首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Our previous studies have demonstrated that piglets infected with highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) may develop significant thymus atrophy, which related to thymocytes apoptosis. However, apart from that detected in the thymus, there are no reports describing cell apoptosis induced by HP-PRRSV infection. In this study, we analyzed comparatively the pathological changes, cell apoptosis and viral load in peripheral immune organs including tonsil, inguinal lymph nodes (ILNs) and spleen and lungs following experimental infection of piglets with HP-PRRSV HuN4 and classical PRRSV CH-1a.

Findings

HP-PRRSV HuN4 exhibited much stronger cell tropism than CH-1a in immune organs and lungs of piglets. HuN4 infection led to the serious injuries in tonsils, ILNs, spleens and lungs, especially apoptosis in these organs was significant.

Conclusions

HuN4 infection induced severe lesions (gross pathology, histopathology and cell apoptosis) in the peripheral immune organs and lungs of infected piglets. Large numbers of apoptotic cells in immune organs and lung induced by HuN4 may play a role in the pathogenesis of the HP-PRRS and the distinct injuries caused by HuN4 infection may be associated with the high mortality rate of HP-PRRS in pigs.  相似文献   

2.
重组猪肺表面活性蛋白A在体外可抑制PRRSV感染宿主细胞   总被引:2,自引:0,他引:2  
【目的】研究重组猪肺表面活性蛋白A(SP-A)在体外对猪繁殖与呼吸综合征病毒(PRRSV)感染的抑制作用。【方法】采用PCR方法从含有猪SP-A基因的质粒中扩增SP-A基因,并将其插入到含有人CD5信号肽序列的真核表达载体pcDNA3.1A-CD5中,构建成SP-A基因的真核分泌型表达载体pcDNA-CD5-SPA/MH。将重组表达载体通过磷酸钙介导转染HEK293T细胞进行瞬时表达,通过Western blot方法鉴定表达产物,采用Ni-NTA琼脂糖凝胶亲和层析法从培养基中分离和纯化重组SP-A蛋白,通过ELISA方法检测SP-A蛋白与PRRSV的结合活性。将SP-A蛋白与PRRSV孵育,然后感染MARC-145细胞和猪肺泡巨噬细胞,感染72 h后测定病毒滴度,分析重组SP-A蛋白对PRRSV感染的抑制作用。【结果】结果表明构建的真核表达载体能够介导SP-A基因在HEK293T细胞中进行分泌表达;表达的重组猪SP-A蛋白能够与PRRSV进行剂量依赖性结合;用重组猪SP-A蛋白与PRRSV进行孵育,然后感染MARC-145细胞和猪肺泡巨噬细胞,结果显示SP-A处理的PRRSV感染细胞后的病变程度明显低于对照组。感染72 h后,SP-A处理组的PRRSV在MARC-145细胞和猪肺泡巨噬细胞的滴度明显低于SP-A非处理组。【结论】重组猪SP-A在体外对PRRSV的感染有明显的抑制作用,揭示SP-A具有抗PRRSV的活性。  相似文献   

3.
《Genomics》2020,112(2):1879-1888
Porcine reproductive and respiratory syndrome (PRRS), which is caused by PRRS virus (PRRSV), is one of the most globally devastating swine diseases. It is essential to develop new strategy to control PRRS via an understanding of mechanisms that PRRSV utilizes to interfere with the host's innate immunity. In this study, we deeply sequenced and analyzed long noncoding RNA (lncRNA) and mRNA expression profiles of the porcine alveolar macrophages (PAMs) after PRRSV infection. 126 lncRNAs and 753 mRNAs were differentially expressed between PRRSV-infected and control PAMs. The co-expressed genes of down-regulated lncRNAs were significantly enriched within NF-kappa B and toll-like receptor signaling pathways. Co-expression network analysis indicated that part of the dysregulated lncRNAs associated with the interferon-induced genes. These dysregulated lncRNAs may play an important role in the host's innate immune responses to PRRSV infection. However, further research is required to characterize the function of these lncRNAs.  相似文献   

4.
5.
Porcine reproductive and respiratory syndrome virus (PRRSV) causes porcine reproductive and respiratory syndrome (PRRS), which is characterized by reproductive failure and respiratory disorders. The secretome of PRRSV‐infected porcine alveolar macrophages (PAMs), which are the primary target cells of PRRSV, was analyzed by label‐free quantitative proteomics to gain a profile of proteins secreted during PRRSV infection. A total of 95 secreted proteins with differentially expressed levels between PRRSV‐ and mock‐infected PAMs was screened. Among these, the expression levels of 49 and 46 proteins were up‐regulated and down‐regulated, respectively, in PRRSV‐infected cell supernatants, as compared with mock‐infected cell supernatants. Bioinformatic analysis revealed that the differentially expressed proteins were enriched in several signaling pathways related to the immune and inflammatory responses, such as the Toll‐like receptor signaling pathway and NF‐kappa B signaling pathway, and involved in a great diversity of biological processes, such as protein binding and localization, as well as immune effector processes. In addition, PRRSV‐infected cell supernatants induced significant expression of inflammatory cytokines in vascular endothelial cells. These findings suggest that the secreted proteins play potential roles in the host immune and inflammatory responses as well as PRRSV replication, thereby providing new insights into cell‐to‐cell communication during PRRSV infection.  相似文献   

6.
Outbreaks of highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) have led to large economic losses and, subsequently, have drawn great attention to its diagnosis and prevention. To facilitate rapid discrimination of HP-PRRSV from classical PRRSV (C-PRRSV), we developed a one-step RT-PCR assay. Primer specificities were evaluated with RNA extracted from 8 viral strains and our results revealed that the primers had a high specificity for PRRSV. The assay sensitivity was 25 copies/μL for both HP-PRRSV and C-PRRSV. A total of 929 serum samples were identified, of which 20.45% were HP-PRRSV-positive and 1.51% were C-PRRSV-positive, which was completely consistent with that of immunochromatochemistry and sequencing method. The proposed assay can detect the virus 2 days prior the onset of symptoms and it can be performed in 2 h, thereby providing a rapid method to discriminate HP-PRRSV from C-PRRSV for the identification and prevention of PRRSV infections.  相似文献   

7.
Previously, we demonstrated that the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) HuN4 strain causes obvious thymic atrophy and thymocytes apoptosis in infected piglets after birth, which is more severe than that induced by classical PRRSV. In this study, we investigated apoptosis and autophagy in the thymus of piglets infected with the HP-PRRSV HuN4 strain, and found that both apoptosis and autophagy occurred in the thymus of piglets infected with HP-PRRSV. In addition to a few virus-infected cells, CD14+ cells, the main autophagic cells in the thymus were thymic epithelial cells. These findings demonstrated that HP-PRRSV induces apoptosis in bystander cells, and induces autophagy in both infected and bystander cells in the thymus of infected piglets. Herein, we first present new data on the thymic lesions induced by HP-PRRSV, and show that apoptosis and autophagy are key mechanisms involved in cell survival and determinants of the severity of thymic atrophy in infected piglets. Finally, future studies of the mechanism underlying immune responses are proposed based on our current understanding of PRRSV-host interactions.  相似文献   

8.
Following the 2006 outbreaks of the highly pathogenic porcine reproductive and respiratory syndrome, the causative agent was identified as the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV). To investigate whether the HP-PRRSV variant continues circulating and accelerating evolution, we sequenced and analyzed the complete genome of the identified HP-PRRSV field strain SD16. The sequence data indicate that the HP-PRRSV variant continues to prevail and accelerate evolution, especially in the nonstructural protein.  相似文献   

9.
Highly pathogenic porcine reproductive and respiratory syndrome (HP-PRRS) emerged in China in 2006, and HP-PRRS virus (HP-PRRSV) has evolved continuously. Here, the complete genomic sequence of a novel HP-PRRSV field strain, JX, is reported. The present finding will contribute to further studies focusing on the evolutionary mechanism of PRRSV.  相似文献   

10.
Heparan sulfate (HS), which consists of repeating disaccharide units, plays an essential role in inflammation and viral infections. Heparanase (encoded by the HPSE gene) can cleave the HS chains of heparan sulfate proteoglycans (HSPGs), which are known to be important participants in immune responses. HPSE2 (heparanase 2) is a homologous gene of HPSE. To investigate the functions of HS, which is the primary receptor of the porcine reproductive and respiratory syndrome virus (PRRSV), the two genes involved in the metabolic process of HS were studied. Here, we present a study of tissue expression profiles, polymorphisms of the HPSE and HPSE2 genes, and the changes of their mRNA levels in porcine alveolar macrophages (PAMs) induced by PRRSV. Both genes are preferentially expressed in porcine immune or immune-related organs under normal conditions, e.g., in the lung, spleen, and lymph node. Moreover, a synonymous mutation c.750A>G located in exon5 of the HPSE gene was detected, and was significantly associated with the white blood cell (WBC) count, red blood cell (RBC) count, hemoglobin (HGB), and hematocrit (HCT) in the peripheral blood (p?<?0.05). A single nucleotide polymorphism (SNP) c.2073A>G was found in the HPSE2 gene and association analysis showed that it was significantly associated with the WBC content in the blood (p?<?0.05). Upon stimulation in healthy piglets with PRRSV, the HPSE mRNA was obviously up-regulated, while the HPSE2 mRNA did not induce a prominent change in PAMs.  相似文献   

11.
The highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) is still a serious threat to the swine industry. However, the pathogenic mechanism of HP-PRRSV remains unclear. We infected host porcine alveolar macrophages (PAMs) with the virulent HuN4 strain and the attenuated HuN4-F112 strain and then utilized fluorescent two-dimensional difference gel electrophoresis (2D-DIGE) to screen for intracellular proteins that were differentially expressed in host cells infected with the two strains. There were 153 proteins with significant different expression (P<0.01) observed, 42 of which were subjected to mass spectrometry, and 24 proteins were identified. PAM cells infected with the virulent strain showed upregulated expression of pyruvate kinase M2 (PKM2), heat shock protein beta-1 (HSPB1), and proteasome subunit alpha type 6 (PSMA6), which were downregulated in cells infected with the attenuated strain. The upregulation of PKM2 provides sufficient energy for viral replication, and the upregulation of HSPB1 inhibits host cell apoptosis and therefore facilitates mass replication of the virulent strain, while the upregulation of PSMA6 facilitates the evasion of immune surveillance by the virus. Studying on those molecules mentioned above may be able to help us to understand some unrevealed details of HP-PRRSV infection, and then help us to decrease its threat to the swine industry in the future.  相似文献   

12.
In China, a majority of the highly pathogenic porcine reproductive and respiratory syndrome (HP-PRRSV) strains were seeded by the 2006 outbreak. However, the most recently emerged (2013-2014) HP-PRRSV strain has a very different genetic background. It is a NADC30-like PRRSV strain recently introduced from North America that has undergone genetic exchange with the classic HP-PRRSV strains in China. Subsequent isolation and characterization of this variant suggest high pathogenicity, so it merits special attention in control and vaccine strategies.  相似文献   

13.
猪传染性胸膜肺炎病料中PCV_2和PRRSV的PCR检测   总被引:4,自引:0,他引:4  
应用PCR方法对从山东省不同地区采集的2 5 3份猪传染性胸膜肺炎肺脏和12 5份临床健康猪肺脏进行PCV_2和PRRSV的检测。结果显示,在传染性胸膜肺炎猪肺脏中,171份为PCV_2阳性,阳性率达6 7 5 % ;10 1份样品为PRRSV阳性,阳性率达4 0 % ;其中,6 8份样品同时检出PCV_2和PRRSV ,共感染阳性率达2 6 8%。而临床健康猪肺组织中,2 1份样品PCV_2检测结果为阳性,阳性率为16 8% ;12份样品PRRSV检测结果阳性,阳性率为9 6 % ,PCV_2和PRRSV共感染未检出。统计结果显示,传染性胸膜肺炎发病猪与临床健康猪PCV_2、PRRSV及PCV_2和PRRSV共感染的阳性率差异极显著,传染性胸膜肺炎发病猪的肺脏中PCV_2和PRRSV的检出率明显高于临床健康猪。上述检测结果提示,猪传染性胸膜肺炎的发生可能与PCV_2和PRRSV的感染和共感染有关  相似文献   

14.
Human DDX3X is a newly discovered DEAD-box RNA helicase. In addition to involvement of eukaryotic gene expression regulation, human DDX3X has recently been demonstrated to be a critical molecule in innate immune signaling pathways and to contribute to type I interferon (IFN) induction. In the present study, porcine DDX3X was cloned by RT-PCR from PK-15 cells and its function in regulating IFN-β was characterized. The putative porcine DDX3X ORF encodes 662 amino acids possessing several conserved motifs. Sequence alignments indicated that porcine DDX3X has high identity at the amino acid level to those of horse (96.7%), mouse (97.6%), cattle (98.5%), dog (98.6%) and human (98.9%). Ectopic expression of porcine DDX3X significantly activated IFN-β expression, whereas knockdown of porcine DDX3X inhibited dsRNA- or Sendai virus (SeV)-induced IFN-β. Furthermore, porcine DDX3X co-localized with IPS-1, TBK1 and IKKε, and enhanced IFN-β promoter activation induced by these molecules. We also investigated the role of porcine DDX3X during porcine reproductive and respiratory syndrome virus (PRRSV) infection and found that overexpression of DDX3X significantly inhibited PRRSV replication, indicating that DDX3X is a potential antiviral agent.  相似文献   

15.
16.
Porcine reproductive and respiratory syndrome (PRRS) has devastated the pig industry worldwide for almost 25 years, and its virus (PRRSV) preferentially infects and replicates in pulmonary alveolar macrophages (PAMs). To discover cellular protein responses in PRRSV-infected PAMs, two-dimensional liquid chromatography-tandem mass spectrometry coupled with isobaric tags for relative and absolute quantification (iTRAQ) labeling was employed to quantitatively identify the differentially expressed proteins between the PRRSV-infected groups and the controls. A total of 160 cellular proteins in PAMs that were significantly altered post-infection were identified. These differentially expressed proteins are related to the biological processes of virus binding, cell structure, signal transduction, cell adhesion, etc., and their interactions. This is the first report that analyzed the cellular protein profile of PRRSV-infected PAMs using iTRAQ technology, and this data provides important information to help understand the host response to PRRSV and to define the cellular requirements for the underlying mechanism of PRRSV replication and pathogenesis.  相似文献   

17.
We previously showed that microRNA 181 (miR-181) can inhibit PRRSV replication by directly targeting its genomic RNA. Here, we report that miR-181 can downregulate the PRRSV receptor CD163 in blood monocytes and porcine alveolar macrophages (PAMs) through targeting the 3′ untranslated region (UTR) of CD163 mRNA. Downregulation of CD163 leads to the inhibition of PRRSV entry into PAMs and subsequently suppresses PRRSV infection. Our findings indicate that delivery of miR-181 can be used as antiviral therapy against PRRSV infection.  相似文献   

18.
NM1 is a highly pathogenic North American-type porcine reproductive and respiratory syndrome virus (PRRSV). The complete genome sequence shows that NM1 shares high sequence identity (99.2 to 99.4%) to other HP-PRRSV isolates, containing two discontinuous deletions, a 1-amino-acid deletion at position 481 and a 29-amino-acid deletion at positions 533 to 651, in nonstructural protein 2.  相似文献   

19.
20.
The porcine reproductive and respiratory syndrome Virus (PRRSV) is an infectious disease that causes abortions and respiratory disorders in swine. In this study, the interaction between PRRSV and porcine dendritic cells generated from CD14(+) monocytes in the presence of GM-CSF and IL-4 was examined. As a result, it was shown that immature and mature dendritic cells can be productively infected with PRRSV. When the expression of surface MHC molecules on infected dendritic cells was determined, MHC classes I and II were found to be downregulated when compared with uninfected dendritic cells. With the exception of the IL-4 and IFN-gamma cytokines, the induction of the IL-10, IL-12, and TNF-alpha cytokines all increased in dendritic cells infected with PRRSV. A mixed lymphocyte reaction showed that peripheral blood mononuclear cells cocultured with PRRSVinfected dendritic cells were less stimulated than peripheral blood mononuclear cells cocultured with dendritic cells treated with PBS, LPS, or UV-inactivated PRRSV. Therefore, these results suggest that PRRSV would appear to modulate the immune stimulatory function of porcine dendritic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号