首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
任秋实 《生命科学》2009,(2):234-240
人工视觉假体是当今国际上对视网膜色素变性和老年性黄斑病变患者进行视觉修复的研究热点,该人工装置采集外界图像信息,并进行编码处理,通过微电流刺激器将刺激微电流信号加载到微电极阵列,对视觉神经系统进行作用,从而在视觉中枢产生光幻视,实现视觉功能修复。根据目前的国际研究现状,视觉假体可以对视觉通路的任意位置进行电刺激,以期产生视光感。按照植入位置的不同,视觉假体基本上可以分为视皮层假体、视网膜上假体、视网膜下假体和视神经假体。本文着重介绍了中国的C-Sight小组在视神经假体方面的工作进展和面临的挑战。  相似文献   

2.
Strength requirements for internal and external prostheses   总被引:4,自引:0,他引:4  
Throughout the history of development of joint replacement implants and external prostheses there have been mechanical failures due to a discrepancy between material strength, cross-sectional characteristics and the loads developed in normal or abnormal function by the patient utilising the device. Particularly for internal prostheses attention is being paid at the present time to wear characteristics and the requirements for the articulating surfaces and the volume of wear particles produced during tests simulating the use of the device within the patient. The particular importance of the wear particles is that they seem to be associated with accelerated resorption of bone at areas essential for successful fixation of the implant within it. This article will consider joint replacements at the knee and hip and external prostheses for the leg. If failure due to external trauma is ignored the loads to be considered in testing standards correspond in implants to the muscular and ligamentous forces related to the forces developed between ground and foot and to the bending moments in the structure of leg prostheses. Generally it can be assumed that the treatment of the patient following trauma is more easily accomplished and more likely to be successful if the prosthesis has failed and not the bony structure of the patient. However, the author is unaware that these devices have ever been designed to have lower intrinsic strength than the anatomical structures to which they are connected; indeed in many cases particularly for implants they are much stronger than the bone to which they are connected. The major difficulty in rational design of prosthetic devices has been uncertainty about the importance of occasionally applied loads of a high value relative to those on a frequent basis and also to the frequency of application of these overloads. In this paper consideration is given to methods of determination of load systems relevant to the mechanical performance of implanted joint replacements at the hip and the knee and external prostheses for leg amputees. New data are presented relating to walking, other daily activities and the corresponding frequency of occurrence of these. Loading data on implants obtained by various biomechanical models is compared and related to the loads actually measured by implanted transducers. The philosophy of the standardised test load systems and the performance requirements is reviewed.  相似文献   

3.
A portable meter has been developed for measuring low frequency currents that flow in the human body. Although the present version of the meter was specifically designed to measure 50/60 Hz "contact currents," the principles involved can be used with other low frequency body currents. Contact currents flow when the human body provides a conductive path between objects in the environment with different electrical potentials. The range of currents the meter detects is approximately 0.4-800 microA. This provides measurements of currents from the threshold of human perception (approximately 500 microA(RMS)) down to single microampere levels. The meter has a unique design, which utilizes the human subject's body impedance as the sensing element. Some of the advantages of this approach are high sensitivity, the ability to measure current flow in the majority of the body, and relative insensitivity to the current path connection points. Current measurement accuracy varies with the accuracy of the body impedance (resistance) measurement and different techniques can be used to obtain a desired level of accuracy. Techniques are available to achieve an estimated +/-20% accuracy.  相似文献   

4.
Preliminary results from animal and clinical studies demonstrate that electrical stimulation of brain structures can reduce seizure frequency in patients with refractory epilepsy. Since most researchers derive stimulation parameters by trial and error, it is unclear what stimulation frequency, amplitude and duration constitutes a set of optimal stimulation parameters for aborting seizure activity in a given patient. In this investigation, we begin to quantify the independent effects of stimulation parameters on electrographic seizures, such that they could be used to develop an efficient closed-loop prosthesis that intervenes before the clinical onset of a seizure and seizure generalization. Biphasic stimulation is manually delivered to the hippocampus in response to a visually detected electrographic seizure. Such focal, responsive stimulation allows for anti-seizure treatment delivery with improved temporal and spatial specificity over conventional open-loop stimulation paradigms, with the possibility of avoiding tissue damage stemming from excessive exposure to electrical stimulation. We retrospectively examine the effects of stimulation frequency (low, medium and high), pulse-width (low and high) and amplitude (low and high) in seizures recorded from 23 kainic acid treated rats. We also consider the effects of total charge delivered and the rate of charge delivery, and identify stimulation parameter sets that induce after-discharges or more seizures. Among the stimulation parameters evaluated, we note 2 major findings. First, stimulation frequency is a key parameter for inhibiting seizure activity; the anti-seizure effect cannot be attributed to only the charge delivered per phase. Second, an after-discharge curve shows that as the frequency and pulse-width of stimulation increases, smaller pulse amplitudes are capable of eliciting an after-discharge. It is expected that stimulation parameter optimization will lead to devices with enhanced treatment efficacies and reduced side-effect profiles, especially when used in conjunction with seizure prediction or detection algorithms in a closed-loop control application.  相似文献   

5.
The development of a transcutaneous, implantable, multichannel neural stimulator is described. This was originally dedicated to the stimulation of the auditory nerve profoundly deaf persons, but is sufficiently flexible in design and operation to be applicable to other areas of neural prosthetics. Control of both the amplitude and time of stimulation for up to fifteen independent channels is possible with a maximum stimulation rate of 1kHz. Particular attention is given to the design of the transcutaneous link stage which allows both power and data to be transferred to the implanted device using a compact coupling inductor configuration. All circuit timing is derived from a single clock in the external transmitter unit, resulting in stable operation with predictable stimulus output characteristics. The implantable device, realised using thick film hybrid techniques, employs CMOS logic extensively to reduce power consumption. One such device has been implanted in a profoundly deaf volunteer for a period exceeding two years and has continued to operate reliably in conjunction with the complete prosthesis system.  相似文献   

6.
We analyzed the noise of the inward currents induced by stimulation of rat peritoneal mast cells with compound 48/80 (48/80), a secretagogue, and examined the role of extracellular Ca2+ in generation of the large noise. In the presence of 2 mM Ca2+ in the external solution, the power density spectra of the 48/80-induced inward currents in most cells were fitted with the sum of two Lorentzian functions. The cut-off frequencies (fc) at -50 mV for the low and high frequency components were 16.3 +/- 7.3 (n = 10) and 180 +/- 95 (n = 9) Hz. Involvement of a cation-selective channel in the large noise was identified in some cells, but the single channel current amplitude estimated from parameters of the noise varied among cells (0.20-2.47 pA at -50 mV), thereby indicating that the currents were mediated by more than two classes of channel. The low frequency component of the 48/80-induced currents was suppressed by lowering the extracellular Ca2+ concentration to 1 microM with the addition of EGTA, without appreciable changes in the high frequency component. When the extracellular Ca2+ was reduced to 1 microM by EGTA 1 min prior to stimulation, 48/80 induced little or no currents in most cells and small currents in some cells. The power density spectra of the small currents were fitted mainly by a single Lorentzian curve with an fc of 150 +/- 5.8 Hz (n = 3). Re-admission of 1.3 mM Ca2+ produced a low frequency part of current noise with an fc of 18.8 (n = 2) Hz.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We describe an implantable stimulator which is capable of producing both continuous and intermittent patterns of indirect muscle stimulation. Switching between modes is achieved remotely via a percutaneous optical link and only standard laboratory techniques are employed in the construction of the device. It has been used to assess the influence of the pattern of stimulation on type transformation of mammalian skeletal muscle.  相似文献   

8.
Weakly electric fish such as Sternopygus macrurus utilize a unique signal production system, the electric organ (EO), to navigate within their environment and to communicate with conspecifics. The electric organ discharge (EOD) generated by the Sternopygus electric organ is quasi-sinusoidal and sexually dimorphic; sexually mature males produce long duration EOD pulses at low frequencies, whereas mature females produce short duration EOD pulses at high frequencies. EOD frequency is set by a medullary pacemaker nucleus, while EOD pulse duration is determined by the kinetics of Na+ and K+ currents in the electric organ. The inactivation of the Na+ current and the activation of the delayed rectifying K+ current of the electric organ covary with EOD frequency such that the kinetics of both currents are faster in fish with high (female) EOD frequency than those with low (male) EOD frequencies. Dihydrotestosterone (DHT) implants masculinize the EOD centrally by decreasing frequency at the pacemaker nucleus (PMN). DHT also acts at the electric organ, broadening the EO pulse, which is at least partly due to a slowing of the inactivation kinetics of the Na+ current. Here, we show that chronic DHT treatment also slows the activation and deactivation kinetics of the electric organ's delayed rectifying K+ current. Thus, androgens coregulate the time-varying kinetics of two distinct ion currents in the EO to shape a sexually dimorphic communication signal.  相似文献   

9.
Animal models have become a popular platform for the investigation of the molecular and systemic mechanisms of pathological cardiovascular physiology. Chronic pacing studies with implantable pacemakers in large animals have led to useful models of heart failure and atrial fibrillation. Unfortunately, molecular and genetic studies in these large animal models are often prohibitively expensive or not available. Conversely, the mouse is an excellent species for studying molecular mechanisms of cardiovascular disease through genetic engineering. However, the large size of available pacemakers does not lend itself to chronic pacing in mice. Here, we present the design for a novel, fully implantable wireless-powered pacemaker for mice capable of long-term (>30 days) pacing. This design is compared to a traditional battery-powered pacemaker to demonstrate critical advantages achieved through wireless inductive power transfer and control. Battery-powered and wireless-powered pacemakers were fabricated from standard electronic components in our laboratory. Mice (n = 24) were implanted with endocardial, battery-powered devices (n = 14) and epicardial, wireless-powered devices (n = 10). Wireless-powered devices were associated with reduced implant mortality and more reliable device function compared to battery-powered devices. Eight of 14 (57.1%) mice implanted with battery-powered pacemakers died following device implantation compared to 1 of 10 (10%) mice implanted with wireless-powered pacemakers. Moreover, device function was achieved for 30 days with the wireless-powered device compared to 6 days with the battery-powered device. The wireless-powered pacemaker system presented herein will allow electrophysiology studies in numerous genetically engineered mouse models as well as rapid pacing-induced heart failure and atrial arrhythmia in mice.  相似文献   

10.
Reactions of nerve fibers to high frequency electrical stimulation are examined with three nerve models. Switching on the signal produces a single AP at the threshold current. Stronger currents lead into a region of repetitive firing. The firing rate depends on the current and the fibers more distant from the electrode will have a lower rate. The AP's are not synchronized. In the "House-Urban" cochlear implant a 16 kHz carrier is used for stimulation. It is modulated by electrical signals derived from sound pressure. An analysis of the modulation shows which signals can produce APs synchronized with the source signal.  相似文献   

11.
Since 25 years electrical stimulation has become an established and widely acknowledged therapy option. Today, FES is widely employed, e.g. for cardiostimulation, diaphragm stimulation, kinetotherapy, for treatment of tremor in Parkinson patients, and finally for bladder stimulation in patients with bladder voiding dysfunctions. Brindley was the first researcher who succeeded in stimulating the spinal nerves via implanted electrodes in an animal model. In the years 1978/79 Brindley implanted five paraplegic patients with so-called sacral anterior root stimulators; all of them were able to void under stimulation. This method of sacral anterior root stimulation (SARS) proved an alternative to frequent one-way catheterisation for patients with severe voiding dysfunctions, without achieving complete continence, however. The following study is to provide an overview over the latest insights in the context of implanting sacral anterior root stimulators; it discusses the preconditions required for such interventions and presents criteria to decide in which cases there is a contraindication for sacral deafferentation of the posterior roots. Moreover, it contrasts advantages and disadvantages of the intradural and extradural implantation methods and presents the currently available long-term follow-up results with SDAF and SARS for treatment of bladder voiding dysfunctions.  相似文献   

12.
The assessment of the behavior of immediately loaded dental implants using biomechanical methods is of particular importance. The primary goal of this investigation is to optimize the function of the implants to serve for immediate loading. Animal experiments on reindeer antlers as a novel animal model will serve for investigation of the bone remodeling processes in the implant bed. The main interest is directed towards the time and loading-dependant behavior of the antler tissue around the implants. The aim and scope of this work was to design an autonomous loading device that has the ability to load an inserted implant in the antler with predefined occlusal forces for predetermined time protocols. The mechanical part of the device can be attached to the antler and is capable of cyclically loading the implant with forces of up to 100 N. For the calibration and testing of the loading device a biomechanical measuring system has been used. The calibration curve shows a logarithmic relationship between force and motor current and is used to control the force on the implant. A first test on a cast reindeer antler was performed successfully.  相似文献   

13.
The biophysical properties and cellular distribution of ion channels largely determine the input/output relationships of electrically excitable cells. A variety of patch pipette voltage clamp techniques are available to characterize ionic currents. However, when used by themselves, such techniques are not well suited to the task of mapping low-density channel distributions. We describe here a new voltage clamp method (the whole cell loose patch (WCLP) method) that combines whole-cell recording through a tight-seal pipette with focal extracellular stimulation through a loose-seal pipette. By moving the stimulation pipette across the cell surface and using a stationary whole-cell pipette to record the evoked patch currents, this method should be suitable for mapping channel distributions, even on large cells possessing low channel densities. When we applied this method to the study of currents in cultured chick myotubes, we found that the cell cable properties and the series resistance of the recording pipette caused significant filtering of the membrane currents, and that the filter characteristics depended in part upon the distance between the stimulating and recording pipettes. We describe here how we determined the filter impulse response for each loose-seal pipette placement and subsequently recovered accurate estimates of patch membrane current through deconvolution.  相似文献   

14.
Astrocytes are capable of widespread intercellular communication via propagated increases in intracellular Ca(2+) concentration. We have used patch clamp, dye flux, ATP assay, and Ca(2+) imaging techniques to show that one mechanism for this intercellular Ca(2+) signaling in astrocytes is the release of ATP through connexin channels ("hemichannels") in individual cells. Astrocytes showed low Ca(2+)-activated whole-cell currents consistent with connexin hemichannel currents that were inhibited by the connexin channel inhibitor flufenamic acid (FFA). Astrocytes also showed molecular weight-specific influx and release of dyes, consistent with flux through connexin hemichannels. Transmembrane dye flux evoked by mechanical stimulation was potentiated by low Ca(2+) and was inhibited by FFA and Gd(3+). Mechanical stimulation also evoked release of ATP that was potentiated by low Ca(2+) and inhibited by FFA and Gd(3+). Similar whole-cell currents, transmembrane dye flux, and ATP release were observed in C6 glioma cells expressing connexin43 but were not observed in parent C6 cells. The connexin hemichannel activator quinine evoked ATP release and Ca(2+) signaling in astrocytes and in C6 cells expressing connexin43. The propagation of intercellular Ca(2+) waves in astrocytes was also potentiated by quinine and inhibited by FFA and Gd(3+). Release of ATP through connexin hemichannels represents a novel signaling pathway for intercellular communication in astrocytes and other non-excitable cells.  相似文献   

15.
Inorganic‐organic lead‐halide perovskite solar cells have reached efficiencies above 22% within a few years of research. Achieved photovoltages of >1.2 V are outstanding for a material with a bandgap of 1.6 eV – in particular considering that it is solution processed. Such values demand for low non‐radiative recombination rates and come along with high luminescence yields when the solar cell is operated as a light emitting diode. This progress report summarizes the developments on material composition and device architecture, which allowed for such high photovoltages. It critically assesses the term “lifetime”, the theories and experiments behind it, and the different recombination mechanisms present. It attempts to condense reported explanations for the extraordinary optoelectronic properties of the material. Amongst those are an outstanding defect tolerance due to antibonding valence states and the capability of bandgap tuning, which might make the dream of low‐cost highly efficient solution‐processed thin film solar cells come true. Beyond that, the presence of photon recycling will open new opportunities for photonic device design.  相似文献   

16.
Any surgical resection in the lower extremities in children will cause a leg length discrepancy from physeal resection. To avoid the resulting functional deficit, leg length discrepancy must be reconciled with surgical techniques to approximate equal leg lengths at skeletal maturity. Currently there are several manufacturers who offer options for prosthetic reconstruction with expandable implants. These implants can be expanded to a length projected on the basis of three factors: the length of bone resected, the anticipated future growth of the contralateral extremity, and the estimated discrepancy of limb length at skeletal maturity. In this article, we review the basic principles and guidelines for prediction of remaining bone growth and planning lengthening in children, and present the currently available expandable prostheses and the evolution performed over time.  相似文献   

17.

Background

The non-invasive nature of laser biostimulation has made lasers an attractive alternative in Medical Acupuncture at the last 25 years. However, there is still an uncertainty as to whether they work or their effect is just placebo. Although a plethora of scientific papers published about the topic showing positive clinical results, there is still a lack of objective scientific proofs about the biostimulation effect of lasers in Medical Acupuncture. The objective of this work was to design and build a low cost portable laser device for stimulation of acupuncture points, considered here as small localized biosources (SLB), without stimulating any sensory nerves via shock or heat and to find out a suitable method for objectively evaluating its stimulating effect. The design is aimed for studying SLB potentials provoked by laser stimulus, in search for objective proofs of the biostimulation effect of lasers used in Medical Acupuncture.

Methods

The proposed biostimulator features two operational modes: program mode and stimulation mode and two output polarization modes: linearly and circularly polarized laser emission. In program mode, different user-defined stimulation protocols can be created and memorized. The laser output can be either continuous or pulse modulated. Each stimulation session consists of a pre-defined number of successive continuous or square pulse modulated sequences of laser emission. The variable parameters of the laser output are: average output power, pulse width, pulse period, and continuous or pulsed sequence duration and repetition period. In stimulation mode the stimulus is automatically applied according to the pre-programmed protocol. The laser source is 30 mW AlGaInP laser diode with an emission wavelength of 685 nm, driven by a highly integrated driver. The optical system designed for beam collimation and polarization change uses single collimating lens with large numerical aperture, linear polarizer and a quarter-wave retardation plate. The proposed method for testing the device efficiency employs a biofeedback from the subject by recording the biopotentials evoked by the laser stimulus at related distant SLB sites. Therefore measuring of SLB biopotentials caused by the stimulus would indicate that a biopotential has been evoked at the irradiated site and has propagated to the measurement sites, rather than being caused by local changes of the electrical skin conductivity.

Results

A prototype device was built according to the proposed design using relatively inexpensive and commercially available components. The laser output can be pulse modulated from 0.1 to 1000 Hz with a duty factor from 10 to 90 %. The average output power density can be adjusted in the range 24 - 480 mW/cm2, where the total irradiation is limited to 2 Joule per stimulation session. The device is controlled by an 8-bit RISC Flash microcontroller with internal RAM and EEPROM memory, which allows for a wide range of different stimulation protocols to be implemented and memorized. The integrated laser diode driver with its onboard light power control loop provides safe and consistent laser modulation. The prototype was tested on the right Tri-Heater (TH) acupuncture meridian according to the proposed method. Laser evoked potentials were recorded from most of the easily accessible SLB along the meridian under study. They appear like periodical spikes with a repetition rate from 0.05 to 10 Hz and amplitude range 0.1 - 1 mV.

Conclusion

The prototype's specifications were found to be better or comparable to those of other existing devices. It features low component count, small size and low power consumption. Because of the low power levels used the possibility of sensory nerve stimulation via the phenomenon of shock or heat is excluded. Thus senseless optical stimulation is achieved. The optical system presented offers simple and cost effective way for beam collimation and polarization change. The novel method proposed for testing the device efficiency allows for objectively recording of SLB potentials evoked by laser stimulus. Based on the biopotential records obtained with this method, a scientifically based conclusion can be drawn about the effectiveness of the commercially available devices for low-level laser therapy used in Medical Acupuncture. The prototype tests showed that with the biostimulator presented, SLB could be effectively stimulated at low power levels. However more studies are needed to derive a general conclusion about the SLB biostimulation mechanism of lasers and their most effective power and optical settings.  相似文献   

18.
An implantable transducer capable of telemetering epidural brain pressure during long periods of time is described. The transducer is constructed from conventionally available materials, and routine workshop techniques are used. The coplanarity principle has been applied while the described mounting clamp allows discrete positioning of the transducer relative to the brain. Basically, the transducer consists of a coil-capacitor circuit in which alterations of epidural pressure induce changes in capacity and, thus, the transducer's resonance frequency. An external electromagnetically coupled impedance-measuring device converts the resonance frequency to a pressure analogous voltage. In vitro tests showed that the transducer had good accuracy and reliability for a period of more than 1 month. An in vivo experiment with a cat showed that the measured epidural pressure was linearly related to ventricular fluid pressure.  相似文献   

19.
Chronically implanted microelectrodes are an invaluable tool for neuroscientific research, allowing long term recordings in awake and behaving animals. It is known that all such electrodes will evoke a tissue reaction affected by its’ size, shape, surface structure, fixation mode and implantation method. However, the possible correlation between tissue reactions and the number of implanted electrodes is not clear. We implanted multiple wire bundles into the brain of rats and studied the correlation between the astrocytic and microglial reaction and the positioning of the electrode in relation to surrounding electrodes. We found that an electrode implanted in the middle of a row of implants is surrounded by a significantly smaller astrocytic scar than single ones. This possible interaction was only seen between implants within the same hemisphere, no interaction with the contralateral hemisphere was found. More importantly, we found no aggravation of tissue reactions as a result of a larger number of implants. These results highlight the possibility of implanting multiple electrodes without aggravating the glial scar surrounding each implant.  相似文献   

20.
An extraordinary variety of sight recovery therapies are either about to begin clinical trials, have begun clinical trials, or are currently being implanted in patients. However, as yet we have little insight into the perceptual experience likely to be produced by these implants. This review focuses on methodologies, such as optogenetics, small molecule photoswitches and electrical prostheses, which use artificial stimulation of the retina to elicit percepts. For each of these technologies, the interplay between the stimulating technology and the underlying neurophysiology is likely to result in distortions of the perceptual experience. Here, we describe some of these potential distortions and discuss how they might be minimized either through changes in the encoding model or through cortical plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号