首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insecticide protection at the vegetative, reproductive or both vegetative and reproductive (complete) crop growth stages and untreated control was used to assess yield loss due to insect pests at the different growth stages of soybean in Ghana from 2007–2009. The objectives were to determine the economic importance of the two major insect pest guilds in soybean, viz. defoliators and pod feeders, and when to apply control measures for maximum benefit. The defoliators recorded were Podagrica spp., Ootheca mutabilis (Shalberg), Zonocerus variegatus L., Sylepta derogata F., Spodoptera littoralis Boisduval, Amsacta spp. and Helicoverpa armigera Hübner. The pod feeders recorded were the pod-sucking bugs (PSBs) Riptortus dentipes F., Thyanta sp. Aspavia armigera F., Nezara viridula L. and Dysdercus völkeri Schmidt. Generally, insect densities, pod and seed damage were lower while seed yields were significantly greater and similar in plots that were protected at the reproductive stage against PSBs and those protected at both vegetative and reproductive stages. Yield loss ranged between 25.8 and 42.8% in untreated plots, 11.1 and 34.3% in plots that were protected at the vegetative stage, and 5.2 and 11.3% in plots that were protected at the reproductive stage. There was a consistent negative correlation between yield and numbers of PSBs as well as pod and seed damage. These results showed that PSBs that attack soybean at the reproductive stage were the most important insect pests limiting soybean yield in Ghana.  相似文献   

2.
Heterotrimeric G‐proteins consisting of Gα, Gβ and Gγ subunits play an integral role in mediating multiple signalling pathways in plants. A novel, recently identified plant‐specific Gγ protein, AGG3, has been proposed to be an important regulator of organ size and mediator of stress responses in Arabidopsis, whereas its potential homologs in rice are major quantitative trait loci for seed size and panicle branching. To evaluate the role of AGG3 towards seed and oil yield improvement, the gene was overexpressed in Camelina sativa, an oilseed crop of the Brassicaceae family. Analysis of multiple homozygous T4 transgenic Camelina lines showed that constitutive overexpression of AGG3 resulted in faster vegetative as well as reproductive growth accompanied by an increase in photosynthetic efficiency. Moreover, when expressed constitutively or specifically in seed tissue, AGG3 was found to increase seed size, seed mass and seed number per plant by 15%–40%, effectively resulting in significantly higher oil yield per plant. AGG3 overexpressing Camelina plants also exhibited improved stress tolerance. These observations draw a strong link between the roles of AGG3 in regulating two critical yield parameters, seed traits and plant stress responses, and reveal an effective biotechnological tool to dramatically increase yield in agricultural crops.  相似文献   

3.
It is well established that exposure to ozone (O3) may impair vegetative growth and reproductive development in plants, although the consequences for yield depend on the effectiveness of the compensatory processes induced. This study examined the effects of exposing the terminal inflorescence of Brassica campestris L. to 100 ppb O3 for 6 h d−1 on four consecutive days during early flowering while the vegetative organs received charcoal-filtered air. The ordered predictability of development in B. campestris is ideal for studies of the impact of abiotic stress factors such as O3 on reproductive development and seed production. Effects on reproductive development and seed yield characteristics were determined for floral sites exposed at different developmental stages. Flower and pod numbers on the terminal raceme were unaffected by exposure, but effects on pod length varied depending on the developmental stage of floral sites during exposure. Increased ovule abortion and precocious seed germination in the pods of O3-treated plants reduced mature seed number pod−1. Although the individual weight of mature seeds was slightly greater in O3-treated plants, seed yield pod−1 and seed yield plant−1 were reduced due to the lower seed number pod−1. Seed from O3-treated plants germinated more rapidly than control seed irrespective of the stage of floral development during exposure. The results show that exposure to realistic O3 episodes during the early stages of flowering significantly reduced seed yield without impairing the vigour of the seeds produced. The physiological origins of these effects are discussed.  相似文献   

4.
Exposure to ozone (O(3)) may affect vegetative and reproductive development, although the consequences for yield depend on the effectiveness of the compensatory processes induced. This study examined the impact on reproductive development of exposing Brassica campestris (Wisconsin Fast Plants) to ozone during vegetative growth. Plants were exposed to 70 ppb ozone for 2 d during late vegetative growth or 10 d spanning most of the vegetative phase. Effects on gas exchange, vegetative growth, reproductive development and seed yield were determined. Impacts on gas exchange and foliar injury were related to pre-exposure stomatal conductance. Exposure for 2 d had no effect on growth or reproductive characteristics, whereas 10-d exposure reduced vegetative growth and reproductive site number on the terminal raceme. Mature seed number and weight per pod and per plant were unaffected because seed abortion was reduced. The observation that mature seed yield per plant was unaffected by exposure during the vegetative phase, despite adverse effects on physiological, vegetative and reproductive processes, shows that indeterminate species such as B. campestris possess sufficient compensatory flexibility to avoid reductions in seed production.  相似文献   

5.
The energy allocation for vegetative and reproductive growth is regulated by developmental signals and environmental cues, which subsequently affects seed output. However, the molecular mechanism underlying how plants coordinate yield-related traits to control yield in changing source–sink relationships remains largely unknown. Here, we discovered the lectin receptor-like kinase LecRK-VIII.2 as a specific receptor-like kinase that coordinates silique number, seed size, and seed number to determine seed yield in Arabidopsis (Arabidopsis thaliana). The lecrk-VIII.2 mutants develop smaller seeds, but more siliques and seeds, leading to increased yield. In contrast, the plants overexpressing LecRK-VIII.2 form bigger seeds, but less siliques and seeds, which results in similar yield to that of wild-type plants. Interestingly, LecRK-VIII.2 promotes the growth of the rosette, root, and stem by coordinating the source–sink relationship. Additionally, LecRK-VIII.2 positively regulates cell expansion and proliferation in the seed coat, and maternally controls seed size. The genetic and biochemical analyses demonstrated that LecRK-VIII.2 acts upstream of the mitogen-activated protein kinase (MAPK) gene MPK6 to regulate silique number, seed size, and seed number. Collectively, these findings uncover LecRK-VIII.2 as an upstream component of the MAPK signaling pathway to control yield-related traits and suggest its potential for crop improvement aimed at developing plants with stable yield, a robust root system, and improved lodging resistance.

A lectin receptor-like kinase regulates yield-related traits and coordinates the source–sink relationship in Arabidopsis.  相似文献   

6.
Growth and reproduction of spring ephemerals inhabiting deciduous forests progress simultaneously during a short period from snowmelt to canopy closure. To clarify the mechanism to mitigate the cost of reproduction, contributions of foliar and non-foliar photosynthetic products to seed production were examined in a spring ephemeral Gagea lutea. Leaf growth, foliar and non-foliar photosynthetic activities, and total assimilated products were compared among reproductive-intact, floral bud-removal, and vegetative plants. Translocation of current photosynthetic products to individual organs was quantified by 13CO2-trace experiment. Bulb growth was compared between hand-pollination and floral bud-removal treatments. Finally, seed set was compared between intact, leaf-clipping, and bract-clipping treatments. Fruit-forming plants retained leaves longer than vegetative and floral bud-removal plants, but the assimilative contribution of extended leaf longevity was negligible. Carbon supply by bract photosynthesis was large enough for fruit development, while carbon supply by fruit photosynthesis was offset by the high respiration loss. Foliar photosynthetic products were largely transported to bulbs, while translocation to reproductive functions was negligible. Because the floral bud-removal increased the bulb growth, lack of reproduction could lead to more storage. The leaf-clipping had no effect on seed production, while the bract-clipping significantly reduced the seed production. Therefore, current photosynthesis of leafy bracts might be a major carbon source for fruit development. This self-compensative mechanism of reproductive structure enables the continuous reproductive activity in this species.  相似文献   

7.
Syneilesis palmata reproduces by both seeds and vegetative propagules (short rhizomes). The latter result in the production of new plants that are larger in size and hence have a higher survival probability and a higher growth rate than seeds. A previous study predicted that the optimal reproductive strategy, in terms of maximizing population growth rate (a fitness measure under no density regulations), was pure vegetative reproduction. However, high resource investment to vegetative propagules can cause local crowding resulting in reduced demographic performances of the plants, because the vegetative propagules of Syneilesis are produced close to one another. We examined, in this situation, the impact of allocating a certain proportion of reproductive resource to seeds with relatively greater capacity for dispersal. We simulated dynamics of hypothetical Syneilesis populations with various reproductive resource allocation balances (from pure seed to pure vegetative reproduction), using a density-dependent matrix model. In the model, it was assumed that plants from vegetative propagules experienced density-dependent reduction in their survival probabilities, but this was not the case for plants originating from seeds. Each allocation strategy was evaluated based on an equilibrium population density, a fitness measure under density-dependent regulations. The optimal reproductive strategy predicted was pure vegetative reproduction. Unrealistic conditions were required for seed reproduction to be favoured, such as the production of seeds one hundred times the normal number per unit resource investment. However, the conditions were fairly relaxed compared with those required in the model where no density effects were incorporated. This indicates that escape from local crowding is likely to be one of the roles of seed production in Syneilesis.  相似文献   

8.
A continuous-time model, similar to W. M. Schaffer's (1983, Amer. Nat. 121, 418–431), of growth and reproduction for a perennial herb with discrete growing seasons is considered. Assuming that metabolic rates of reproductive and storage structures are equal, it was possible, through the reduction of the continuous model to a discrete one, to find the optimal allocations to the vegetative, reproductive, and reserve structures. The main feature of the optimal strategy is the existence of an optimal reserve size. The allocation to vegetative structures is, every growing season, the allocation which maximizes the total of reproductive and reserve structures at the end of the season. The relative allocation between reserve and reproductive structures is given, when reproductive success is a linear function of investment, by the fastest growth to the optimal size: no reproduction until the optimal size is reached, and, afterwards, allocation to reproduction of everything beyond what is needed to maintain size R*. Asymptotic growth to the equilibrium and cycles are possible, when reproductive success is a nonlinear function of investment (A. Pugliese, 1988, in “Biomathematics and Related Computational Problems” (L. M. Ricciardi, Ed.), Reidel, Dordrecht, to appear). It has therefore been possible to solve the “general life history problem” ( Schaffer, 1983) when growth is in general a concave function of body size. In the Discussion discrete and continuous-time models are compared; if the real dynamics is described by a continuous model of the type analyzed here, life history predictions made by analyzing the system with a discrete model are upheld.  相似文献   

9.
10.
Sesamin is a major lignan constituent of sesame (Sesamum indicum) seed and considered responsible for a number of beneficial human health effects. We previously reported that sesamin is present in sesame leaves, and proposed use of sesame leaves as a sesamin-containing material. This study focused on the possibility that both leaf yield and sesamin content would be increased with increasing photoperiod. Additionally, it was hypothesized that sesamin content would be affected by photoperiod in relation to CYP81Q1 gene expression. We thus investigated the effect of photoperiod on growth and leaf sesamin content in relation to CYP81Q1 gene expression to confirm our hypothesis. Under short-day (SD) condition, increase of leaf area was suppressed due to the phase transition from vegetative to reproductive growth, which resulted in reduction of leaf yield. Under long-day (LD) conditions, vegetative growth was continued, and both leaf area and yield increased as photoperiod increased up to 24 h (continuous light). Sesamin accumulated particularly in the leaves of plants grown under a 24-h photoperiod for 4 weeks. High expression level of the CYP81Q1 gene in those plants indicates that photoperiod-dependent differences in leaf sesamin content correlate with differences in CYP81Q1 gene expression levels. We conclude that cultivation under continuous light enables high-yield production of sesame leaves containing distinctively high levels of sesamin.  相似文献   

11.
Nitrogen (N) has been suggested as a determinant of seed production especially in species with high seed N content. Assuming that seed yield was determined as the balance between N demand and supply for seed production, we studied the effect of N fertilization after flowering on soybean (Glycine max L. Merr.) yield. Seed N concentration was nearly constant irrespective of N fertilization, indicating that seed production was proportional to the amount of N available for seed growth. N demand for seed production was analyzed as the product of seed number, the rate of N filling in individual seeds, and the length of the reproductive period. N fertilization increased seed number and the reproductive period, but did not influence the N filling rate. Seed number was positively correlated with dry mass productivity after flowering. Three N sources were distinguished: mineral N uptake, symbiotic N2 fixation and N remobilization from vegetative body. N fertilization increased N uptake and N remobilization, but lowered N2 fixation. We concluded that N availability in the reproductive period determined seed yield directly through increasing N supply for seed growth and indirectly through increasing seed N demand with enhanced plant dry mass productivity.  相似文献   

12.
Melampyrum pratense is one of the most successful root-hemiparasitic species of temperate Europe occurring in various habitats including both forest and open communities. The species shares its life history traits (large seeds, annuality, lack of clonality) with most of other hemiparasitic Orobanchaceae. Due to lack of vegetative propagation, the reproductive success of a M. pratense individual largely depends on the seed production. We used an individual-based observation of ontogenetic development of plants and analysed the development of spatial distribution of individuals to reveal links between fecundity of individuals and their vegetative growth in the context of population dynamics within one growing season. We demonstrated a tight dependency of seed production on vegetative growth and survival till the end of the growing season. Plants that were still alive and big (due to a high number of lateral branches) in the end of August produced the highest numbers of seeds. These were several times higher than the population average due to positively skewed distribution of seed production across individuals. The rate of premature mortality was rather low (below 50%) once seedlings successfully emerged and was most likely caused by intraspecific competition. By contrast, moderate level of herbivory (stem clipping by grazers) had a limited effect on the survival and the inflicted biomass losses seemed compensated. Therefore, despite being an annual, M. pratense appears well-adapted to its life in perennial-dominated forest communities, which is also underpinned by its hemiparasitic strategy providing essential resources and allowing to avoid below-ground competition.  相似文献   

13.
Continuing increases in atmospheric carbon dioxide concentration (CO2) will likely be accompanied by global warming. Our research objectives were (a) to determine the effects of season‐long exposure to daytime maximum/nighttime minimum temperatures of 32/22, 36/26, 40/30 and 44/34°C at ambient (350 μmol mol?1) and elevated (700 μmol mol?1) CO2 on reproductive processes and yield of peanut, and (b) to evaluate whether the higher photosynthetic rates and vegetative growth at elevated CO2 will negate the detrimental effects of high temperature on reproductive processes and yield. Doubling of CO2 increased leaf photosynthesis and seed yield by 27% and 30%, respectively, averaged across all temperatures. There were no effects of elevated CO2 on pollen viability, seed‐set, seed number per pod, seed size, harvest index or shelling percentage. At ambient CO2, seed yield decreased progressively by 14%, 59% and 90% as temperature increased from 32/22 to 36/26, 40/30 and 44/34°C, respectively. Similar percentage decreases in seed yield occurred at temperatures above 32/22°C at elevated CO2 despite greater photosynthesis and vegetative growth. Decreased seed yields at high temperature were a result of lower seed‐set due to poor pollen viability, and smaller seed size due to decreased seed growth rates and decreased shelling percentages. Seed harvest index decreased from 0.41 to 0.05 as temperature increased from 32/22 to 44/34°C under both ambient and elevated CO2. We conclude that there are no beneficial interactions between elevated CO2 and temperature, and that seed yield of peanut will decrease under future warmer climates, particularly in regions where present temperatures are near or above optimum.  相似文献   

14.
15.
Two high (NC106, NC111) and two normal (NC103, NC107) seed protein concentration lines, derived from two different recurrent selection populations of soybean (Glycine max L. Merr.) were subjected to partial defoliation at beginning seed fill (R5) under outdoor pot culture and field conditions. The aim of this study was to test the hypothesis that capacity to store N in vegetative organs and/or to mobilize that N to reproductive organs is associated with the high seed protein concentration trait. Symbiotic N2 fixation was the sole source of N in the pot experiment and the major source of N (met > 50% of the N requirement) in the low N soil used in the field experiment. Seed protein concentration and seed yield at maturity in both experiments and N accumulation and mobilization between R5 and maturity in the pot experiment were measured. The four genotypes did not differ significantly with respect to the amount of N accumulated before beginning seed fill (R5). Removal of up to two leaflets per trifoliolate leaf at R5 significantly decreased the seed protein concentration of NC107/111 but had no effect on this trait in NC103/106. Defoliation treatments significantly decreased seed yield, whole plant N accumulation (N2-fixation) during reproductive growth and vegetative N mobilization of all genotypes. Differences in harvest indices between the high and low protein lines accounted for approximately 35% of the differences in protein concentration. The two normal protein lines mobilized more vegetative N to the seed (average. 5.26 g plant–1) than the two high protein lines (average. 4.28 g plant–1). The two high seed protein lines (NC106, NC111) exhibited significantly different relative dependencies of reproductive N accumulation on vegetative N mobilization, 45% vs. 29%, in the control treatment. Whereas, NC103 with normal and NC106 with high seed protein concentration exhibited similar relative dependencies of reproductive N accumulation on vegetative N mobilization, (47% vs. 45%). Collectively, these results indicate that N stored in shoot organs before R5 and greater absolute and relative contribution of vegetative N mobilization to the reproductive N requirement are not responsible for the high seed protein concentration trait.Abbreviations DAT days after transplanting - R5 fifth reproductive stage according to Fehr and Caviness, 1977 Mention of trademark or proprietary product does not constitute a guarantee or warranty of the product by the United States Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable.  相似文献   

16.
The complex nature of plant resistance to adverse environmental conditions, such as salinity and drought requires a better understanding of the stress-induced changes that may be involved in tolerance mechanisms. Here we investigate stress-related morpho-physiological effects during vegetative and reproductive growth in two Japonica rice cultivars (Bomba and Bahia) exposed to a range of NaCl concentrations from the seedling stage. The stress-related detrimental effects were observed either earlier or to a higher extent in cv. Bomba than in Bahia. Damages to the photosynthetic apparatus were related to loss of chlorophyll (Chl) and to a decrease of the maximum potential efficiency of PSII (F v /F m), affecting negatively net CO2 assimilation rate (P N). Stress-related leaf anatomical alterations were analysed during the vegetative and reproductive stages. The size of bulliform cells as well as dimensions related to the vascular system increased under mild stress but decreased in the longer term or under higher stress level. The pattern of the anatomical alterations observed at the reproductive stage under 20 mM NaCl was reflected in poor panicle development and yield loss, with effects more pronounced in cv. Bomba than in Bahia. In summary, our results show that some physiological and, particularly, leaf anatomical responses induced by NaCl stress are distinctive indicators of sensitivity to salt stress in rice cultivars.  相似文献   

17.
Reproductive as well as vegetative parameters of mature soybean (Glycine max [L.] Merr. cv. Wye) plants grown in chambers in which the aerial portion was exposed to altered pO2 during all or part of the growth cycle were measured. Oxygen concentration was found to be a key factor controlling all phases of reproductive development. Exposure to 5% O2 from early seedling stage to senescence increased leaf, stem, and root dry weights and reduced seed yields when compared to 21% O2; exposure to low O2 during the vegetative growth stage from early seedling to mid-flowering arrested pod but not seed development; exposure from mid-flowering to mid-pod filling almost completely arrested seed but not pod development; exposure from mid-pod filling to senescence arrested seed development at the mid-filling stage.  相似文献   

18.
Observations on phenology of some representative trees, shrubs, under-shrubs and herbs in a subalpine forest of Uttarakhand, western Himalaya were recorded. With the commencement of favorable growth season in April, occurrence of leaf fall was indicatory growth phenomenon in Quercus semecarpifolia, Q. floribunda and Abies spectabilis. However, active vegetative growth in herbaceous species starts onward April and fruit maturation and seed dehiscence are completed from mid of September to October. In general, vegetative growth and reproductive stages in majority of the studied species seems to be dependent on adequate moisture content and also flowering and fruiting in subalpine plants correlate ambient temperature.  相似文献   

19.
20.
Ecological and evolutionary studies typically consider variation in single reproductive characters in isolation, without considering how they might be correlated with other reproductive and vegetative characters. In our study, we examined temporal patterns of variation and correlation in flower diameter and fruit length during a reproductive phase in two Massachusetts populations of the herb, Chelidonium majus. We also examined the relationships of such variation to measurements of seed yield components (mean seed weight and number per fruit) and aspects of plant vegetative size. Most of the variation in the sizes of reproductive characters occurred within individual plants, instead of among plants or between populations. Flower and fruit sizes as well as seed number per fruit declined significantly during the season in both populations. Only mean seed size per fruit was relatively stable for individual plants in both populations. Conserving resources by a gradual reduction in the size of reproductive characters over the season may be a strategy for maternal plants to continue seed production. The strong, persistent patterns of correlation between certain characters, such as flower and fruit size, in spite of extensive phenotypic plasticity, was interpreted as indirect evidence for developmental correlation. Furthermore, vegetatively larger plants produced not only more flowers and fruits, but also consistently larger flowers and fruits. The results emphasize that variation in fitness characters, such as seed size and number, should not be viewed in isolation from vegetative characters, flower, and fruit sizes in ecological and evolutionary studies, if the goal is to understand the mechanisms of natural selection in wild populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号