首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatic stellate cells (HSCs) may play an important role in hepatic immune regulation by producing numerous cytokines/chemokines and expressing Ag-presenting and T cell coregulatory molecules. Due to disruption of the endothelial barrier during cold-ischemic storage and reperfusion of liver grafts, HSCs can interact directly with cells of the immune system. Endotoxin (LPS), levels of which increase in liver diseases and transplantation, stimulates the synthesis of many mediators by HSCs. We hypothesized that LPS-stimulated HSCs might promote hepatic tolerogenicity by influencing naturally occurring immunosuppressive CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs). Following their portal venous infusion, allogeneic CD4(+) T cells, including Tregs, were found closely associated with HSCs, and this association increased in LPS-treated livers. In vitro, both unstimulated and LPS-stimulated HSCs upregulated Fas (CD95) expression on conventional CD4(+) T cells and induced their apoptosis in a Fas/Fas ligand-dependent manner. By contrast, HSCs induced Treg proliferation, which required cell-cell contact and was MHC class II-dependent. This effect was augmented when HSCs were pretreated with LPS. LPS increased the expression of MHC class II, CD80, and CD86 and stimulated the production of IL-1α, IL-1β, IL-6, IL-10 and TNF-α by HSCs. Interestingly, production of IL-1α, IL-1β, IL-6, and TNF-α was strongly inhibited, but that of IL-10 enhanced in LPS-pretreated HSC/Treg cocultures. Adoptively transferred allogeneic HSCs migrated to the secondary lymphoid tissues and induced Treg expansion in lymph nodes. These data implicate endotoxin-stimulated HSCs as important immune regulators in liver transplantation by inducing selective expansion of tolerance-promoting Tregs and reducing inflammation and alloimmunity.  相似文献   

2.
The effects of Aluminum (Al) exposure on immune functions of cultured splenic T and B lymphocytes of rats were studied. The lymphocytes were isolated from spleen of healthy male Wistar rats weighing 110-120 g. The cultured cells in RPMI-1640 medium were exposed to 0 (control group), 0.035 (low-dose group), 0.07 (medial-dose group), and 0.14 (high-dose group) mg/mL Al(3+) as aluminum trichloride (AlCl(3)) in an incubator under 5% CO(2) at 37°C for 24 h. The T and B lymphocyte proliferation was measured with a tetrazolium dye colorimetric assay. The levels of interleukin (IL)-2, IL-6, and tumor necrosis factor (TNF)-α were determined by iodine [(125)I] IL-2, IL-6, and TNF-α radioimmunoassay kits, respectively. The proportions of CD3(+), CD4(+), and CD8(+) T lymphocytes were measured with a flow cytometer. The results showed that the T and B lymphocyte proliferation, the levels of IL-2, IL-6, TNF-α, the proportions of CD3(+) and CD4(+) T lymphocytes, and the ratio of CD4(+)/CD8(+) T lymphocytes were lowered by Al treatments, while the proportion of CD8(+) T lymphocytes was increased. These findings indicate that Al exposure can inhibit the immune functions of splenic T and B lymphocytes of rats in vitro.  相似文献   

3.
IL-2-dependent, activation-induced T cell death (AICD) plays an important role in peripheral tolerance. Using CD8+ TCR-transgenic lymphocytes (2C), we investigated the mechanisms by which IL-2 prepares CD8+ T cells for AICD. We found that both Fas and TNFR death pathways mediate the AICD of 2C cells. Neutralizing IL-2, IL-2R alpha, or IL-2R beta inhibited AICD. In contrast, blocking the common cytokine receptor gamma-chain (gamma c) prevented Bcl-2 induction and augmented AICD. IL-2 up-regulated Fas ligand (FasL) and down-regulated gamma c expression on activated 2C cells in vitro and in vivo. Adult IL-2 gene-knockout mice displayed exaggerated gamma c expression on their CD8+, but not on their CD4+, T cells. IL-4, IL-7, and IL-15, which do not promote AICD, did not influence FasL or gamma c expression. These data provide evidence that IL-2 prepares CD8+ T lymphocytes for AICD by at least two mechanisms: 1) by up-regulating a pro-apoptotic molecule, FasL, and 2) by down-regulating a survival molecule, gamma c.  相似文献   

4.
Transforming growth factor β (TGF-β) is a cytokine with immunoregulatory properties that acts negatively on T lymphocyte proliferation. However, with the EL 4–6.1 variant of the murine thymoma EL 4 activated with phorbol ester and/or interleukin-1 (IL-1), we recently found that it up-regulates interleukin-2-receptor (IL-2R) expression. Since EL 4–6.1 cells share phenotypic and functional characteristics with the immature thymic subset lacking CD4 and CD8 accessory molecules (DN), we investigated the effect of TGF-β1 on the IL-2R 55kD α chain expression and proliferation of activated DN cells and especially in DN cells that do not express CD3. We observed that TGF-β1 was able to increase both the percentage of CD3?DN cells expressing IL-2Rα chains and the expression of IL-2Rα chain in these cells. This stimulatory effect of TGF-β1 was distal from early transduction events. In addition, TGF-β1 was found to modulate CD3?DN cell proliferation. During differentiation in the thymus, CD3?DN cells transiently express the IL-2Rα chain of the IL-2R and these IL-2R+ CD3?DN cells are preprogrammed to down-regulate the IL-2Rα chain and up-regulate the CD4 and CD8 accessory molecule. We thus also tested the effect of TGF-β1 on IL-2Rα chain expression in these in vitro differentiating CD3?DN cells. We found that TGF-β1 neither significantly affected IL-2R expression nor changed CD4 or CD8 expression. Hence, in CD3?DN cells, the effect of TGF-β1 on IL-2R expression seems to be restricted to proliferating cells. © 1993 Wiley-Liss, Inc.  相似文献   

5.
In this study, we investigated the therapeutic effect of artemisinin (Art) on lupus nephritis mice and its mechanisms by comparing the differences between lupus nephritis (LN) mice given Art and control mice in molecular biology, immunohistochemistry, and histopathology. The results showed that Art could remarkably relieve the symptoms, decrease the level of urine protein/24 h, and alleviate pathological renal lesions. The differences among the four groups in the expression of the NF-κBp65 protein, nuclear factor-κB (NF-κB) activity, and the expression of transforming growth factor-β1 (TGF-β1) mRNA in renal tissue suggested that Art can lower the serum levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and inhibit the expression of the NF-κBp65 protein and NF-κB and TGF-β1 mRNA in the renal tissues of LN mice. These results proved that it is reliable and effective to use Art to treat LN mice, and its therapeutic mechanisms should closely be related to the fact that Art can obviously decrease the serum levels of TNF-α and IL-6 and down-regulate the expression of the NF-κBp65 protein and NF-κB and TGF-β1 mRNA in renal tissues.  相似文献   

6.
We have recently demonstrated that adoptive transfer of regulatory T cell-depleted polyclonal T cells into lymphopenic mice leads to rejection of B16 melanoma, which generated an opportunity to study host requirements for tumor rejection when it effectively occurred. CD8(+) T cell priming and tumor rejection required tumor Ag cross-presentation, as evidenced by tumor outgrowth in Kb(-/-) bone marrow chimeric or B71/2(-/-) mice. CD4(+) T cells were additionally required for optimal tumor control, although not through classical CD4 "help," as the frequency of primed CD8(+) T cells was similar in the absence of CD4(+) T cells, and tumor rejection did not depend upon CD40-CD40L interactions or on IL-2 production by CD4(+) T cells. Rather, CD4(+) T cells appeared to act at the effector phase of tumor rejection and responded to B16-derived Ags in vitro. At the effector phase, IFN-γ production by transferred T cells, but not host cells, was necessary. IFN-γ acted either on host or tumor cells and was associated with reduced tumor vascularity. Finally, tumor rejection occurred after transfer of TNF-α, perforin, or FasL-deficient T cells. However, perforin/FasL double-knockout T cells failed to reject, arguing that the killing of B16 melanoma cells could occur either via the cytotoxic granule or Fas pathways. Collectively, these results support a model in which host tumor Ag cross-presentation primes adoptively transferred T cells, which remain functional in the setting of homeostatic proliferation and regulatory T cell depletion, and which promote tumor rejection via IFN-γ and lysis via cytotoxic granules and/or FasL.  相似文献   

7.
Combinatory responses of proinflamamtory cytokines have been examined on the nitric oxide-mediated function in cultured mouse calvarial osteoblasts. Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) induced iNOS gene expression and NO production, although these actions were inhibited by L-NG-monomethylarginine (L-NMMA) and decreased alkaline phosphatase (ALPase) activity. Furthermore, NO donors, sodium nitroprusside (SNP) and NONOate dose-dependently elevated ALPase activity. In contrast, transforming-growth factor-β (TGF-β) decreased NO production stimulated by IL-1β, TNF-α and interferon-γ (IFN-γ). iNOS was expressed by mouse calvarial osteoblast cells after stimulation with IL-1β, TNF-α, and IFN-γ. Incubation of mouse calvarial osteoblast cells with the cytokines inhibited growth and ALPase activity. However, TGF-β-treatment abolished these effects of IL-1β, TNF-α and IFN-γ on growth inhibition and stimulation of ALPase in mouse calvarial osteoblast cells. In contrast, IL-1β, TNF-α, and IFN-γ exerted growth-inhibiting effects on mouse calvarial osteoblast cells which were partly NO-dependent. The results suggest that NO may act predominantly as a modulator of cytokine-induced effects on mouse calvarial osteoblast cells and TGF-β is a negative regulator of the NO production stimulated by IL-1β, TNF-α and IFN-γ.  相似文献   

8.
Fas death pathway is important for lymphocyte homeostasis, but the role of Fas pathway in T cell memory development is not clear. We show that whereas the expansion and contraction of CD8+ T cell response against Listeria monocytogenes were similar for wild-type (WT) and Fas ligand (FasL) mutant mice, the majority of memory CD8+ T cells in FasL mutant mice displayed an effector memory phenotype in the long-term in comparison with the mainly central memory phenotype displayed by memory CD8+ T cells in WT mice. Memory CD8+ T cells in FasL mutant mice expressed reduced levels of IFN-gamma and displayed poor homeostatic and Ag-induced proliferation. Impairment in CD8+ T cell memory in FasL mutant hosts was not due to defective programming or the expression of mutant FasL on CD8+ T cells, but was caused by perturbed cytokine environment in FasL mutant mice. Although adoptively transferred WT memory CD8+ T cells mediated protection against L. monocytogenes in either the WT or FasL mutant hosts, FasL mutant memory CD8+ T cells failed to mediate protection even in WT hosts. Thus, in individuals with mutation in Fas pathway, impairment in the function of the memory CD8+ T cells may increase their susceptibility to recurrent/latent infections.  相似文献   

9.
Activated T cells release bioactive Fas ligand (FasL) in exosomes, which subsequently induce self-apoptosis of T cells. However, their potential effects on cell apoptosis in tumors are still unknown. In this study, we purified exosomes expressing FasL from activated CD8(+) T cell from OT-I mice and found that activated T cell exosomes had little effect on apoptosis and proliferation of tumor cells but promoted the invasion of B16 and 3LL cancer cells in vitro via the Fas/FasL pathway. Activated T cell exosomes increased the amount of cellular FLICE inhibitory proteins and subsequently activated the ERK and NF-κB pathways, which subsequently increased MMP9 expression in the B16 murine melanoma cells. In a tumor-invasive model in vivo, we observed that the activated T cell exosomes promoted the migration of B16 tumor cells to lung. Interestingly, pretreatment with FasL mAb significantly reduced the migration of B16 tumor cells to lung. Furthermore, CD8 and FasL double-positive exosomes from tumor mice, but not normal mice, also increased the expression of MMP9 and promoted the invasive ability of B16 murine melanoma and 3LL lung cancer cells. In conclusion, our results indicate that activated T cell exosomes promote melanoma and lung cancer cell metastasis by increasing the expression of MMP9 via Fas signaling, revealing a new mechanism of tumor immune escape.  相似文献   

10.
11.
Toll-like receptors (TLRs) recognise pathogen-derived molecules and influence immunity to control parasite infections. This study aimed to evaluate the mRNA expression of TLRs 2 and 4, the expression and production of the cytokines interleukin (IL)-12, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-17, IL-10 and transforming growth factor (TGF)-β and the production of nitric oxide (NO) in the spleen of mice infected with Leishmania chagasi. It also aimed to evaluate any correlations between mRNA expression TLR2 and 4 and cytokines and NO production. Infection resulted in increased TLR2-4, IL-17, TNF-α and TGF-β mRNA expression during early infection, with decreased expression during late infection correlating with parasite load. IFN-γ and IL-12 mRNA expression decreased at the peak of parasitism. IL-10 mRNA expression increased throughout the entire time period analysed. Although TGF-β, TNF-α and IL-17 were highly produced during the initial phase of infection, IFN-γ and IL-12 exhibited high production during the final phase of infection. IL-10 and NO showed increased production throughout the evaluated time period. In the acute phase of infection, there was a positive correlation between TLR2-4, TNF-α, IL-17, NO, IL-10 and TGF-β expression and parasite load. During the chronic phase of infection, there was a positive correlation between TLR2-4, TNF-α, IL-17 and TGF-β expression and parasite load. Our data suggest that infection by L. chagasi resulted in modulation of TLRs 2 and 4 and cytokines.  相似文献   

12.
目的观察牙龈卟啉单胞菌感染通过激活含NLR家族PYRIN域蛋白3(NLRP3)小体诱导人牙周膜细胞(hPDLCs)炎症反应及凋亡的效应。方法取健康前磨牙样本并分离培养hPDLCs,分为牙龈卟啉单胞菌感染的感染组和常规处理的对照组,检测细胞中NLRP3小体[NLRP3、凋亡相关斑点样蛋白(ASC)、含半胱氨酸的天冬氨酸蛋白水解酶(Caspase)-1]、凋亡基因[自杀相关因子(Fas)、Fas配体(FasL)、B淋巴细胞瘤-2基因(Bcl-2)、Bcl-2相关x蛋白(Bax)、Caspase-3]的表达量及培养基中炎症细胞因子[白细胞介素(IL)-1β、IL-18、肿瘤坏死因子-α(TNF-α)]的含量。结果感染组hPDLCs中NLRP3、ASC、Caspase-1、Fas、FasL、Bax、Caspase-3的表达量及培养基中IL-1β、IL-18、TNF-α的含量明显高于对照组,细胞中Bcl-2的表达量明显低于对照组。结论牙龈卟啉单胞菌感染能够诱导hPDLCs的炎症反应及凋亡且该作用与NLRP3小体的激活有关。  相似文献   

13.
Granulomatous experimental autoimmune thyroiditis (G-EAT) is induced by mouse thyroglobulin-sensitized spleen cells activated in vitro with mouse thyroglobulin, anti-IL-2R, and IL-12. G-EAT lesions reach maximal severity 19-21 days after cell transfer, and lesions almost completely resolve by day 35. Depletion of CD8+ cells delays resolution and reduces Fas ligand (FasL) mRNA expression in thyroids. This study was undertaken to analyze Fas and FasL protein expression in the thyroid during induction and resolution of G-EAT and to determine whether CD8+ cells might regulate Fas or FasL expression in the thyroid. Fas and FasL expression was analyzed by immunohistochemical staining or in situ hybridization in thyroids of mice with or without depletion of CD8+ cells. Fas and FasL proteins were not detectable in normal thyroids, but expression of both proteins increased during development of G-EAT. Fas was expressed primarily by inflammatory cells; some enlarged thyrocytes were also Fas+. Thyrocytes had intense FasL immunoreactvity, and many CD8+ cells were also FasL positive. Depletion of CD8+ cells resulted in decreased FasL expression by thyrocytes and inflammatory cells, but had no effect on Fas expression. TUNEL assay detected many apoptotic inflammatory cells in proximity to thyrocytes. CD8-depleted thyroids had ongoing inflammation with fewer apoptotic infiltrating cells at day 35. Administration of a neutralizing anti-FasL mAb had no apparent effects on development of G-EAT, but anti-FasL was as effective as anti-CD8 in preventing G-EAT resolution. These results suggested that CD8+ T cells and thyrocytes may kill inflammatory cells through the Fas pathway, contributing to G-EAT resolution.  相似文献   

14.
15.
Although γherpesvirus infections are associated with enhanced lung fibrosis in both clinical and animal studies, there is limited understanding about fibrotic effects of γherpesviruses on cell types present in the lung, particularly during latent infection. Wild-type mice were intranasally infected with a murine γherpesvirus (γHV-68) or mock-infected with saline. Twenty-eight days postinfection (dpi), ~14 days following clearance of the lytic infection, alveolar macrophages (AMs), mesenchymal cells, and CD19-enriched cell populations from the lung and spleen express M(3) and/or glycoprotein B (gB) viral mRNA and harbor viral genome. AMs from infected mice express more transforming growth factor (TGF)-β(1), CCL2, CCL12, TNF-α, and IFN-γ than AMs from mock-infected mice. Mesenchymal cells express more total TGF-β(1), CCL12, and TNF-α than mesenchymal cells from mock-infected mice. Lung and spleen CD19-enriched cells express more total TGF-β(1) 28 dpi compared with controls. The CD19-negative fraction of the spleen overexpresses TGF-β(1) and harbors viral genome, but this likely represents infection of monocytes. Purified T cells from the lung harbor almost no viral genome. Purified T cells overexpress IL-10 but not TGF-β(1). Intracellular cytokine staining demonstrated that lung T cells at 28 dpi produce IFN-γ but not IL-4. Thus infection with a murine γherpesvirus is sufficient to upregulate profibrotic and proinflammatory factors in a variety of lung resident and circulating cell types 28 dpi. Our results provide new information about possible contributions of these cells to fibrogenesis in the lungs of individuals harboring a γherpesvirus infection and may help explain why γHV-68 infection can augment or exacerbate fibrotic responses in mice.  相似文献   

16.
17.
Astragalus polysaccharides (APS), extracted from the root of Astragalus membranaceus, a traditional Chinese medicinal herb, have extensive pharmacological and strong immunomodulatory effects. In this study, the potential adjuvant effect of APS on humoral and cellular immune responses to hepatitis B subunit vaccine was investigated. Coadministration of APS with recombinant hepatitis B surface antigen significantly increased antigen-specific antibody production, T-cell proliferation and CTL (cytotoxic T lymphocyte) activity. Production of interferon-γ (IFN-γ), interleukin-2 (IL-2) and IL-4 in CD4(+) T cells and of IFN-γ in CD8(+) T cells were dramatically increased. Furthermore, expression of the genes PFP, GraB, Fas L and Fas were up-regulated; interestingly, expression of transforming growth factor β (TGF-β) and the frequency of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg cells) were down-regulated. Expression of Toll-like receptor 4 (TLR4) was significantly increased by administration of APS. Together, these results suggest that APS is a potent adjuvant for the hepatitis B subunit vaccine and can enhance both humoral and cellular immune responses via activating the TLR4 signaling pathway and inhibit the expression of TGF-β and frequency of Treg cells.  相似文献   

18.
Huber S  Shi C  Budd RC 《Journal of virology》2002,76(13):6487-6494
Fas/Fas ligand (FasL) interactions regulate disease outcome in coxsackievirus B3 (CVB3)-induced myocarditis. MRL(+/+) mice infected with CVB3 develop severe myocarditis, a dominant CD4(+) Th1 (gamma interferon [IFN-gamma(+)]) response to the virus, and a predominance of gammadelta T cells in the myocardial infiltrates. MRL lpr/lpr and MRL gld/gld mice, which lack normal expression of Fas and express a mutated FasL, respectively, have minimal myocarditis and show a dominant CD4(+) Th2 (interleukin-4 [IL-4(+)]) phenotype to CVB3. Spleen cells from virus-infected wild-type, lpr, and gld animals proliferate equally to virus in vitro. Adoptive transfer of gammadelta T cells from hearts of CVB3-infected MRL(+/+) mice (FasL(+)) into infected MRL gld/gld recipients (FasL(-)/Fas(+)) restores both disease susceptibility and Th1 cell phenotype. However, transfer of these cells into MRL lpr/lpr recipients (FasL(+)/Fas(-)) did not promote myocarditis and the viral response remained Th2 biased. This paralleled the expression of very high surface levels of FasL by myocardial gammadelta T cells, as well as their propensity to selectively lyse Th2 virus-specific CD4(+) T cells. These results demonstrate that Fas/FasL interactions conferred by gammadelta T cells on lymphocyte subpopulations may regulate the cytokine response to CVB3 infection and pathogenicity.  相似文献   

19.
目的:探讨CD8+CD122+T细胞在脑缺血过程中的作用及其机制。方法:线栓法建立小鼠大脑中动脉栓塞模型(MCAO);激光共聚焦显微镜检测小鼠脑缺血组织中CD8+CD122+T细胞浸润情况;流式细胞仪检测脑缺血组织中CD8+CD122+T细胞/CD3+T细胞的比例及脾和胸腺中CD8+CD12TT细胞数量变化;RT—PCR方法检测CD8+CD122+T细胞对氧糖剥夺(Oxygen—glucosedeprivation,OGD)条件下星形胶质细胞表达TNF-α,IL-1β,IFN-γ的影响。结果:各时间点脑缺血组织中均有CD8+CD122+T胞浸润,且随脑缺血时间延长,缺血侧脑组织中CD8+CD122+T细胞/CD3+T细胞比例逐渐增加,5d和7d组差异显著,与非缺血侧相比,P5d〈0.05,P7d〈0.05;MCAO小鼠脾及胸腺中CD8+CD122+T细胞呈现先增高后降低的趋势。星形胶质细胞经OGD处理后,与对照组相比,IFN-γ、TNF-α、IL—1β表达显著增高,PIFN-γ〈0.01、PTNF-α〈0.001、PIL-1β〈0.01;CD122-blocked组与CD8+组相比,IFN-γ、TNF-α、IL-1β表达明显增高,PIFN-γ〈0.05、PINF-α〈0.05、PIL-1β〈0.01;CD8+组与HBSS组相比,IFN-γ表达降低,P〈0.05;IL-1β表达有降低的趋势。结论:CD8+CD122可细胞在脑缺血过程中发挥保护性作用,其保护作用通过CD122抑制星形胶质细胞TNF-α,IL-1β,IFN-γ炎症因子表达实现的。  相似文献   

20.
CD8+ T lymphocytes that specifically recognize tumor cells can be isolated and expanded ex vivo. While the lytic properties of these cells have been well described, their fate upon encounter with cognate tumor is not known. We performed reverse 51Cr release assays in which the lymphocyte effectors rather than the tumor cell targets were radioactively labeled. We found that melanoma tumor cells caused the apoptotic death of tumor-specific T cells only upon specific MHC class I-restricted recognition. This death was entirely blockable by the addition of an Ab directed against the Fas death receptor (APO-1, CD95). Contrary to the prevailing view that tumor cells cause the death of anti-tumor T cells by expressing Fas ligand (FasL), our data suggested that FasL was instead expressed by T lymphocytes upon activation. While the tumor cells did not express FasL by any measure (including RT-PCR), functional FasL (as well as FasL mRNA) was consistently found on activated anti-tumor T cells. We could successfully block the activation-induced cell death with z-VAD-fmk, a tripeptide inhibitor of IL-1 beta-converting enzyme homologues, or with anti-Fas mAbs. Most importantly, these interventions did not inhibit T cell recognition as measured by IFN-gamma release, nor did they adversely affect the specific lysis of tumor cell targets. These results imply that Fas-mediated activation-induced cell death could be a limiting factor in the in vivo efficacy of adoptive transfer of class I-restricted CD8+ T cells and provide a means of potentially enhancing their growth in vitro as well as their function in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号