. The method is based on the observations that the dye is rapidly eluted electrophoretically from stained protein bands or spots in the presence of sodium dodecyl sulfate, and that the eluted dye is nondialyzable. Protein may therefore be assayed indirectly by measuring the dye in electroeluents spectrophotometrically. Moreover, the stain elutes more rapidly than the protein, allowing separate recovery of the protein for further analysis. The assay is independent of band or spot size, and does not involve physical disruption of the gel piece or any chemical treatment harsher than the staining process itself. The technique has been applied to the contractile proteins myosin, actin, and commercially obtained standards resolved by one-dimensional electrophoresis, and to proteins in nuclear extracts of HeLa cells on two-dimensional gels.  相似文献   

11.
Various blocking procedures were applied to sections of paraffin-embedded, formalin-fixed cat spinal cord. Treated sections and untreated controls were stained with cresyl violet acetate or gallocyanine-chrome alum. Although both dyes have been said to stain by simple salt formation it was found that staining was affected differently for each dye by the blocking procedures, and also that staining of neuron nuclei differed in the controls. In these, the cresyl violet acetate stained only the nucleoli within the nucleoplasm whereas gallocyanine-chrome alum stained much more material of unknown composition and function. It is proposed that if cresyl violet acetate and other basic dyes stain by salt linkage, and can be specific for nucleic acid and other highly acid materials, then gallocyanine and other basic metal dye complexes can not be specific for nucleic acid and do not stain by a simple salt linkage.  相似文献   

12.
We describe here the use of Alta, a pre-existing scarlet-red stain of cosmetic use, for staining proteins on sodium dodecyl sulfate (SDS) polyacrylamide gels, as well as for a single step staining of gels and nitrocellulose membranes during Western blot analysis. This stain, which is composed of 0.8% Crocein scarlet (brilliant crocein) and 0.2% Rhodamine B, is inexpensive, easy to use and nearly as sensitive as Coomassie Brilliant Blue (CBB) R-250. The gels can be stained in 10% Alta (2 h) and can be destained effectively only with 7% acetic acid as opposed to the conventional destainer (methanol/acetic acid/water) required for CBB-stained gels. In an alternative procedure, the proteins can be stained on the gel while electrophoresis by simply using 5% Alta in the top tank buffer and the stain can be viewed under UV-transilluminator. This procedure can also be used for Western blot analysis, as a single step procedure for staining of proteins on the gel as well as on the nitrocellulose membrane, as the stain is retained on the membrane after protein transfer. Thus, this staining procedure allows monitoring of proteins after each step in the Western blot, thereby eliminating the need to run separate gels for staining and Western blot analysis, and also the need for Ponceau Red S staining of the nitrocellulose membrane during Western blot analysis.  相似文献   

13.
Proteins separated by SDS-polyacrylamide gel electrophoresis can be stained with organic dyes, the most popular being Coomassie brilliant blue R-250. Coomassie R-250 staining of ovalbumin in an SDS-PAGE gel increased linearly from 2.5 to 60 min. Direct red 81 and amido black staining approached saturation in 10 min. Scatchard analysis showed that the number of direct red 81 and amido black ligands bound to ovalbumin was fourfold higher than that of Coomassie R-250. Direct red 81 and amido black stain proteins in an SDS-polyacrylamide electrophoresis gel in 10 min.  相似文献   

14.
A rapid, simple technique for staining proteins in isoelectric focusing polyacrylamide gels was demonstrated using fast green in 10% acetic acid. Fast green has the distinct advantage of not binding to ampholytes, thus staining only protein. Maximum staining was achieved within 5 min, and bands were visible after 3 to 6 h of destaining. Background stain removal, however, was not complete until 72 h after placing gels in a diffusion destainer. Gel quantitation was demonstrated with actin using fast green and Coomassie brilliant blue R-250. A standard curve prepared with fast green was linear from 0.5 to 8 μg of actin in contrast to Coomassie brilliant blue R-250 which provided linearity from 0.1 to 2.5 μg actin. Application of fast green staining to quantitation of α-actin from cultured muscle satellite cells has been demonstrated.  相似文献   

15.
The properties of amido black 10B (C.I. 20470), Coomassie blue R (C.I. 42660), and fast green FCF (C.I. 42053) as protein stains, along with a few comments on Coomassie blue G (C.I. 42655), are presented and dye impurities and their effects on protein-dye binding within gels are discussed. All three dyes produced metachromatic effects with some proteins. Problems encountered with long-term stability and fixation of certain maize seed proteins are reported along with procedures for overcoming them. The low solubility of Coomassie blue R in trichloroacetic acid prevented maximum staining and destaining within a reasonable time, whereas other solvents allowed diffusion of some proteins during staining. Coomassie blue R binds to proteins in much higher amounts than do amido black and fast green, which accounts for its sensitivity in detection of protein bands in gels. Procedures for obtaining maximum contrast with photographs are also outlined.  相似文献   

16.
Minor modifications of the Bradford method [1976) Anal. Biochem. 72, 248-254) increase the sensitivity of the Coomassie brilliant blue G microassay for protein quantitation. This is reached by selecting the proper dye source, by alterations in the dye, ethanol, and phosphoric acid concentrations, and by including Triton X-100 in the reaction mixture. The modified assay conditions allow proteins to be detected above 0.2 micrograms and from a solution above 0.4 micrograms/ml. The extinction coefficient of the dye-protein complex was 0.144 +/- 0.010 for 1 microgram bovine serum albumin in the final reaction mixture of 1 ml. In general, the modified procedure exhibits the same specificity, advantages, and drawbacks as described for the original Bradford assay.  相似文献   

17.
A method using fast green dye for quantitation of immune serum globulin and its products of fragmentation in polyacrylamide gels has been developed. Although fast green is shown to be somewhat less sensitive than the usually used Coomassie blue stain, the former dye does not suffer from selective loss of dye due to temperature or alcohol content of the destaining solution. Destaining of fast green-stained gels is accomplished rapidly and efficiently by the described destaining procedure without an accompanying loss in quantitation.  相似文献   

18.
Present Coomassie staining procedures require hours of destaining and/or have high backgrounds. This one-step staining procedure is easier, gives lower background with no loss in sensitivity, uses less chemicals, requires less time, and can be followed by silver stain if increased sensitivity is desired after analyzing the results.  相似文献   

19.
The highest sensitivity nucleic acid gel stains developed to date are optimally excited using short-wavelength ultraviolet or visible light. This is a disadvantage for laboratories equipped only with 306- or 312-nm UV transilluminators. We have developed a new unsymmetrical cyanine dye that overcomes this problem. This new dye, SYBR Gold nucleic acid gel stain, has two fluorescence excitation maxima when bound to DNA, one centered at approximately 300 nm and one at approximately 495 nm. We found that when used with 300-nm transillumination and Polaroid black-and-white photography, SYBR Gold stain is more sensitive than ethidium bromide, SYBR Green I stain, and SYBR Green II stain for detecting double-stranded DNA, single-stranded DNA, and RNA. SYBR Gold stain's superior sensitivity is due to the high fluorescence quantum yield of the dye-nucleic acid complexes ( approximately 0.7), the dye's large fluorescence enhancement upon binding to nucleic acids ( approximately 1000-fold), and its capacity to more fully penetrate gels than do the SYBR Green gel stains. We found that SYBR Gold stain is as sensitive as silver staining for detecting DNA-with a single-step staining procedure. Finally, we found that staining nucleic acids with SYBR Gold stain does not interfere with subsequent molecular biology protocols.  相似文献   

20.
Samples of amido black, Coomassie blue G, and Coomassie blue R obtained over a number of years were tested for dye content, impurities, and effectiveness for staining proteins after polyacrylamide gel electrophoresis and for protein dye-binding assays. Some impurities produced reactions resembling metachromasia with specific proteins, although instances of true metachromatic staining are also reported. Several simple assays are given for determining dye content and relative levels of impurities. Recommendations are made for selecting batches of commercial dyes which are most likely to perform satisfactorily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号