首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
选择12对微卫星标记检测了于2011年采集自元江(红河上游中国江段)5个样点192尾鲤的群体遗传多样性.共检测到201个等位基因,每个位点等位基因2-27个.各群体各位点平均等位基因(NA)12.25-14.67个,平均有效等位基因(NE)8.28-9.73个,平均观察杂合度(Ho)o.7765-0.8037,平均期望杂合度(HE)0.7761-0.8080,平均多态信息含量(PIC)0.7534-0.7843.元江鲤种群192个个体各位点NA、NE、Ho、HE、PIC分别为16.50、11.26、0.7927、0.8049、0.7966,种群遗传多样性水平高.元江鲤群体之间遗传分化小,可作为一个种群管理单元进行管理.增殖放流要防止遗传多样性丧失.  相似文献   

2.
C. Chevalet  M. Gillois    R. F. Nassar 《Genetics》1977,86(3):697-713
Properties of identity relation between genes are discussed, and a derivation of recurrent equations of identity coefficients in a random mating, diploid dioecious population is presented. Computations are run by repeated matrix multiplication. Results show that for effective population size (Ne) larger than 16 and no mutation, a given identity coefficient at any time t can be expressed approximately as a function of (1—f), (1—f)3 and (1— f)6, where f is the mean inbreeding coefficient at time t. Tables are presented, for small Ne values and extreme sex ratios, showing the pattern of change in the identity coefficients over time. The pattern of evolution of identity coefficients is also presented and discussed with respect to N eu, where u is the mutation rate. Applications of these results to the evolution of genetic variability within and between inbred lines are discussed.  相似文献   

3.
Thomas Nagylaki 《Genetics》1981,97(3-4):731-737
Assuming random mating and discrete nonoverlapping generations, the inbreeding effective population number, (see PDF), is calculated for an X-linked locus. For large populations, the result agrees with the variance effective population number. As an application, the maintenance of genetic variability by the joint action of mutation and random drift is investigated. It is shown that, if every allele mutates at rate u to new types, then the probabilities of identity in state (and hence the expected homozygosity of females) converge to the approximate value (see PDF) at the approximate asymptotic rate (see PDF).  相似文献   

4.

Background

Effective population sizes of 140 populations (including 60 dog breeds, 40 sheep breeds, 20 cattle breeds and 20 horse breeds) were computed using pedigree information and six different computation methods. Simple demographical information (number of breeding males and females), variance of progeny size, or evolution of identity by descent probabilities based on coancestry or inbreeding were used as well as identity by descent rate between two successive generations or individual identity by descent rate.

Results

Depending on breed and method, effective population sizes ranged from 15 to 133 056, computation method and interaction between computation method and species showing a significant effect on effective population size (P < 0.0001). On average, methods based on number of breeding males and females and variance of progeny size produced larger values (4425 and 356, respectively), than those based on identity by descent probabilities (average values between 93 and 203). Since breeding practices and genetic substructure within dog breeds increased inbreeding, methods taking into account the evolution of inbreeding produced lower effective population sizes than those taking into account evolution of coancestry. The correlation level between the simplest method (number of breeding males and females, requiring no genealogical information) and the most sophisticated one ranged from 0.44 to 0.60 according to species.

Conclusions

When choosing a method to compute effective population size, particular attention should be paid to the species and the specific genetic structure of the population studied.  相似文献   

5.
Fusarium subglutinans f. sp. pini is the causal agent of pitch canker disease of pines. The initial occurrence of F. subglutinans f. sp. pini in South Africa was limited to a single nursery, and isolates from this population are capable of reproducing sexually. We determined the effective population number, Ne, of this population by using mating type and male/hermaphrodite polymorphisms as indicators. The effective population number for mating type, Ne(mt), is 99% of the count (total population), and that for male/hermaphrodite status, Ne(f), is 42 to 46% of the count (total population). The number of strains that can function as the female parent limits the effective population number of this population. If this population is stable, then, depending upon assumptions about mutation and selection, sexual reproduction need occur only once per 26 to 153 asexual generations to maintain this level of sexual fertility.  相似文献   

6.
On the basis of the analysis of genetic variation detectable by ISSR-PCR, the state of the gene pools of 14 populations of Roman snail Helix pomatia L. in the conditions of urbanized landscapes of the southeastern and eastern parts of the current range was examined. According to the data obtained, the majority of the studied populations of this mollusk are in satisfactory condition. This is evidenced by the increased level of genetic diversity (H e = 0.199 ± 0.025, I sh = 0.306 ± 0.035) and the high values of effective population size, calculated, on the basis of the straight-line regression equation, between the pairwise genetic and geographic distances (Ne = 2.0–4.9) that are comparable with indigenous common species of terrestrial mollusks. Despite the high level of differentiation (Gst = 0.255, Φst = 0.233, N m = 0.822), the population distribution was not random (R m =–0.591, p = 0.0004) and corresponded to the model of isolation by distance. It is hypothesized that, in the adventitious colonies of this mollusk, effective formation of a balanced genetic structure takes place that, in the context of biological and ecological features, facilitates its adaptation to the conditions of an urban environment and the population of the new territories of Eastern Europe.  相似文献   

7.
Xu J H  Wang L L  Xue H L  Wang Y S  Xu L X 《农业工程》2009,29(5):314-319
In order to verify the effect of social behavior and geographical isolation on the genetic structure of the Himalayan marmot (Marmota himalayana) population, we examined the genetic diversity of Himalayan marmots alongside the Qinghai–Tibet Railway using microsatellite markers. Eight microsatellite loci were used to examine 120 animals of 4 populations: Ulan (U), Delhi (D), Tuotuohe (T) and Ando (A). The results show that: (1) Himalayan marmots alongside the Qinghai–Tibet Railway are highly genetically diversified. The allele number (Na), effective allele number (Ne), observed heterozygosity (Ho), Nei’s expected heterozygosity (He) and polymorphism information content (PIC) of the total Himalayan marmot population were 4.75, 3.0332, 0.6990, 0.6672, 0.6102, respectively. (2) Himalayan marmots may be able to avoid inbreeding by a mechanism that will prevent the genetic diversity reduction caused by their social lifestyle. Heterozygote excess was observed at most loci. The inbreeding coefficients within the subpopulation (FIS), in the total population (FIT), the differentiation index of population (FST), and the gene flow (Nm) were ?0.2265, ?0.0477, 0.1458, and 1.4646, respectively. (3) The genetic differentiation of the Himalayan marmot population was in accordance with Wright’s “isolation by distance” theory. The Mantel test indicates that the correlation between genetic distance and geographic distance was significant (P < 0.05, r = 0.698). (4) Each of the four geographical populations had moderate differentiation. Both geographic distance and isolation could affect the population genetic structure of the Himalayan marmot. The maximum gene flow (3.5915), the smallest genetic differentiation index (0.0651), the lowest genetic distance (0.0700) and the highest genetic identity (0.9526) were all between the Ulan population and Delhi populations. (5) The cluster analysis, based on Nei’s standard genetic distance, showed that the populations of Delhi and Ulan were first merged in a cluster, and then Tuotuohe population was merged in the clustering. The Ando population was the last element in the clustering.  相似文献   

8.
The unique nomadic life-history pattern of army ants (army ant adaptive syndrome), including obligate colony fission and strongly male-biased sex-ratios, makes army ants prone to heavily reduced effective population sizes (N e). Excessive multiple mating by queens (polyandry) has been suggested to compensate these negative effects by increasing genetic variance in colonies and populations. However, the combined effects and evolutionary consequences of polyandry and army ant life history on genetic colony and population structure have only been studied in a few selected species. Here we provide new genetic data on paternity frequencies, colony structure and paternity skew for the five Neotropical army ants Eciton mexicanum, E. vagans, Labidus coecus, L. praedator and Nomamyrmex esenbeckii; and compare those data among a total of nine army ant species (including literature data). The number of effective matings per queen ranged from about 6 up to 25 in our tested species, and we show that such extreme polyandry is in two ways highly adaptive. First, given the detected low intracolonial relatedness and population differentiation extreme polyandry may counteract inbreeding and low N e. Second, as indicated by a negative correlation of paternity frequency and paternity skew, queens maximize intracolonial genotypic variance by increasingly equalizing paternity shares with higher numbers of sires. Thus, extreme polyandry is not only an integral part of the army ant syndrome, but generally adaptive in social insects by improving genetic variance, even at the high end spectrum of mating frequencies.  相似文献   

9.
Thirty polymorphic Oryza sativa microsatellite loci (SSRs) were used to study population genetic structure of O. rufipogon Griff. natural populations in Malaysia. A total of 445 alleles were detected with an average of 14.8 alleles per locus in 176 individuals of O. rufipogon sampled from the states of Penang, Kedah, Kelantan and Terengganu where the natural populations are still found. The Kelantan population in the northeast of Peninsular Malaysia had the highest level of genetic diversity as measured by the mean number of alleles per locus, Aa?=?7.67, average number of effective alleles, Ae?=?5.50, percentage of polymorphic loci, P?=?100%, observed heterozygosity, Ho?=?0.631 and expected heterozygosity, He?=?0.798. In contrast, the Terengganu population in the east showed the lowest level of genetic diversity measured by the same criteria (Aa?=?4.23, Ae?=?2.10, P?=?100%, Ho?=?0.549 and He?=?0.449). Model–based clustering analysis using the STRUCTURE 2.2 program placed all the individuals into 12 clusters that corresponded to the geographic sampling locations. Neighbour-joining tree was constructed based on Nei’s genetic distance to further assess the genetic structure of the O. rufipogon individuals, showed good agreement (93.8%) with the model-based cluster analysis. However, the neighbour-joining tree identified sub-populations that STRUCTURE could not identify. The classification of individuals from the same populations under the same cluster supported the population differentiation. These two analyses seemed to indicate expansion of populations from the northeast of Peninsular Malaysia (Tumpat, Pasir Mas and Kota Bahru, Kelantan) not only to the immediate south of the region i.e. Terengganu but also into the northwest (i.e. Penang and Kedah) with the former being more recent. Oryza rufipogon accession IRGC105491 and O. sativa ssp. indica cultivar MR219, which were included in this study for comparisons with the local wild rice accessions, indicated that introgression of cultivated rice could change genetic composition and affect the population genetic structure of wild rice. This possibility should be carefully considered in plans to conserve this wild rice.  相似文献   

10.
Understanding existing levels of genetic variability of camel populations is capital for conservation activities. This study aims to provide information on the genetic diversity of four dromedary populations, including Guerzni, Harcha, Khouari and Marmouri. Blood samples from 227 individuals belonging to the aforementioned populations were obtained and genotyped by 16 microsatellite markers. A total of 215 alleles were observed, with the mean number of alleles per locus being 13.4 ± 6.26. All loci were polymorphic in the studied populations. The average expected heterozygosity varied from a maximum of 0.748 ± 0.122 in Guerzni population to a minimum of 0.702 ± 0.128 in Harcha population; Guerzni population showed the highest value of observed heterozygosity (0.699 ± 0.088), whereas Harcha population the lowest (0.646 ± 0.130). Mean estimates of F-statistics obtained over loci were FIS = 0.0726, FIT = 0.0876 and FST = 0.0162. The lowest genetic distance was obtained between Guerzni and Khouari (0.023), and the highest genetic distance between Harcha and Marmouri (0.251). The neighbour-joining phylogenetic tree showed two groups of populations indicating a cluster of Guerzni, Khouari and Marmouri, and a clear isolation of Harcha. The genetic distances, the factorial correspondence analysis, the analysis of genetic structure and the phylogenetic tree between populations revealed significant differences between Harcha and other populations, and a high similarity between Guerzni, Khouari and Marmouri. It is concluded from this study that the camel genetic resources studied are well diversified. However, the herd management, especially the random selection of breeding animals, can increase the level of genetic mixing between different populations, mainly among Guerzni, Khouari and Marmouri, that live in the same habitat and grazing area.  相似文献   

11.
虞志飞  闫喜武  张跃环  杨霏  杨凤  张国范 《生态学报》2012,32(15):4673-4681
为查明年龄结构对菲律宾蛤仔同一群体内遗传多样的影响,采用14个SSR分子标记对大连石河不同年龄段的野生蛤仔进行了检测。结果表明:不同年龄段(1龄-Age1、2龄-Age2、3龄-Age3)蛤仔均维持着较高的遗传多样性。根据POPGENE 1.31和SPSS16.0统计分析显示,位点Rp-11、Rp-12、Rp-19对3个年龄段蛤仔的等位基因数差异极显著(P<0.01);位点Rp-20、Rp-24、Rp-27、Rp-30对其差异显著(P<0.05);剩余7个位点表现为差异不显著(P>0.05)。在平均水平上,每位点等位基因数目Na为4.3095,有效等位基因数目Ne为2.3729,多态位点百分数P(%)为14。观察杂合度和期望杂合度都比较高,观察杂合度平均为Ho=0.2335,期望杂合度平均为He=0.5140。而且,Ne和He随年龄的变化表现出Age2>Age3>Age1的趋势。各年龄段蛤仔——Age1、Age2、Age3的平均观察杂合度(Ho)和平均期望杂合度(He)分别为0.2357、0.2546、0.2159和0.4951、0.5286、0.5184。Age2的遗传多样性指数高于Age1及Age3,遗传分化相对较低。其中,Age1与Age3蛤仔遗传距离最小,D为0.0195,即变异很小;而Age1与Age2遗传距离较大,D为0.0437,变化范围不大(0.0195—0.0437)。从遗传一致度的数值上看了3个年龄段蛤仔的遗传相似程度很大,平均为0.9655。Age1与Age3遗传相似程度高达0.9807,而Age1与Age2相似程度较小为0.9572。说明不同年龄段蛤仔相似程度非常高。根据不同年龄段蛤仔的遗传距离,采用UPGMA平均聚类方法对其进行聚类可知,Age3与Age1蛤仔间遗传距离较小,与Age2蛤仔差异较大。通过对等位基因频率进行卡方检验发现,随着年龄结构的变化,部分基因基因频率减小;同时随着年龄的增长,有部分等位基因得到了纯化。大连群体蛤仔总的遗传分化较低,其遗传分化指数Fst为0.0248(Fst<0.05),遗传分化系数为0.02,说明总的遗传变异中有2%来自于不同年龄段的蛤仔之间。遗传距离和遗传一致度均值分别为0.035和0.9655,基因流(Nm=9.8238)相对流畅,进一步表明年龄结构对蛤仔种群内遗传分化的影响较小。  相似文献   

12.
Isoenzyme markers and polyacrylamide gel electrophoresis have been used to study the genetic structure of populations of Rhodiola iremelica Boriss. (Grassulaceae), a southern Ural endemic protected by the state and included in the Red Data Book of Bashkortostan Republic. A relatively large genetic variation at the species level has been found. The subdivision among populations (F ST = 0.115) is higher than in most cross-pollination angiosperms. No consistent pattern has been observed in the spatial distribution of its genetic variation. The relatively high differentiation among samples of R. iremelica characterized by small effective population sizes, may be accounted for by genetic drift, inbreeding, and a restricted gene flow. To preserve the population gene pool, in situ protection of the species in nature is insufficient. It seems advisable to create synthetic populations ex situ and reintroduce them into nature.  相似文献   

13.
The genetic diversity of four mtDNA fragments and five microsatellite loci of cpDNA was examined in six larch population samples from the territory of the Sikhote-Alin Nature Reserve (northern Primor’e). In order to identify possible species-specific differences between the samples, the latter were collected at transects along the shore of the Sea of Japan and at different distances from the sea. Based on a number of morphological characters, some authors suggest that Olgan larch (Larix olgensis A. Henry) grows in the shoreline part of the reserve and, moving inland, it is replaced by Gmelin larch (Larix gmelinii (Rupr.) Rupr.). According to the other data, the northern border of the Olgan larch range does not reach the reserve territory. The data obtained were compared to those obtained previously for three samples from the south of Primor’e, including those for the locus classicus of Olgan larch. In the examined larch individuals (186, for mtDNA and 200, for cpDNA), a total of five mitotypes and 52 chlorotypes were recovered. According to the results of the AMOVA test, the proportion of variations accounted for the differences among all Larix population samples examined over both types of markers was higher (N ST = 0.435, for mtDNA and R ST = 0.041, for cpDNA) than that for the differences among the population samples within the reserve (N ST = 0.079, for mtDNA and R ST = 0.005, for cpDNA). No differences were detected between the groups of shoreline and continental populations.  相似文献   

14.
Xylella fastidiosa was isolated from sweet orange plants (Citrus sinensis) grown in two orchards in the northwest region of the Brazilian state of São Paulo. One orchard was part of a germ plasm field plot used for studies of citrus variegated chlorosis resistance, while the other was an orchard of C. sinensis cv. Pêra clones. These two collections of strains were genotypically characterized by using random amplified polymorphic DNA (RAPD) and variable number of tandem repeat (VNTR) markers. The genetic diversity (HT) values of X. fastidiosa were similar for both sets of strains; however, HTRAPD values were substantially lower than HTVNTR values. The analysis of six strains per plant allowed us to identify up to three RAPD and five VNTR multilocus haplotypes colonizing one plant. Molecular analysis of variance was used to determine the extent to which population structure explained the genetic variation observed. The genetic variation observed in the X. fastidiosa strains was not related to or dependent on the different sweet orange varieties from which they had been obtained. A significant amount of the observed genetic variation could be explained by the variation between strains from different plants within the orchards and by the variation between strains within each plant. It appears, therefore, that the existence of different sweet orange varieties does not play a role in the population structure of X. fastidiosa. The consequences of these results for the management of sweet orange breeding strategies for citrus variegate chlorosis resistance are also discussed.  相似文献   

15.
The Cohesive Population Genetics of Molecular Drive   总被引:12,自引:2,他引:10       下载免费PDF全文
The long-term population genetics of multigene families is influenced by several biased and unbiased mechanisms of nonreciprocal exchanges (gene conversion, unequal exchanges, transposition) between member genes, often distributed on several chromosomes. These mechanisms cause fluctuations in the copy number of variant genes in an individual and lead to a gradual replacement of an original family of n genes (A) in N number of individuals by a variant gene (a). The process for spreading a variant gene through a family and through a population is called molecular drive. Consideration of the known slow rates of nonreciprocal exchanges predicts that the population variance in the copy number of gene a per individual is small at any given generation during molecular drive. Genotypes at a given generation are expected only to range over a small section of all possible genotypes from one extreme (n number of A) to the other (n number of a). A theory is developed for estimating the size of the population variance by using the concept of identity coefficients. In particular, the variance in the course of spreading of a single mutant gene of a multigene family was investigated in detail, and the theory of identity coefficients at the state of steady decay of genetic variability proved to be useful. Monte Carlo simulations and numerical analysis based on realistic rates of exchange in families of known size reveal the correctness of the theoretical prediction and also assess the effect of bias in turnover. The population dynamics of molecular drive in gradually increasing the mean copy number of a variant gene without the generation of a large variance (population cohesion) is of significance regarding potential interactions between natural selection and molecular drive.  相似文献   

16.
The Chinese sika deer (Cervus nippon) is a rare and vulnerable animal in China for medical use. In this study, the genetic diversity and population genetic structure of 113 Chinese sika deer from 4 populations (Linyi Farm, LF; Linyi Park, LP, Yangzhou Farm, YF; Yangzhou Zoo, YZ) were investigated with 14 microsatellite loci. Eighty-three alleles were detected at the 14 loci in all populations. The expected heterozygosity ranged from 0.257 to 0.863 and the observed heterozygosity from 0.226 to 0.821. The polymorphism information content at different loci ranged from 0.217 to 0.825. The results of the HWE (Hardy–Weinberg equilibrium) tests indicated that only four loci (CEH-5, BL42, Mber70, and CEH-2) were in HWE (P > 0.01). The mean number of alleles per population ranged from 3.21 to 5.64, observed and expected heterozygosities ranged from 0.568 to 0.685, respectively. Positive inbreeding coefficient (FIS) values were found in every population. FST values ranged from 0.101 in the LF to 0.155 in the YZ. The genetic identity ranged from 0.1236 to 0.1645. The genetic distance ranged from 0.4746 to 0.6025. The results of this study indicate moderate genetic variation and polymorphism across the loci. Appropriate breeding strategies should be designed for deer in captivity.  相似文献   

17.
Isozymes were used to investigate the genetic variability, population structure, and relationships of Lactuca germplasm. The isozyme systems revealed 16 putative loci of a total of 31 alleles. Out of these 16 loci, 11 were polymorphic. The average values of expected heterozygosity (He), observed heterozygosity (Ho), mean number of alleles per locus (A) and effective number of alleles per locus (Ae) were 0.2227, 0.266, 1.3005 and 1.369, respectively. The average fixation indices were lower than zero for most of the accessions studied, indicating an excess of heterozygotes. Genetic differentiation among accessions (FST) exhibited that 51.3% of the isozyme variation was recorded among accessions, and 48.7% of the genetic variation resided within accessions. The average values of total heterozygosity (HT) and intra-accessional genetic diversity (HS) were 0.352 and 0.171, respectively. Moreover, the inter-accessional genetic diversity (DST) ranged from 0 to 0.424 with an average of 0.18. Cluster analysis revealed that L. sativa cultivars were distributed throughout different Lactuca species. Thereby, isozymes results confirms the hypothesis of the polyphyletic origin of L. sativa. This high level of genetic variation proved that isozymes are efficient for polymorphism analysis of Lactuca germplasm.  相似文献   

18.
The amount of genetic diversity in a finite biological population mostly depends on the interactions among evolutionary forces and the effective population size (N e) as well as the time since population establishment. Because the N e estimation helps to explore population demographic history, and allows one to predict the behavior of genetic diversity through time, N e is a key parameter for the genetic management of small and isolated populations. Here, we explored an N e-based approach using a bighorn sheep population on Tiburon Island, Mexico (TI) as a model. We estimated the current (N crnt) and ancestral stable (N stbl) inbreeding effective population sizes as well as summary statistics to assess genetic diversity and the demographic scenarios that could explain such diversity. Then, we evaluated the feasibility of using TI as a source population for reintroduction programs. We also included data from other bighorn sheep and artiodactyl populations in the analysis to compare their inbreeding effective size estimates. The TI population showed high levels of genetic diversity with respect to other managed populations. However, our analysis suggested that TI has been under a genetic bottleneck, indicating that using individuals from this population as the only source for reintroduction could lead to a severe genetic diversity reduction. Analyses of the published data did not show a strict correlation between H E and N crnt estimates. Moreover, we detected that ancient anthropogenic and climatic pressures affected all studied populations. We conclude that the estimation of N crnt and N stbl are informative genetic diversity estimators and should be used in addition to summary statistics for conservation and population management planning.  相似文献   

19.
Gliadin polymorphism in 19 landrace populations of Turkish cultivated emmer wheat [Triticum turgidum L. ssp. dicoccon (Schrank) Thell.] was assessed using the aluminum lactic acid-polyacrylamide gel electrophoresis (A-PAGE) technique. Being a source of useful genes, landraces of wheat represent one of the most important genetic resources available to breeders for present and future genetic improvement of wheat. This is the first genetic characterization of these 19 Turkish emmer wheat landrace populations collected from their main cultivation areas. Considerably high amounts of variation were detected within and among the populations. A total of 27 alleles (n a) were identified among all analyzed populations, 10 of them being unique to populations?C, D, H, K, L, M, and N. The highest allele number (n a?=?7) was observed in populations?A and L, whereas the lowest number of alleles (n a?=?3) was observed in populations?F, G, and U. The mean number of effective alleles (n ae) was 12.33, and the mean values of gene diversity, genetic differentiation, and gene flow between populations were H e?=?0.92, F ST?=?0.296, and N m ?=?0.60, respectively. Certain gliadins closely linked to dough quality, such as ??-45 and ??-35, were found in 13 and 18 of the populations, respectively. According to Pearson??s correlation coefficient values, gene diversity estimates had strong positive correlation (r P?=?0.510; p?=?0.026 at <0.05%) with latitude. The rest of the genetic data (n a and n ae) obtained in the present study showed no correlation with geographic (altitude, latitude, and longitude) or climatic factors (temperature and annual rainfall). Principal component analysis was performed to explain spatial genetic variation, revealing 90.044% of total genetic variation in three components. Results obtained from this study can effectively be used in developing more efficient breeding programs to improve wheat genotypes, and to direct genetic resource conservation studies.  相似文献   

20.
Defining genetic populations and detecting hybridization with introduced or domestic taxa are two major concerns for the conservation of population-level diversity. We studied the genetic population structure of large, migratory caribou herds (Rangifer tarandus granti) on Alaska’s North Slope and their potential hybridization with introduced domestic reindeer (R. t. tarandus). Using a population genetics approach, we determined: (1) whether the four caribou herds could be differentiated; (2) how distance and population size appear to drive genetic population structure; and (3) how contact with reindeer has affected the genetic identity of herds. Samples from four caribou herds (n = 245) and reindeer (n = 67) were analyzed at 19 microsatellite loci. We found that North Slope caribou are isolated by distance, with no differentiation among herd pairs except for the most geographically distant herds (F st  = 0.003, Jost’s D = 0.023; P-values < 0.001). We detected reindeer-caribou admixture in all populations except Kodiak Island, including 8 % of individuals in caribou herds and 14 % of individuals in Seward Peninsula reindeer herds. However, considering the stable or increasing trend in North Slope herds, reindeer introgression has had no apparent deleterious effect on herd demographics. Our findings indicate long-term genetic exchange among North Slope caribou herds when their ranges overlap, and suggest that herd size may influence susceptibility to reindeer introgression. As North Slope herd ranges are increasingly altered by industrial development, this study can provide a baseline for detecting potential future impacts to what are currently large, diverse, and naturally evolving herds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号