首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have characterized a macronuclear gene of the ciliate protozoan Euplotes raikovi, which encodes an acidic ribosomal protein of the P protein family. This gene shows the typical organization of the hypotrich ciliate macronuclear "gene-sized" molecules with Euplotes telomeres at the ends. The longest open reading frame encodes a conceptual protein of 113 amino acid residues, with a molecular mass and pI value of 11.45 kDa and 3.97, respectively. By using sequence homology analysis, the protein was found to belong to the ribosomal P2 protein family and was named Er P2, where Er stands for Euplotes raikovi. These proteins, generally called A (acidic/alanine rich) proteins in prokaryotes and P (phosphorylated) proteins in eukaryotes, in which they are divided into P1 and P2 families, play a role in the elongation step of protein synthesis. Approximately 40% amino acid sequence identity was found between the cloned protein and other known protozoan ribosomal P2 proteins. Within its N-terminal half, this protein contains several potential kinase phosphorylation sites. Protein Er P2 differs markedly from the consensus P protein sequence in its C-terminal region, usually highly conserved among eukaryotic ribosomal P proteins, and shows similarities with the C-terminus of the archaebacterial ribosomal A proteins. To our knowledge, this E. raikovi protein represents the first demonstration of a ribosome-associated protein of the P2 family in a ciliate protozoan.  相似文献   

2.
Folding assistance is a fundamental requirement of certain proteins, and it may be subjected to physicochemical constraints in case of organisms adapted to polar temperatures. Limited information is available about protein folding in the polar environment. Folding of tubulin provides one of the few studied cases. Here, we report a pilot folding analysis of a divergent beta-tubulin isotype, named EFBT3, from the Antarctic psychrophilic ciliate Euplotes focardii. To attain its native monomeric structure, beta-tubulin needs the assistance of the eukaryotic class II chaperonin CCT and cofactor A (CofA). The in vitro folding reaction of EFBT3 with CCT and CofA purified from rabbit did not generate any folded product. In contrast, the reaction performed with the rabbit reticulocyte lysate, that contains all the chaperones required for efficient tubulin folding, was productive, suggesting that additional factors besides purified CCT and CofA are required for EFBT3 to attain its monomeric structure. We also demonstrated that the rare Cys281 of EFBT3 is critical for the folding reaction. Model predictions indicate that EFBT3 binds to CofA differently from yeast beta-tubulin, suggesting a diverse folding mechanism that may be correlated with microtubule cold adaptation.  相似文献   

3.
Mammalian tubulins and actins attain their native conformation following interactions with CCT (the cytosolic chaperonin containing t-complex polypeptide 1). To study the beta-tubulin folding in lower eukaryotes, an isotype of beta-tubulin (beta-T1) from the Antarctic ciliate Euplotes focardii, was expressed in Escherichia coli. Folding analysis was performed by incubation of the 35S-labeled, denatured beta-T1 in the presence, or absence, of purified rabbit CCT and cofactor A, a polypeptide that stabilizes folded monomeric beta-tubulin. We show for the first time in protozoa that beta-tubulin folding is assisted by CCT and requires cofactor A. In addition, we observed that E. focardiibeta-T1 competes with human beta5 tubulin isotype for binding to CCT. The affinity of CCT to E. focardiibeta-T1 and beta5 tubulin are compared. Finally, the mitochondrial chaperonin mt-cpn60 binds to beta-T1 but is unable to release it in a native or quasi-native state.  相似文献   

4.
Allelic genes encoding water-borne signal proteins (pheromones) were amplified and sequenced from the somatic (macronuclear) sub-chromosomic genome of Antarctic and Arctic strains of the marine ciliate, Euplotes nobilii. Their open reading frames appeared to be specific for polypeptide sequences of 83 to 94 amino acids identifiable with cytoplasmic pheromone precursors (pre-pro-pheromones), requiring two proteolytic steps to remove the pre- and pro-segments and secrete the mature pheromones. Differently from most of the macronuclear genes that have so far been characterized from Euplotes and other hypotrich ciliates, the 5′ and 3′ non-coding regions of all the seven E. nobilii pheromone genes are much longer than the coding regions (621 to 700 versus 214 to 285 nucleotides), and the 5′ regions in particular show nearly identical sequences across the whole set of pheromone genes. These structural peculiarities of the non-coding regions are likely due to the presence of intron sequences and provide presumptive evidence that they are site of basic, conserved activities in the mechanism that regulates the expression of the E. nobilii pheromone genes.  相似文献   

5.
Cell type-specific signal proteins, known as pheromones, are synthesized by ciliated protozoa in association with their self/nonself mating-type systems, and are utilized to control the vegetative growth and mating stages of their life cycle. In species of the most ubiquitous ciliate, Euplotes, these pheromones form families of structurally homologous molecules, which are constitutively secreted into the extracellular environment, from where they can be isolated in sufficient amounts for chemical characterization. This paper describes the NMR structures of En-1 and En-2, which are members of the cold-adapted pheromone family produced by Euplotes nobilii, a species inhabiting the freezing coastal waters of Antarctica. The structures were determined with the proteins from the natural source, using homonuclear (1)H NMR techniques in combination with automated NOESY peak picking and NOE assignment. En-1 and En-2 have highly homologous global folds, which consist of a central three-alpha-helix bundle with an up-down-up topology and a 3(10)-helical turn near the N-terminus. This fold is stabilized by four disulfide bonds and the helices are connected by bulging loops. Apparent structural specificity resides in the variable C-terminal regions of the pheromones. The NMR structures of En-1 and En-2 provide novel insights into the cold-adaptive modifications that distinguish the E. nobilii pheromone family from the closely related E. raikovi pheromone family isolated from temperate waters.  相似文献   

6.
7.
A gene for ribosomal protein P0 that belongs to the family of ribosomal P proteins was isolated from a Neurospora crassa cDNA library, using polyclonal antibodies against recombinant P0 protein from Saccharomyces cerevisiae. This is the first gene for ribosomal P0 protein to be cloned from filamentous fungi. The derived P0 protein sequence has a strong homology to other eukaryotic P0 proteins; yet, there is a notable alteration in the conservative C-terminal region, placing this protein among the unique sequences from protozoan parasites.  相似文献   

8.
Acidic ribosomal P proteins form a distinct lateral protuberance on the 60S ribosomal subunit. In yeast, this structure is composed of two heterocomplexes (P1A-P2B and P1B-P2A) attached to the ribosome with the aid of the P0 protein. In solution, the isolated P proteins P1A and P2B have a flexible structure with some characteristics of a molten globule [Zurdo, J., et al. (2000) Biochemistry 39, 8935-8943]. In this report, the structure of P1A-P2B heterocomplex from Saccharomyces cerevisiae is investigated by means of size-exclusion chromatography, chemical cross-linking, circular dichroism, light scattering, and fluorescence spectroscopy. The circular dichroism experiment shows that the complex could be ranked in the tertiary class of all-alpha proteins, with an average alpha-helical content of approximately 65%. Heat and urea denaturation experiments reveal that the P1A-P2B complex, unlike the isolated proteins, has a full cooperative transition which can be fitted into a two-state folding-unfolding model. The behavior of the complex in the presence of 2,2,2-trifluoroethanol also resembles a two-state folding-unfolding transition, further supporting the idea that the heterocomplex contains well-packed side chains. In conclusion, the P1A-P2B heterocomplex, unlike the isolated proteins, has a well-defined hydrophobic core. Consequently, the complex can put up its structure without additional ribosomal components, so the heterodimeric complex reflects the intrinsic properties of the two analyzed proteins, indicating thus that this is the only possible configuration of the P1A and P2B proteins on the ribosomal stalk structure.  相似文献   

9.
Ciliates of Euplotes species constitutively secrete pleiotropic protein pheromones, which are capable to function as prototypic autocrine growth factors as well as paracrine inducers of mating processes. This paper reports the amino acid sequence and the NMR structure of the pheromone En-6 isolated from the antarctic species Euplotes nobilii. The 63-residue En-6 polypeptide chain forms three alpha-helices in positions 18-25, 36-40 and 46-56, which are arranged in an up-down-up three-helix bundle forming the edges of a distorted trigonal pyramid. The base of the pyramid is covered by the N-terminal heptadecapeptide segment, which includes a 3(10)-turn of residues 3-6. This topology is covalently anchored by four long-range disulfide bonds. Comparison with the smaller pheromones of E. raikovi, a closely related species living in temperate waters, shows that the two-pheromone families have the same three-helix bundle architecture. It then appears that cold-adaptation of the En proteins is primarily related to increased lengths of the chain-terminal peptide segments and the surface-exposed loops connecting the regular secondary structures, and to the presence of solvent-exposed clusters of negatively charged side-chains.  相似文献   

10.
The ribosomal "stalk" structure is a distinct lateral protuberance located on the large ribosomal subunit in prokaryotic, as well as in eukaryotic cells. In eukaryotes, this ribosomal structure is composed of the acidic ribosomal P proteins, forming two hetero-dimers (P1/P2) attached to the ribosome through the P0 protein. The "stalk" is essential for the ribosome activity, taking part in the interaction with elongation factors.In this report, we have shown that the subcellular distribution of the human P proteins does not fall into standard behavior of regular ribosomal proteins. We have used two approaches to assess the distribution of the P proteins, in vivo experiments with GFP fusion proteins and in vitro one with anti-P protein antibodies. In contrast to standard r-proteins, the P1 and P2 proteins are not actively transported into the nucleus compartment, remaining predominantly in the cytoplasm (the perinuclear compartment). The P0 protein was found in the cytoplasm, as well as in the nucleus; however, the nucleoli were excluded. This protein was scattered around the nuclei, and the distribution might reflect association with the so-called nuclear bodies. This is the first example of r-proteins that are not actively transported into the nucleus; moreover, this might imply that the "stalk" constituents are assembled onto the ribosomal particle at the very last step of ribosomal maturation, which takes part in the cell cytoplasm.  相似文献   

11.
Aims:  To clone and characterize genes encoding novel cellulases from metagenomes of buffalo rumens.
Methods and Results:  A ruminal metagenomic library was constructed and functionally screened for cellulase activities and 61 independent clones expressing cellulase activities were isolated. Subcloning and sequencing of 13 positive clones expressing endoglucanase and MUCase activities identified 14 cellulase genes. Two clones carried two gene clusters that may be involved in the degradation of polysaccharide nutrients. Thirteen recombinant cellulases were partially characterized. They showed diverse optimal pH from 4 to 7. Seven cellulases were most active under acidic conditions with optimal pH of 5·5 or lower. Furthermore, one novel cellulase gene, C67-1, was overexpressed in Escherichia coli , and the purified recombinant enzyme showed optimal activity at pH 4·5 and stability in a broad pH range from pH 3·5 to 10·5. Its enzyme activity was stimulated by dl -dithiothreitol.
Conclusions:  The cellulases cloned in this work may play important roles in the degradation of celluloses in the variable and low pH environment in buffalo rumen.
Significance and Impact of the Study:  This study provided evidence for the diversity and function of cellulases in the rumen. The cloned cellulases may at one point of time offer potential industrial applications.  相似文献   

12.
13.
Alternaria tenuissima is a fungus widely present in the environment and could cause diseases in plants and humans.In this study,through a yeast genetic approach,cDNA sequences were isolated and characterized for the AtHIS3 and AtLEU2 genes.AtHIS3 cDNA encodes a protein of 238 amino acids,while AtLEU2 cDNA encodes a protein of 363 amino acids.Based on the phylogenetic analysis of amino acid sequences of AtHis3p and AtLeu2p,A.tenuissima is closely related to the plant pathogenic fungus Phaeosphaeria nodorum.This study provides two genetic markers for studies of functions of genes regulating development,morphology,and virulence of A.tenuissima.  相似文献   

14.
C Bonnet  E Perret  O Bonnin  A Picard  D Caput  G Lenaers 《Génome》2000,43(1):205-207
In the fission yeast, four genes (rpaP1-1, rpaP1-3, rpaP2-2, and rpaP2-4) encoding two variants of the RpaP1 and RpaP2 ribosomal proteins (rp) have been characterized. We have identified cDNA for additional variants called RpaP1.5 and RpaP2.6. Sequence comparison suggests that RpaP1.5 diverged before RpaP1.1 and RpaP1.3 and that RpaP2.6 is closer to RpaP2.2 than to RpaP2.4. The corresponding genes, rpaP1-5 and rpaP2-6, are transcribed coordinately with other rp genes.  相似文献   

15.
The essential ribosomal stalk is formed in eukaryotes by a pentamer of two P1–P2 protein heterodimers and the P0 rRNA binding protein. In contrast to the highly stable prokaryotic complex, the P1 and P2 proteins in the eukaryotic stalk undergo a cyclic process of assembly and disassembly during translation that seems to modulate the ribosome activity. To better understand this process, the regions of the Saccharomyces cerevisiae P1α and P2β proteins that are directly involved in heterodimer formation and ribosome binding have been characterized using a series of P1α/P2β chimeras. The region required for a stable interaction with the ribosome is formed by the first three predicted α-helices in the N-terminal domain of both proteins. The same region is required for heterodimer formation in P2β but the third helix is dispensable for this association in P1α. It seems, therefore, that stable ribosome binding is more structurally demanding than heterodimerization. A fourth predicted α-helix in the N-terminal domain of P1α and P2β appears not to be involved in the assembly process but rather, it contributes to the conformation of the proteins by apparently restricting the mobility of their C-terminal domain and paradoxically, by reducing their activity. In addition, the study of P1/P2 chimeras showed that the C-terminal domains of these two types of protein are functionally identical and that their protein specificity is exclusively determined by their N-terminal domains.  相似文献   

16.
cDNA clones encoding three antigenically related human ribosomal phosphoproteins (P-proteins) P0, P1, and P2 were isolated and sequenced. P1 and P2 are analogous to Escherichia coli ribosomal protein L7/L12, and P0 is likely to be an analog of L10. The three proteins have a nearly identical carboxy-terminal 17-amino-acid sequence (KEESEESD(D/E)DMGFGLFD-COOH) that is the basis of their immunological cross-reactivity. The identities of the P1 and P2 cDNAs were confirmed by the strong similarities of their encoded amino acid sequences to published primary structures of the homologous rat, brine shrimp, and Saccharomyces cerevisiae proteins. The P0 cDNA was initially identified by translation of hybrid-selected mRNA and immunoprecipitation of the products. To demonstrate that the coding sequences are full length, the P0, P1, and P2 cDNAs were transcribed in vitro by bacteriophage T7 RNA polymerase and the resulting mRNAs were translated in vitro. The synthetic P0, P1, and P2 proteins were serologically and electrophoretically identical to P-proteins extracted from HeLa cells. These synthetic P-proteins were incorporated into 60S but not 40S ribosomes and also assembled into a complex similar to that described for E. coli L7/L12 and L10.  相似文献   

17.
18.
The P0 protein is part of the ribosomal eukaryotic stalk, which is an elongated lateral protuberance of the large ribosomal subunit involved in the translocation step of protein synthesis. P0 is the minimal portion of the stalk that is able to support accurate protein synthesis. The P0 C-terminal peptide is highly antigenic and a major target of the antibody response in patients with systemic lupus erythematosus and patients suffering chronic heart disease produced by the Trypanosoma cruzi parasite. The T. cruzi P0 (TcP0) protein was cloned into the pRSET A vector and expressed in Escherichia coli fused to a His-tag. The identity of the protein was confirmed by immunoblotting. Due to the formation of inclusion bodies the protein was purified using the following steps: (i) differential centrifugation to separate the inclusion bodies from soluble proteins and (ii) affinity chromatography under denaturing conditions. TcP0 showed high tendency to aggregation during refolding assays. However, TcP0 could be efficiently folded in the presence of a low concentration of SDS. The folding of the protein was confirmed using urea gradient electrophoresis, limited proteolysis, circular dichroism, and tryptophan fluorescence. Native electrophoresis showed that the folded TcP0 (and not a folding intermediate) was the cause of aggregation in the absence of SDS. The protocol described here permitted us to obtain large amounts (up to 30 mg per culture liter) of pure and folded TcP0, a very hydrophobic protein with a high tendency to aggregation.  相似文献   

19.
Previously, three proteins have been separately identified as the mouse epidermal growth factor binding protein (EGF-BP). We have identified and sequenced the coding regions of three distinct genes encoding these EGF-BPs from the BALB/c strain. The genes are all members of the glandular kallikrein gene family, which encodes a highly homologous group of serine proteases. Expression of the EGF-BP genes was detected in mouse salivary gland only and was at a relatively similar level for each gene. The isolation of three distinct genes from the one mouse strain indicates that the conflicting data previously reported in the literature are not a result of allelic polymorphisms or strain differences.  相似文献   

20.
Jung CG  Lim SD  Hwang SG  Jang CS 《Gene》2012,505(1):9-18
RING (Really Interesting New Gene) finger proteins are believed to play a critical role in mediating the transfer of ubiquitin to heterogeneous substrate(s). While the two canonical types, RING-H2 and RING-HC, have been well-characterized, the molecular functions of the modified types, particularly the RING-C2 types, remain elusive. We isolated two rice genes harboring the RING-C2 domain on the distal parts of rice chromosomes 11 and 12, termed OsRINGC2-1 and OsRINGC2-2, respectively. A comparison of sequence divergences between 10 duplicate pairs on the distal parts of rice chromosomes 11 and 12 and randomly selected duplicate pairs suggested that OsRINGC2-1 and OsRINGC2-2 have evolved in concert via gene conversion. An in vitro ubiquitination assay revealed that both proteins possess E3 ligase activity, suggesting that the innate functions of these RING domains have not been affected by their modifications during evolution. Subcellular localizations were strikingly different; OsRINGC2-1 was found only in the cytoplasm with many punctate complexes, whereas OsRINGC2-2 was observed in both the nucleus and cytoplasm. The expression patterns of both genes showed striking differences in response to salt stress, whereas plants heterogeneous for both genes mediated salt tolerance in Arabidopsis, supporting the notion of concerted evolution. These results shed light on the molecular functions of OsRINGC2-1 and OsRINGC2-2 and provide insight into their molecular evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号