首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allogeneic stem cell transplantation (SCT) is a potentially curative treatment for patients with hematologic malignancies. Its therapeutic effect is largely dependent on recognition of minor histocompatibility antigens (MiHA) by donor-derived CD8+ T cells. Therefore, monitoring of multiple MiHA-specific CD8+ T cell responses may prove to be valuable for evaluating the efficacy of allogeneic SCT. In this study, we investigated the use of the combinatorial encoding MHC multimer technique to simultaneously detect MiHA-specific CD8+ T cells in peripheral blood of SCT recipients. Feasibility of this approach was demonstrated by applying dual-color encoding MHC multimers for a set of 10 known MiHA. Interestingly, single staining using a fluorochrome- and Qdot-based five-color combination showed comparable results to dual-color staining for most MiHA-specific CD8+ T cell responses. In addition, we determined the potential value of combinatorial encoding MHC multimers in MiHA identification. Therefore, a set of 75 candidate MiHA peptides was predicted from polymorphic genes with a hematopoietic expression profile and further selected for high and intermediate binding affinity for HLA-A2. Screening of a large cohort of SCT recipients resulted in the detection of dual-color encoded CD8+ T cells following MHC multimer-based T cell enrichment and short ex vivo expansion. Interestingly, candidate MiHA-specific CD8+ T cell responses for LAG3 and TLR10 derived polymorphic peptides could be confirmed by genotyping of the respective SNPs. These findings demonstrate the potency of the combinatorial MHC multimer approach in the monitoring of CD8+ T cell responses to known and potential MiHA in limited amounts of peripheral blood from allogeneic SCT recipients.  相似文献   

2.
HLA-A2 and -B7 antigens were introduced into EL4 (H-2b) cells by cell-liposome fusion and were used as targets or stimulators for cytotoxic T lymphocytes (CTL) generated in C57B1/6 (H-2b) mice. It was found that such EL4-HLA cells were not recognized by CTL that had been raised against either a human cell line bearing these HLA antigens or the purified HLA-A2 and -B7 antigens reconstituted into liposomes. In addition, EL4-HLA cells were not capable of inducing CTL that could recognize a human cell line bearing HLA-A2 and -B7 antigens. Instead, EL4-HLA cells induced CTL that specifically lysed EL4-HLA cells and not human cells expressing HLA-A2 and -B7. CTL recognition required the presence of HLA antigens on the EL4 cell surface and was inhibited by antibodies against either H-2b or HLA-A/B. Monoclonal antibody binding studies showed that the expected polymorphic determinants of the HLA-A2 and -B7 antigens were still present on EL4-HLA cells. However, the specificity of CTL or their precursors that are capable of recognizing HLA-A2 or -B7 was altered after these antigens became associated with the EL4 surface. Possible explanations for these results are discussed.  相似文献   

3.
Allogeneic stem cell transplantation (allo-SCT) can cure hematological malignancies by inducing alloreactive T cell responses targeting minor histocompatibility antigens (MiHA) expressed on malignant cells. Despite induction of robust MiHA-specific T cell responses and long-term persistence of alloreactive memory T cells specific for the tumor, often these T cells fail to respond efficiently to tumor relapse. Previously, we demonstrated the involvement of the coinhibitory receptor programmed death-1 (PD-1) in suppressing MiHA-specific CD8(+) T cell immunity. In this study, we investigated whether B and T lymphocyte attenuator (BTLA) plays a similar role in functional impairment of MiHA-specific T cells after allo-SCT. In addition to PD-1, we observed higher BTLA expression on MiHA-specific CD8(+) T cells compared with that of the total population of CD8(+) effector-memory T cells. In addition, BTLA's ligand, herpes virus entry mediator (HVEM), was found constitutively expressed by myeloid leukemia, B cell lymphoma, and multiple myeloma cells. Interference with the BTLA-HVEM pathway, using a BTLA blocking Ab, augmented proliferation of BTLA(+)PD-1(+) MiHA-specific CD8(+) T cells by HVEM-expressing dendritic cells. Notably, we demonstrated that blocking of BTLA or PD-1 enhanced ex vivo proliferation of MiHA-specific CD8(+) T cells in respectively 7 and 9 of 11 allo-SCT patients. Notably, in 3 of 11 patients, the effect of BTLA blockade was more prominent than that of PD-1 blockade. Furthermore, these expanded MiHA-specific CD8(+) T cells competently produced effector cytokines and degranulated upon Ag reencounter. Together, these results demonstrate that BTLA-HVEM interactions impair MiHA-specific T cell functionality, providing a rationale for interfering with BTLA signaling in post-stem cell transplantation therapies.  相似文献   

4.
CD8(+) T cells recognizing minor histocompatibility antigens (MiHA) on solid tumor cells may mediate effective graft-versus-tumor (GVT) reactivity after allogeneic stem cell transplantation (SCT). Previously, we identified LRH-1 as a hematopoietic-restricted MiHA encoded by the P2X5 gene. Here, we report that LRH-1 is aberrantly expressed on solid tumor cells. P2X5 mRNA expression is demonstrated in a significant portion of solid tumor cell lines, including renal cell carcinoma (RCC), melanoma, colorectal carcinoma, brain cancer and breast cancer. Importantly, P2X5 gene expression was also detected in a subset of primary solid tumor specimens derived from RCC, brain cancer and breast cancer patients. Furthermore, P2X5 expressing solid tumor cells can be effectively targeted by LRH-1-specific cytotoxic T lymphocytes under inflammatory conditions. The expression of HLA-B7 and CD54 on tumor cells increases upon cytokine stimulation resulting in improved T cell activation as observed by higher levels of degranulation and enhanced tumor cell lysis. Overall, hematopoietic-restricted MiHA LRH-1 is aberrantly expressed on solid tumor cells and may be used as target in GVT-specific immunotherapy after SCT.  相似文献   

5.
Long-term murine cytotoxic T-cell clones arising in response to stimulation with human lymphoblastoid cells and reactive with the HLA-A2 antigen are characterized. These clones distinguish between HLA-A2 and 21 other serologically defined HLA-A and -B antigens. In addition, most clones discriminate between prototypical HLA-A2 antigens, expressed by the majority of HLA-A2-positive individuals, and variant HLA-A2 antigens, which are serologically identical with the prototype, but distinguishable by human cytotoxic T cells and by biochemical analysis. This discrimination is reflected as an inability to cause any significant lysis of variant HLA-A2-expressing target cells at effector-to-target ratios 10- to 100-fold greater than those giving 50% lysis of prototype HLA-A2-expressing cells. By screening a panel of serologically HLA-A2-positive cells, a new variant HLA-A2-expressing cell line has been defined. The recognition patterns of these xenogeneic clones are suggested to reflect recognition of alloantigenic polymorphic determinants. Based on the strong bias in the xenogeneic T-cell repertoire for such determinants, we propose a model for T-cell recognition of class I products of the major histocompatibility complex.  相似文献   

6.
The potential value of in vitro cytotoxic T lymphocyte (CTL) assays for predicting the occurrence of graft vs host disease (GVHD) following allogeneic bone marrow transplantation was evaluated in 12 mouse donor-host combinations associated with various degrees of GVHD. These donor-host combinations were selected after evaluation of GVHD triggered by minor histocompatibility antigens (MiHA) in 24 allogeneic strain combinations derived from six strains of H-2 b mice. Recipients (n=475), previously submitted to total body irradiation (9.5 Gy), were transplanted with 107 bone marrow cells along with 5 x 107 spleen cells. While lethal GVHD was observed in half of the strain combinations, it was possible to select 12 donor-host combinations characterized by severe, mild, or absent GVHD. When levels of anti-host CTL activity were assessed following in vivo priming and in vitro boosting, strong CTL-mediated cytotoxicity was observed in all combinations wheteer they developed GVHD or not. CTL frequency measured by limiting dilution analysis (LDA) ranged from 1/16880-1/306. The Spearman rank test revealed no positive correlation between GVHD intensity and donor anti-host CTL activity assayed either in bulk culture experiments or in LDA conditions. These results indicate that MiHA capable of triggering potent CTL responses in vitro do not necessarily initiate GVHD, and that in vitro measurement of donor CTL activity against host-type Con A blasts is not a predictive assay for anti-MiHA GVHD. However, the possibility to recruit CTL populations targeting host MiHA expressed specifically on hematopoietic cells suggests a novel therapeutic strategy for the cure of hematopoietic malignancies. Indeed, transplantation of donor hematopoietic stem cells supplemented with T cells aimed at MiHA specifically expressed by host hematopoietic cells, could possibly potentiate the desirable graft vs leukemia effect without increasing the risk of GVHD.  相似文献   

7.
The role of the bound peptide in alloreactive T-cell recognition is controversial, ranging from peptide-independent to peptide-specific recognition of alloreactive T-cells. The aim of this study is to find the evidence that there exist peptide/MHC complex (pMHC)-specific CTLs among alloreactive T cells generated with long-term mixed lymphocytes culture (LTMLC). A single pMHC was manipulated by loading the TAP-defective, HLA-A2 expressing T2 cells with a viral peptide (LMP2A426-434) or a self-peptide (Tyr369-377). The PBLs samples from 4 HLA-A2 positive (HLA-A2+ve) and 4 HLA-A2 negative (HLA-A2-ve) donors were included in this study. The HLA-A2+ve PBL co-cultured with the LMP2A426-434pulsed T2 (T2/LMP) stands for the nominal T-cell response to a viral antigen, and the HLA-A2-ve PBLs co-cultured with the Tyr369-377 pulsed T2 (T2/Tyr) for alloreactive T-cell response to an allogeneic antigen.The specificity of the expanded CTLs after the LTMLC was detected by their specific cytotoxicity and binding ability to specific pMHC-tetramer. An HLA-A2 restricted, HIV peptide (Gag77-85) was included for control. The cultural bulk of HLA-A2+ve PBLs with the T2/LMP showed an elevated specific cytotoxicity against the T2/LMP compared to that against the T2/HIV (26.52%±3.72% vs 7.01%±0.87%, P<0.001), and an increased frequency of binding to LMP-tetramer compared to that binding to HIV-tetramer (0.98%±0.33% vs 0.05%±0.01%, P=0.0014). The cultural bulk of HLA-A2-ve PBLs with the T2/Tyr showed a more active cytotoxicity against the T2/Tyr than that against T2/HIV (28.07%±2.58% vs 6.87%±1.01%,P<0.001), and a higher frequency of binding to the Tyr-tetramer than that binding to the HIV-tetramer (0.88%±0.3% vs 0.06%±0.03%, P=0.0018). Our results indicate that the LTMLC is able to expand the viral antigen-specific CTLs as well as allogeneic antigen-specific CTLs. A relatively large proportion of alloreactive CTLs should be pMHC-specific, i.e., the specificity of the alloreactive lines depends on both the bound peptide and the allotype of MHC. Our observations support the hypothesis that the cumularive effect of T cells specific to each peptide epitope could account for the strength and diversity of the alloresponse. The method using manipulated pMHC and the LTMLC to generate pMHC-specific, alloreactive CTLs is of potential importance for adoptive T-cell immunotherapy.  相似文献   

8.
Genetically modified antigen-presenting cells (APC) represent an attractive strategy for in vitro immunomodulation. In the human system, APC expressing HLA-A1 and a membrane-bound form of CD95L (m-CD95L) were used for selective depletion of HLA-A1-specific T cells. In short-term assays, m-CD95L-expressing APC-induced apoptosis in activated T cells and the constitutive presence of m-CD95L and HLA-A1 expressing APC in long-term T cell cultures prevented the expansion of CD4(+) and CD8(+) HLA-A1-specific T cells and the development of HLA-A1-specific cytotoxicity. However, immunity towards third party, viral and bacterial antigens was maintained and T cells spared from depletion could be induced to develop cytotoxicity towards unrelated antigens. Interestingly, inhibition of HLA-A1-specific T cell response absolutely requires the coexpression of m-CD95L and HLA-A1 antigen on the same APC. Thus, m-CD95L expressing APC might be used in clinical settings to obtain tolerance induction in allogeneic transplantation systems or autoimmune diseases.  相似文献   

9.
Carcinoembryonic antigen (CEACAM5) is commonly overexpressed in human colon cancer. Several antigenic peptides recognized by cytolytic CD8+ T-cells have been identified and used in colon cancer phase-I vaccination clinical trials. The HLA-A*0201-binding CEA694–702 peptide was recently isolated from acid eluted MHC-I associated peptides from a human colon tumor cell line. However, the immunogenicity of this peptide in humans remains unknown. We found that the peptide CEA694–702 binds weakly to HLA-A*0201 molecules and is ineffective at inducing specific CD8+ T-cell responses in healthy donors. Immunogenic-altered peptide ligands with increased affinity for HLA-A*0201 were identified. Importantly, the elicited cytolytic T lymphocyte (CTL) lines and clones cross-reacted with the wild-type CEA694–702 peptide. Tumor cells expressing CEA were recognized in a peptide and HLA-A*0201 restricted fashion, but high-CEA expression levels appear to be required for CTL recognition. Finally, CEA-specific T-cell precursors could be readily expanded by in vitro stimulation of peripheral blood mononuclear cell (PBMC) from colon cancer patients with altered CEA peptide. However, the CEA-specific CD8+ T-cell clones derived from cancer patients revealed low-functional avidity and impaired tumor-cell recognition. Together, using T-cells to demonstrate the processing and presentation of the peptide CEA694-702, we were able to corroborate its presentation by tumor cells. However, the low avidity of the specific CTLs generated from cancer patients as well as the high-antigen expression levels required for CTL recognition pose serious concerns for the use of CEA694-702 in cancer immunotherapy.  相似文献   

10.
Cytotoxic T cells from Epstein-Barr virus (EBV)-immune individuals specifically kill EBV-transformed B cells from HLA class I antigen-matched donors even though the latently infected cells express only a restricted set of virus genes. The virus-induced target antigens recognized by these immune T cells have not been identified. In our experiments, EBV DNA sequences encoding the virus latent gene products Epstein-Barr nuclear antigen (EBNA)1, EBNA 2, and EBNA-LP and the latent membrane protein (LMP) were individually expressed in a virus-negative human B-lymphoma cell line, Louckes. Transfected clones expressing LMP were killed by EBV-specific cytotoxic T-cell preparations from each of three virus-immune donors HLA matched with Louckes through HLA-A2, B44 antigens; control transfectants or clones expressing one of the EBNA proteins were not recognized. Expression of LMP in a second virus-negative B-cell line, BL41, sensitized these cells to EBV-specific cytolysis restricted through the HLA-A11 antigen. To distinguish between the viral protein and an induced human B-cell activation antigen as the target for T-cell recognition, LMP was then expressed in a murine mastocytoma cell line, P815-A11-restricted human T cells. The LMP-expressing P815-A11 transfectants were susceptible to lysis by EBV-specific cytotoxic T cells from three HLA-A11-positive individuals. Both Louckes and P815-A11 cells were also transfected with constructs capable of encoding a truncated form of LMP (Tr-LMP) which lacks the N-terminal 128 amino acids of the full-length protein. Tr-LMP-expressing transfectants were not recognized by the above T-cell preparations. The results suggest that LMP, and, in particular, epitopes derived from the N-terminal region of the protein, provides one of the target antigens for the EBV-induced human cytotoxic T-cell response.  相似文献   

11.
An analysis of the genetic traits of human minor histocompatibility (mH) antigens is, unlike with inbred mice, rather complicated. Moreover, the fact that mH antigens are recognized in the context of MHC molecules creates an additional complication for reliable segregation analysis. To gain insight into the mode of inheritance of the mH antigens, we relied upon a series of HLA-A2-restricted cytotoxic T-cell (CTL) clones specific for four mH antigens. To perform segregation analysis independent of HLA-A2 gene: we transfected HLA-A2-negative cells with the HLA-A2 gene: this results in the cell surface expression of the HLA-A2 gene product and, if present, mH antigen recognition. The mode of inheritance of the HLA-A2-restricted mH antigens HA-1, -2, -4, and -5 was analysed in 25 families whoese members either naturally expressed positive. Analysis of distribution of the mH antigens in the parent population among the mating types, together with their inheritance patterns in the families, demonstrated that the four mH antigens behaved as Mendelian traits, whereby each can be considered a product of a gene with two alleles, one expressing and one not expressing the detected specificity. We also showed that the loci encoding the HA-1 and HA-2 antigens are not closely linked to HLa (lod scores Z (0 = 0.05) <–4.0). Some indication was obtained that the HA-4- and HA-5-encoding loci may be losely linked to HLA. While we are aware of the limited results of this nonetheless comprehensive study, we feel the similarity in immunogenetic traits between human and mouse mH antigens is at least striking.  相似文献   

12.
Major histocompatibility complex (MHC) class I molecules associate with a variety of peptide ligands during biosynthesis and present these ligands on the cell surface for recognition by cytotoxic T cells. We have designed conditional MHC ligands that form stable complexes with MHC molecules but degrade on command, by exposure to a defined photostimulus. 'Empty MHC molecules' generated in this manner can be loaded with arrays of peptide ligands to determine MHC binding properties and to monitor antigen-specific T-cell responses in a high-throughput manner. We document the value of this approach by identifying cytotoxic T-cell epitopes within the H5N1 influenza A/Vietnam/1194/04 genome.  相似文献   

13.
The immunologic effects of developmental exposure to noninherited maternal Ags (NIMAs) are quite variable. Both tolerizing influence and inducing alloreaction have been observed on clinical transplantation. The role of minor histocompatibility Ags (MiHAs) in NIMA effects is unknown. MiHA is either matched or mismatched in NIMA-mismatched transplantation because a donor of the transplantation is usually limited to a family member. To exclude the participation of MiHA in a NIMA effect for MHC (H-2) is clinically relevant because mismatched MiHA may induce severe alloreaction. The aim of this study is to understand the mechanism of NIMA effects in MHC-mismatched, MiHA-matched hematopoietic stem cell transplantation. Although all offsprings are exposed to the maternal Ags, the NIMA effect for the H-2 Ag was not evident. However, they exhibit two distinct reactivities, low and high responder, to NIMA in utero and during nursing depending on the degree of maternal microchimerism. Low responders survived longer with less graft-versus-host disease. These reactivities were correlated with Foxp3 expression of peripheral blood CD4(+)CD25(+) cells after graft-versus-host disease induction and the number of IFN-γ-producing cells stimulated with NIMA pretransplantation. These observations are clinically relevant and suggest that it is possible to predict the immunological tolerance to NIMA.  相似文献   

14.

Background

Adoptive transfer of donor-derived T cells can be applied to improve immune reconstitution in immune-compromised patients after allogeneic stem cell transplantation. The separation of beneficial T cells from potentially harmful T cells can be achieved by using the major histocompatibility complex (MHC) I-Streptamer isolation technology, which has proven its feasibility for the fast and pure isolation of T-cell populations with a single specificity. We have analyzed the feasibility of the simultaneous isolation of multiple antigen-specific T-cell populations in one procedure by combining different MHC I-Streptamers.

Methods

First, the effect of combining different amounts of MHC I-Streptamers used in the isolation procedure on the isolation efficacy of target antigen-specific T cells and on the number of off-target co-isolated contaminating cells was assessed. The feasibility of this approach was demonstrated in large-scale validation procedures targeting both high and low frequent T-cell populations using the Good Manufacturing Practice (GMP)-compliant CliniMACS Plus device.

Results

T-cell products targeting up to 24 different T-cell populations could be isolated in one, simultaneous MHC I-Streptamer procedure, by adjusting the amount of MHC I- Streptamers per target antigen-specific T-cell population. Concurrently, the co-isolation of potentially harmful contaminating T cells remained below our safety limit. This technology allows the reproducible isolation of high and low frequent T-cell populations. However, the expected therapeutic relevance of direct clinical application without in vitro expansion of these low frequent T-cell populations is questionable.

Discussion

This study provides a feasible, fast and safe method for the generation of highly personalized MHC I-Streptamer isolated T-cell products for adoptive immunotherapy.  相似文献   

15.
Exclusion of Hoechst 33342 dye is a characteristic common to stem cells, as well as chemotherapy-resistant cancer cells. Normally, these dye-excluding cells can be sorted from enzymatically dissociated tissues with a UV cell sorter/flow cytometer. UV-flow cytometry can be expensive, time-consuming and not readily available to all laboratories. We have developed a simple, high-throughput 96-well microtiter plate assay by which cell populations can be quickly screened for Hoechst dye uptake and exclusion. The method is compatible with green-fluorescent EGFP expressing cells, often used in stem cell biology. Useful applications for this assay will be the rapid screening of clonal stem cell populations and tumor cells for Hoechst dye uptake.  相似文献   

16.
《Cytotherapy》2023,25(1):46-58
Background aimsThe targeting of solid cancers with chimeric antigen receptor (CAR) T cells faces many technological hurdles, including selection of optimal target antigens. Promising pre-clinical and clinical data of CAR T-cell activity have emerged from targeting surface antigens such as GD2 and B7H3 in childhood cancer neuroblastoma. Anaplastic lymphoma kinase (ALK) is expressed in a majority of neuroblastomas at low antigen density but is largely absent from healthy tissues.MethodsTo explore an alternate target antigen for neuroblastoma CAR T-cell therapy, the authors generated and screened a single-chain variable fragment library targeting ALK extracellular domain to make a panel of new anti-ALK CAR T-cell constructs.ResultsA lead novel CAR T-cell construct was capable of specific cytotoxicity against neuroblastoma cells expressing low levels of ALK, but with only weak cytokine and proliferative T-cell responses. To explore strategies for amplifying ALK CAR T cells, the authors generated a co-CAR approach in which T cells received signal 1 from a first-generation ALK construct and signal 2 from anti-B7H3 or GD2 chimeric co-stimulatory receptors. The co-CAR approach successfully demonstrated the ability to avoid targeting single-antigen-positive targets as a strategy for mitigating on-target off-tumor toxicity.ConclusionsThese data provide further proof of concept for ALK as a neuroblastoma CAR T-cell target.  相似文献   

17.
Numerous studies now support that human immunodeficiency virus type 1 (HIV-1) evolution is influenced by immune selection pressure, with population studies showing an association between specific HLA alleles and mutations within defined cytotoxic T-lymphocyte epitopes. Here we combine sequence data and functional studies of CD8 T-cell responses to demonstrate that allele-specific immune pressures also select for mutations flanking CD8 epitopes that impair antigen processing. In persons expressing HLA-A3, we demonstrate consistent selection for a mutation in a C-terminal flanking residue of the normally immunodominant Gag KK9 epitope that prevents its processing and presentation, resulting in a rapid decline in the CD8 T-cell response. This single amino acid substitution also lies within a second HLA-A3-restricted epitope, with the mutation directly impairing recognition by CD8 T cells. Transmission of the mutation to subjects expressing HLA-A3 was shown to prevent the induction of normally immunodominant acute-phase responses to both epitopes. However, subsequent in vivo reversion of the mutation was coincident with delayed induction of new CD8 T-cell responses to both epitopes. These data demonstrate that mutations within the flanking region of an HIV-1 epitope can impair recognition by an established CD8 T-cell response and that transmission of these mutations alters the acute-phase CD8(+) T-cell response. Moreover, reversion of these mutations in the absence of the original immune pressure reveals the potential plasticity of immunologically selected evolutionary changes.  相似文献   

18.
The role of the bound peptide in alloreactive T-cell recognition is controversial, ranging from pep-tide-independent to peptide-specific recognition of alloreactive T-cells. The aim of this study is to find the evidence that there exist peptide/MHC complex (pMHC)-specific CTLs among alloreactive T cells generated with long-term mixed lymphocytes culture (LTMLC). A single pMHC was manipulated by loading the TAP-defective, HLA-A2 expressing T2 cells with a viral peptide (LMP2A426-434) or a self-peptide (Tyr369-377). The PBLs samples from 4 HLA-A2 positive (HLA-A2 ve) and 4 HLA-A2 negative (HLA-A2-ve) donors were included in this study. The HLA-A2 ve PBL co-cultured with the LMP2A426-434 pulsed T2 (T2/LMP) stands for the nominal T-cell response to a viral antigen, and the HLA-A2-ve PBLs co-cultured with the Tyr369-377 pulsed T2 (T2/Tyr) for alloreactive T-cell response to an allogeneic antigen. The specificity of the expanded CTLs after the LTMLC was detected by their specific cytotoxicity and binding ability to specific pMHC-tetramer. An HLA-A2 restricted, HIV peptide (Gag77-85)was included for control. The cultural bulk of HLA-A2 ve PBLs with the T2/LMP showed an elevated specific cytotoxicity against the T2/LMP compared to that against the T2/HIV (26.52%±3.72% vs 7.01%±0.87%, P<0.001), and an increased frequency of binding to LMP-tetramer compared to that binding to HIV-tetramer (0.98%±0.33% vs 0.05%±0.01%, P=0.0014). The cultural bulk of HLA-A2-ve PBLs with the T2/Tyr showed a more active cytotoxicity against the T2/Tyr than that against T2/HIV (28.07%±2.58% vs 6.87%±0.01 %, P<0.001), and a higher frequency of binding to the Tyr-tetramer than that binding to the HIV-tetramer (0.88%±0.3% vs 0.06%±0.03%, P=0.0018). Our results indicate that the LTMLC is able to expand the viral antigen-specific CTLs as well as allogeneic antigen-specific CTLs. A relatively large proportion of alloreactive CTLs should be pMHC-specific, i.e., the specificity of the alloreactive lines depends on both the bound peptide and the allotype of MHC. Our observations support the hypothesis that the cumulative effect of T cells specific to each peptide epitope could account for the strength and diversity of the alloresponse. The method using manipulated pMHC and the LTMLC to generate pMHC-specific, alloreactive CTLs is of potential importance for adoptive T-cell immunotherapy.  相似文献   

19.
The wider use of allogeneic stem cell transplantation (allo-SCT) is still limited by the immunologic recognition and destruction of host tissues, termed graft-versus-host disease (GVHD). The role of inflammatory cytokines such as TNF-alpha and IL-1, and their impact on immune effectors (mainly CD4+ and CD8+ T) cells has been extensively studied in the context of GVHD occurring after standard myeloablative allo-SCT. However, recent data suggested that GVHD pathophysiology is likely to involve more complex interactions where antigen-presenting cells, especially dendritic cells (DCs), may play a major role at time of initiation of acute GVHD. In addition, the wider use of reduced intensity and less toxic conditioning (RIC) regimens prior to allo-SCT would allow better visualization of the fine functions of immune effectors, thereby offering a window of opportunities to better decipher the intimate pathophysiological mechanisms underlying GVHD. The aim of this work is to review the available research evidence on the role of DCs as in vivo regulators of alloimmune reactivity, and their interactions with other immune effectors.  相似文献   

20.
Two groups of human and murine cytotoxic T lymphocyte (CTL) clones specific for human leukocyte antigen (HLA)-A2 or -B7 can be distinguished based on their ability to kill murine transfectants expressing these molecules. The clones which do not recognize murine transfectants exhibited greatly reduced conjugate formation with these cells, indicating that the inability to lyse these cells occurs in recognition and binding. No systematic differences in inhibitory titer between the two types of CTL clones were seen with anti-CD8 (Lyt-2), anti-LFA-1, or monoclonal antibodies against HLA class I molecules. However, blocking with anti-HLA class I monoclonal antibodies suggested that different CTL clones recognized spatially separate epitopes on HLA-A2 and -B7. In addition, a correlation between the inability to recognize murine transfectants and fine specificity was seen. Eight of nine clones which did not lyse murine transfectants also failed to recognize human cells expressing HLA-A2.2 or -A2.3. In contrast only 5 of 12 clones which lysed transfectants failed to recognize the variant molecules. Analogous data were obtained with human CTL clones raised against HLA-A2.1. These findings suggest that CTL clones that do not lyse murine cells expressing appropriate antigens recognize epitopes that have been altered or lost as a consequence of expression on the murine cell surface. It is suggested that the loss of HLA-associated epitopes on the murine cell surface may be due to differences between mouse and human cells in the processing or presentation of class I-associated peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号