首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The site-specific recombinase Cre has often been used for on/off regulation of expression of transgenes introduced into the mammalian chromosome. However, this method is only applicable to the regulation of a single gene and cannot be used to simultaneously regulate two genes, because site-specific recombination occurs from the target loxP sequence of one regulating unit to the loxP sequence of any other unit and would eventually disrupt the structure of both regulating units. We previously reported a mutant loxP sequence with a two base substitution called loxP V (previously called loxP 2272), with which wild-type loxP cannot recombine but with which the identical mutant loxP recombines efficiently. In the present study we isolated cell lines bearing two regulating units on a chromosome containing a pair of wild-type loxP sequences or mutant loxP V sequences. After infection with Cre-expressing recombinant adenovirus AxCANCre, expression of a gene in each regulating unit was simultaneously turned on and off. Southern analyses showed that both regulating units were processed simultaneously and independently, even after infection with a limited amount of AxCANCre. The results showed that simultaneous regulation of gene expression on a mammalian chromosome mediated by Cre can be achieved by using mutant loxP V and wild-type loxP. This method may be a useful approach for conditional transgenic/knockout animals and investigation of gene function involving two genes simultaneously. Another possible application is for preparation of a new packaging cell line of viral vectors through simultaneous production of toxic viral genes.  相似文献   

2.
A new plasmid series has been created for Agrobacterium-mediated plant transformation. The pBECKS2000 series of binary vectors exploits the Cre/loxP site-specific recombinase system to facilitate the construction of complex T-DNA vectors. The new plasmids enable the rapid generation of T-DNA vectors in which multiple genes are linked, without relying on the availability of purpose-built cassette systems or demanding complex, and therefore inefficient, ligation reactions. The vectors incorporate facilities for the removal of transformation markers from transgenic plants, while still permitting simple in vitro manipulations of the T-DNA vectors. A `shuttle' or intermediate plasmid approach has been employed. This permits independent ligation strategies to be used for two gene sets. The intermediate plasmid sequence is incorporated into the binary vector through a plasmid co-integration reaction which is mediated by the Cre/loxP site-specific recombinase system. This reaction is carried out within Agrobacterium cells. Recombinant clones, carrying the co-integrative binary plasmid form, are selected directly using the antibiotic resistance marker carried on the intermediate plasmid. This strategy facilitates production of co-integrative T-DNA binary vector forms which are appropriate for either (1) transfer to and integration within the plant genome of target and marker genes as a single T-DNA unit; (2) transfer and integration of target and marker genes as a single T-DNA unit but with a Cre/loxP facility for site-specific excision of marker genes from the plant genome; or (3) co-transfer of target and marker genes as two independent T-DNAs within a single-strain Agrobacterium system, providing the potential for segregational loss of marker genes.  相似文献   

3.
A newly designed site-specific recombination system is presented which allows multiple targeted markerless deletions. The most frequently used tool for removing selection markers or to introduce genes by recombination-mediated cassette exchange is the Cre/loxP system. Many mutant loxP sites have been created for this purpose. However, this study presents a chimeric mutant loxP site denoted mroxP-site. The mroxP site consists of one Cre (loxP/2) and one MrpA (mrpS/2) binding site separated by a palindromic 6-bp spacer sequence. Two mroxP-sites can be recombined by Cre recombinase in head-to-tail as well as in head-to-head orientation. In the head-to-head orientation and the loxP half-sites inside, Cre removes the loxP half-sites during site-specific recombination, creating a new site, mrmrP. The new site is essentially a mrpS site with a palindromic spacer and cannot be used by Cre for recombination anymore. It does, however, present a substrate for the recombinase MrpA. This new system has been successfully applied introducing multiple targeted gene deletions into the Escherichia coli genome. Similar to Cre/loxP and FLP/FRT, this system may be adapted for genetic engineering of other pro- and eukaryotes.  相似文献   

4.
《Gene》1998,216(1):55-65
The Cre recombinase mediates precise site-specific recombination between a pair of loxP sequences through an intermediate containing Holiday junction. The recombination junction in the loxP sequence is located within the asymmetric 8-nucleotide spacer region. To examine the role of each nucleotide sequence of the spacer region in the recombination process, we synthesized a complete set of 24 loxP spacer mutants with single-base substitutions and 30 loxP spacer mutants with double-base substitutions. Each synthesized loxP mutant was ligated at both ends of a linear DNA or to one end of a DNA-containing wild-type loxP at the other end and their recombination efficiencies were analyzed with an in vitro system. The sequence identity of the right two nucleotides and left four nucleotides in the central six bases of the spacer region was found to be essential for formation and resolution, respectively, of the intermediate product. Furthermore, even when homology was maintained, the recombination efficiencies were lower than that of wild-type loxP and varied among mutants. Based on this knowledge, we identified two loxP mutants with double-base substitutions, mutants 5171 and 2272, which recombine efficiently with an identical mutant but not with the other mutant or wild-type loxP.  相似文献   

5.
Recombination of wild-type and mutant loxP sites mediated by wild-type Cre protein was analyzed in vivo using a sensitive phage P1 transduction assay. Contrary to some earlier reports, recombination between loxP sites was found to be highly specific: a loxP site recombined in vivo only with another of identical sequence, with no crossover recombination either between a wild-type and mutant site; or between two different mutant sites tested. Mutant loxP sites of identical sequence recombined as efficiently as wild-type. The highly specific and efficient recombination of mutant loxP sites in vivo helped in developing a procedure to progressively truncate DNA from either end of large genomic inserts in P1-derived artificial chromosomes (PACs) using transposons that carry either a wild-type or mutant loxP sequence. PAC libraries of human DNA were constructed with inserts flanked by a wild-type and one of the two mutant loxP sites, and deletions from both ends generated in clones using newly constructed wild-type and mutant loxP transposons. Analysis of the results provides new insight into the very large co-integrates formed during P1 transduction of plasmids with loxP sites: a model with tri- and possibly multimeric co-integrates comprising the PAC plasmid, phage DNA, and transposon plasmid(s) as intermediates in the cell appears best to fit the data. The ability to truncate a large piece of DNA from both ends is likely to facilitate functionally mapping gene boundaries more efficiently, and make available precisely trimmed genes in their chromosomal contexts for therapeutic applications.  相似文献   

6.
A new plasmid series has been created for Agrobacterium-mediated plant transformation. The pBECKS2000 series of binary vectors exploits the Cre/loxP site-specific recombinase system to facilitate the construction of complex T-DNA vectors. The new plasmids enable the rapid generation of T-DNA vectors in which multiple genes are linked, without relying on the availability of purpose-built cassette systems or demanding complex, and therefore inefficient, ligation reactions. The vectors incorporate facilities for the removal of transformation markers from transgenic plants, while still permitting simple in vitro manipulations of the T-DNA vectors. A `shuttle' or intermediate plasmid approach has been employed. This permits independent ligation strategies to be used for two gene sets. The intermediate plasmid sequence is incorporated into the binary vector through a plasmid co-integration reaction which is mediated by the Cre/loxP site-specific recombinase system. This reaction is carried out within Agrobacterium cells. Recombinant clones, carrying the co-integrative binary plasmid form, are selected directly using the antibiotic resistance marker carried on the intermediate plasmid. This strategy facilitates production of co-integrative T-DNA binary vector forms which are appropriate for either (1) transfer to and integration within the plant genome of target and marker genes as a single T-DNA unit; (2) transfer and integration of target and marker genes as a single T-DNA unit but with a Cre/loxP facility for site-specific excision of marker genes from the plant genome; or (3) co-transfer of target and marker genes as two independent T-DNAs within a single-strain Agrobacterium system, providing the potential for segregational loss of marker genes. Received: 30 July 1998 / Accepted: 2 November 1998  相似文献   

7.
Production of viral vectors using recombinase-mediated cassette exchange   总被引:1,自引:0,他引:1  
DNA viruses are often used as vectors for foreign gene expression, but large DNA region from cloned or authentic viral genomes must usually be handled to generate viral vectors. Here, we present a unique system for generating adenoviral vectors by directly substituting a gene of interest in a small transfected plasmid with a replaced gene in a replicating viral genome in Cre-expressing 293 cells using the recombinase-mediated cassette exchange (RMCE) reaction. In combination with a positive selection of the viral cis-acting packaging signal connected with the gene of interest, the purpose vector was enriched to 97.5 and 99.8% after three and four cycles of infection, respectively. Our results also showed that the mutant loxP V (previously called loxP 2272), a variant target of Cre used in the RMCE reaction, was useful as a non-compatible mutant to wild-type loxP. This method could be useful for generating not only a large number of adenovirus vectors simultaneously, but also other DNA virus vectors including helper-dependent adenovirus vector.  相似文献   

8.
9.
Marker-free, genetically-modified rice was created by the tissue-specifically regulated Cre/loxP system, in which the Cre recombinase gene and hygromycin phosphotransferase gene (hpt) were flanked by two directly oriented loxP sites. Cre expression was activated by the tissue-specific promoter OsMADS45 in flower or napin in seed, resulting in simultaneous excision of the recombinase and marker genes. Segregation of T1 progeny was performed to select recombined plants. The excision was confirmed by PCR, Southern blot and sequence analyses indicating that efficiency varied from 10 to 53 % for OsMADS45 and from 12 to 36 % for napin. The expression of cry1Ac and vip3A was detected by RT-PCR analysis in marker-free transgenic rice. These results suggested that our tissue-specifically regulated Cre/loxP system could auto-excise marker genes from transgenic rice and alleviate public concerns about the security of GM crops.  相似文献   

10.
The bacteriophage P1 Cre/loxP site-specific recombination system is a useful tool in a number of genetic engineering processes. The Cre recombinase has been shown to act on DNA sequences that vary considerably from that of its bacteriophage recognition sequence, loxP. However, little is known about the sequence requirements for functional lox-like sequences. In this study, we have implemented a randomized library approach to identify the sequence characteristics of functional lox site domains. We created a randomized spacer library and a randomized arm library, and then tested them for recombination in vivo and in vitro. Results from the spacer library show that, while there is great plasticity, identity between spacer pairs is the most important factor influencing function, especially in in vitro reactions. The presence of one completely randomized arm in a functional loxP recombination reaction revealed that only three wild-type loxP arms are necessary for successful recombination in Cre-expressing bacteria, and that there are nucleotide preferences at the first three and last three positions of the randomized arm for the most efficiently recombined sequences. Finally, we found that in vitro Cre recombination reactions are much more stringent for evaluating which sequences can support efficient recombination compared to the 294-CRE system.  相似文献   

11.
The isolation of mutant cells with phenotypes caused by random mutagenesis has been hampered in mammalian cells because there are two alleles per gene and the disruption of both alleles is extremely rare. We describe a method for the efficient biallelic mutagenesis in embryonic stem cells. loxP sites were introduced near the centromeric regions of a pair of chromosome 1s. A mutant neo gene was inserted at the distal part of one of the loxP sites so that biallelic mutants would be selected by high-dose G418. Expression of Cre induced the recombination between homologous chromosomes and led to an elevation in the number of biallelic mutants. This system will facilitate phenotype-driven gene function study in the mammalian system.  相似文献   

12.
The bacteriophage P1 Cre/loxP site-specific recombination system is a useful tool for engineering chromosomal changes in animal cells. Transient expression of the Cre recombinase gene directly introduced into fertilized eggs by pronuclear injection has been reported to provide an efficient method of transgene modulation in fertilized eggs. In the present study, we examined the efficacy of this method to remove loxP-flanked DNA sequences in a gene-targeted locus in fertilized eggs. We replaced a part of the T-cell receptor γ (TCR Vγ) locus with homologous sequences containing a loxP-flanked neogene in mouse embryonic stem (ES) cells by gene-targeting technique. The resulting ES cell clones containing the mutant allele (VγLNL) were used to generate chimeric mice by blastocyst injection. Eight male chimeras were bred with superovulated wild-type female mice. One hundred and seventy-six fertilized eggs were collected, and subjected to pronuclear injection of the Cre expression plasmid, pCAGGS-Cre, of a covalently closed circular form. Three out of 11 pups inherited the targeted Vγ locus. The inherited targeted allele of these 3 mice was shown to have undergone Cre-mediated recombination, resulting in a deletion of the loxP-flanked sequences (VγΔ) as shown by Southern blot analysis of DNA from tail biopsies. All 3 founder mutant mice were capable of transmitting the VγΔ locus to their offspring. The other 8 pups carried only wild-type alleles. There were no pups carrying the unrecombined VγLNL locus. Thus, the frequency of Cre-mediated recombination was 100% (3/3) with this method. In contrast, when closed circular pCAGGS-Cre plasmid was introduced into ES cells by electroporation, the recombination frequency of the VγLNL locus was 9.6%. These results indicated that our system based on transient expression of the Cre recombinase gene directly introduced into fertilized eggs by pronuclear injection provides a fast and efficient method for generating mutant mice with desired deletions or translocations in target genes. Mol Reprod Dev 46:109–113, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.

Background

Genetic mosaic techniques have been used to visualize and/or genetically modify a neuronal subpopulation within complex neural circuits in various animals. Neural populations available for mosaic analysis, however, are limited in the vertebrate brain.

Methodology/Principal Findings

To establish methodology to genetically manipulate neural circuits in medaka, we first created two transgenic (Tg) medaka lines, Tg (HSP:Cre) and Tg (HuC:loxP-DsRed-loxP-GFP). We confirmed medaka HuC promoter-derived expression of the reporter gene in juvenile medaka whole brain, and in neuronal precursor cells in the adult brain. We then demonstrated that stochastic recombination can be induced by micro-injection of Cre mRNA into Tg (HuC:loxP-DsRed-loxP-GFP) embryos at the 1-cell stage, which allowed us to visualize some subpopulations of GFP-positive cells in compartmentalized regions of the telencephalon in the adult medaka brain. This finding suggested that the distribution of clonally-related cells derived from single or a few progenitor cells was restricted to a compartmentalized region. Heat treatment of Tg(HSP:Cre x HuC:loxP-DsRed-loxP-GFP) embryos (0–1 day post fertilization [dpf]) in a thermalcycler (39°C) led to Cre/loxP recombination in the whole brain. The recombination efficiency was notably low when using 2–3 dpf embyos compared with 0–1 dpf embryos, indicating the possibility of stage-dependent sensitivity of heat-inducible recombination. Finally, using an infrared laser-evoked gene operator (IR-LEGO) system, heat shock induced in a micro area in the developing brains led to visualization of clonally-related cells in both juvenile and adult medaka fish.

Conclusions/Significance

We established a noninvasive method to control Cre/loxP site-specific recombination in the developing nervous system in medaka fish. This method will broaden the neural population available for mosaic analyses and allow for lineage tracing of the vertebrate nervous system in both juvenile and adult stages.  相似文献   

14.
Cre-mediated recombination is widely used to manipulate defined genes spatiotemporally in vivo. The present study evaluated the Cre/loxP system in Bombyx mori by establishing two transgenic lines. One line contained a Cre recombinase gene controlled by a sericin-1 gene (Ser1) promoter. The other line contained a loxP-Stop-loxP-DsRed cassette driven by the same Ser1 promoter. The precise deletion of the Stop fragment was found to be triggered by Cre-mediated site-specific excision, and led to the expression of DsRed fluorescence protein in the middle silk glands of all double-transgenic hybrids. This result was also confirmed by phenotypical analysis. Hence, the current study demonstrated the feasibility of Cre-mediated site-specific recombination in B. mori, and opened a new window for further refining genetic tools in silkworms.  相似文献   

15.
The cytokines IL-1α and IL-1β exert powerful pro-inflammatory actions throughout the body, mediated primarily by the intracellular signaling capacity of the interleukin-1 receptor (IL-1R1). Although Il1r1 knockout mice have been informative with respect to a requirement for IL-1R1 signaling in inflammatory events, the constitutive nature of gene elimination has limited their utility in the assessment of temporal and spatial patterns of cytokine action. To pursue such questions, we have generated C57Bl/6J mice containing a floxed Il1r1 gene (Il1r1loxP/loxP), with loxP sites positioned to flank exons 3 and 4 and thereby the ability to spatially and temporally eliminate Il1r1 expression and signaling. We found that Il1r1loxP/loxP mice breed normally and exhibit no gross physical or behavioral phenotypes. Moreover, Il1r1loxP/loxP mice exhibit normal IL-1R1 receptor expression in brain and spleen, as well as normal IL-1R1-dependent increases in serum IL-6 following IL-1α injections. Breeding of Il1r1loxP/loxP mice to animals expressing a cytomegalovirus (CMV)-driven Cre recombinase afforded efficient excision at the Il1r1 locus. The Il1r1loxP/loxP line should be a valuable tool for the assessment of contributions made by IL-1R1 signaling in diverse cell types across development.  相似文献   

16.
A strategy employing gene trap mutagenesis and site-specific recombination (Cre/loxP) has been used to identify genes that are transiently expressed during early mouse development. Embryonic stem cells expressing a reporter plasmid that codes for neomycin phosphotransferase and Escherichia coli LacZ were infected with a retroviral gene trap vector (U3Cre) carrying coding sequences for Cre recombinase (Cre) in the U3 region. Activation of Cre expression from integrations into active genes resulted in a permanent switching between the two selectable marker genes and consequently the expression of β-galactosidase (β-Gal). As a result, clones in which U3Cre had disrupted genes that were only transiently expressed could be selected. Moreover, U3Cre-activating cells acquired a cell autonomous marker that could be traced to cells and tissues of the developing embryo. Thus, when two of the clones with inducible U3Cre integrations were passaged in the germ line, they generated spatial patterns of β-Gal expression.  相似文献   

17.
Site-directed recombination in the genome of transgenic tobacco   总被引:35,自引:0,他引:35  
Summary The plant genome responds to the bacteriophage P1-derived loxP-Cre site-specific recombination system. Recombination took place at loxP sites stably integrated in the tobacco genome, indicating that the Cre recombinase protein, expressed by a chimeric gene also stably resident in the genome, was able to enter the nucleus and to locate a specific 34 bp DNA sequence. An excisional recombination event was monitored by the acquisition of kanamycin resistance, which resulted from the loss of a polyadenylation signal sequence that interrupted a chimeric neomycin phosphotransferase 11 gene. Molecular analysis confirmed that the excision had occurred. Recombination occurred when plants with the integrated loxP construction were stably re-transformed with a chimeric cre gene and when plants with the introduced loxP construction were cross-bred with those carrying the chimeric cre gene. As assayed phenotypically, site-specific recombination could be detected in 50%–100% of the plants containing both elements of the system. Kanamycin resistance was detected at 2–3 weeks after re-transformation and in the first leaf of hybrid seedlings. This demonstration of the effectiveness of the loxP-Cre system in plants provides the basis for development of this system for such purposes as directing site-specific integration and regulation of gene expression.  相似文献   

18.
DNA site-specific recombination by Cre/loxP is a powerful tool for gene manipulation in experimental animals. VCre/VloxP and SCre/SloxP are novel site-specific recombination systems, consisting of a recombinase and its specific recognition sequences, which function in a manner similar to Cre/loxP. Previous reports using Escherichia coli and Oryzias latipes demonstrated the existence of stringent specificity between each recombinase and its target sites; VCre/VloxP, SCre/SloxP, and Cre/loxP have no cross-reactivity with each other. In this study, we established four novel knock-in (KI) mouse strains in which VloxP-EGFP, SloxP-tdTomato, CAG-VCre, and CAG-SCre genes were inserted into the ROSA26 locus. VloxP-EGFP and SloxP-tdTomato KI mice were reporter mice carrying EGFP or tdTomato genes posterior to the stop codon, which was floxed by VloxP or SloxP fragments, respectively. CAG-VCre and CAG-SCre KI mice carried VCre or SCre genes that were expressed ubiquitously. These two reporter mice were crossed with three different deleter mice, CAG-VCre KI, CAG-SCre KI, and Cre-expressing transgenic mice. Through these matings, we found that VCre/VloxP and SCre/SloxP systems were functional in mice similar to Cre/loxP, and that the recombinases showed tight specificity for their recognition sequences. Our results suggest that these novel recombination systems allow highly sophisticated genome manipulations and will be useful for tracing the fates of multiple cell lineages or elucidating complex spatiotemporal regulations of gene expression.  相似文献   

19.
Vooijs M  Jonkers J  Berns A 《EMBO reports》2001,2(4):292-297
Conditional gene inactivation using the Cre/loxP system is widely used, but the difficulty in properly regulating Cre expression remains one of the bottlenecks. One approach to regulate Cre activity utilizes a mutant estrogen hormone-binding domain (ERT) to keep Cre inactive unless the non-steroidal estrogen analog 4-hydroxytamoxifen (OHT) is present. Here we describe a mouse strain expressing Cre-ERT from the ubiquitously expressed ROSA26 (R26) locus. We demonstrate efficient temporal and spatial regulation of Cre recombination in vivo and in primary cells derived from these mice. We show the existence of marked differences in recombination frequencies between different substrates within the same cell. This has important consequences when concurrent switching of multiple alleles within the same cell is needed, and highlights one of the difficulties that may be encountered when using reporter mice as indicator strains.  相似文献   

20.
This study describes a new approach to targeting clustered genes. Our study began with the establishment of two lines of mice carrying different mutations in either Ren1 or Ren2. These two genes, both encoding renin, span over 40 kb in tandem on chromosome 1. Each gene was mutated by gene targeting to contain loxP sites. These two mutants and Cre transgenic mice were mated to produce offspring carrying the mutant Ren1 and Ren2 genes, as well as the Cre transgene concurrently. Initially, two mutant Ren genes were located on separate chromosomes. Southern analysis of mice from the second generation revealed that the mutant Ren1 and Ren2 were interchromosomally recombined at the loxP sites to produce a new dually mutated allele on the chromosome at the rate of 9.6% (7/73). Thus, interchromosomal recombination can be efficiently programmed by mating as designed using the Cre-loxP system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号