首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Competitive interactions and invasibility between short- and long-distance dispersal was investigated in a population on a heterogeneous landscape with spatial correlations in habitat types, and where the driving interaction between individuals is competition for space. Stochastic spatially explicit simulations were used, along with differential equation models based on pair approximations. Conditions under which either dispersal strategy can successfully invade the other were determined, as a function of the amount and clustering of suitable habitat and the relative costs involved in the two dispersal strategies. Long-distance dispersal, which reduces intraspecific competition, is sometimes advantageous even where aggregation of suitable habitat would otherwise favor short-distance dispersal, although certain habitat distributions can lead to either strategy being dominant. Coexistence is also possible on some landscapes, where the spatial structure of the populations partitions suitable sites according to the number of suitable neighboring sites. Mutual competitive exclusion, where whichever strategy is established first cannot be invaded, is also possible. All of these results are observed even when there is no intrinsic difference in the two strategies' costs, such as mortality or competitive abilities.  相似文献   

2.
Mutualism among species is ubiquitous in natural ecosystems but its evolution is not well understood. We provided a simple lattice model to clarify the importance of spatial structure for the evolution of mutualism. We assumed reproductive rates of two species are modified through interaction between species and examine conditions where mutualists of both species, that give some benefit to the other species with their own cost, invade non-mutualists populations. When dispersal of offspring is unlimited, we verified the evolution of mutualism is impossible under any condition. On the other hand, when the dispersal is limited to neighboring lattice sites, mutualists can invade if the ratio of cost to benefit is low and the intrinsic reproductive rate is low in case where the parameter values are symmetric between species. Under the same conditions, non-mutualists cannot invade mutualist populations, that is, the latter are evolutionarily stable. In case of asymmetric parameters, mutualists tend to invade if the average value of costs to two species is low or that of benefits is high, and if the intrinsic reproductive rate is low for one of the two species. A mechanistic explanation of why mutualists increase when the dispersal is limited is given by showing that mutualist pairs of the two species at the same lattice site rapidly increase at the initial phase of the invasion.  相似文献   

3.
Species distribution models rely on the assumption that species' distributions are at equilibrium with environmental conditions within a region – i.e. they occur in all suitable habitats. If this assumption holds, species occurrence should be predictable from measures of the environment. Introduced species may be poor candidates for distribution models due to their presumed lack of equilibrium within the landscapes they occupy, although predicting their potential distributions is often of critical importance to natural resource managers. We determined if the accuracy of species distribution models differed between 17 native and 17 introduced riparian plant species in the western United States. We also assessed if model accuracy was associated with both environmental and biological factors that can influence dispersal. We used Random Forests to model species distributions and linear regression to determine if model accuracy was associated with dispersal‐related traits. Model accuracy for introduced species was higher than that for native species. Dispersal‐related traits did not affect model accuracy or improvement, though two other traits, family affiliation and rarity on the landscape, did have an effect. Distance‐based measures of dispersal potential improved model fit equally for both native and introduced species and for species with a variety of dispersal traits, suggesting that the importance of regional propagule pressure is relatively constant across species with different dispersal opportunities. Several lines of future questioning are suggested by our results, including why introduced species may in some cases produce more accurate distribution models than native species and how species dispersal traits relate to distribution model accuracy at different spatial scales.  相似文献   

4.
We consider a mathematical model of two competing species for the evolution of conditional dispersal in a spatially varying, but temporally constant environment. Two species are different only in their dispersal strategies, which are a combination of random dispersal and biased movement upward along the resource gradient. In the absence of biased movement or advection, Hastings showed that the mutant can invade when rare if and only if it has smaller random dispersal rate than the resident. When there is a small amount of biased movement or advection, we show that there is a positive random dispersal rate that is both locally evolutionarily stable and convergent stable. Our analysis of the model suggests that a balanced combination of random and biased movement might be a better habitat selection strategy for populations.  相似文献   

5.
A model of the dynamics of a single metapopulation with space-limited subpopulations (J. Roughgarden and Y. Iwasa, 1986, Theor. Pop. Biol. 29, 235–261) is extended to include interspecific competition for space. The location and stability of steady states for the regional competition community are analyzed; a necessary condition for stable regional coexisitence of many species, and the condition for successful invasion of a new species into a region, are derived. General results are (1) the number of species that can coexist in a regional competition community is less than or equal to the number of distinct types of local habitats in the region and (2) for any pair of species coexisting in a regional community, say species-i and species-j, there is at least one place where species-i has a higher productivity relative to its larval mortality rate than species-j, and at least one place where species-j has a higher productivity relative to its larval mortality rate than species-i. A regional competition community consisting of two species competing for the space in two local habitats is analyzed using a graphical classification. If both local habitats are net “sources” of larvae for the regional populations of both species, then the qualitative results of interspecific competition on a regional scale are the same as those of the classical two-species Lotka-Volterra competition equations. If one of the local habitats is a net “sink” for larvae of one or more of the metapopulations, then additional results are possible: (1) The existence of a species may require the presence of its competitor. (2) A species which cannot invade an empty regional community may be able to invade if another species is present, and may then displace the first species leaving a regional community that again has one species. (3) A second species may invade a regional community containing one species with the end result that both become extinct.  相似文献   

6.
Patch occupancy theory predicts that a trade-off between competition and dispersal should lead to regional coexistence of competing species. Empirical investigations, however, find local coexistence of superior and inferior competitors, an outcome that cannot be explained within the patch occupancy framework because of the decoupling of local and spatial dynamics. We develop two-patch metapopulation models that explicitly consider the interaction between competition and dispersal. We show that a dispersal-competition trade-off can lead to local coexistence provided the inferior competitor is superior at colonizing empty patches as well as immigrating among occupied patches. Immigration from patches that the superior competitor cannot colonize rescues the inferior competitor from extinction in patches that both species colonize. Too much immigration, however, can be detrimental to coexistence. When competitive asymmetry between species is high, local coexistence is possible only if the dispersal rate of the inferior competitor occurs below a critical threshold. If competing species have comparable colonization abilities and the environment is otherwise spatially homogeneous, a superior ability to immigrate among occupied patches cannot prevent exclusion of the inferior competitor. If, however, biotic or abiotic factors create spatial heterogeneity in competitive rankings across the landscape, local coexistence can occur even in the absence of a dispersal-competition trade-off. In fact, coexistence requires that the dispersal rate of the overall inferior competitor not exceed a critical threshold. Explicit consideration of how dispersal modifies local competitive interactions shifts the focus from the patch occupancy approach with its emphasis on extinction-colonization dynamics to the realm of source-sink dynamics. The key to coexistence in this framework is spatial variance in fitness. Unlike in the patch occupancy framework, high rates of dispersal can undermine coexistence, and hence diversity, by reducing spatial variance in fitness.  相似文献   

7.
The most conspicuous biological invasions in terrestrial ecosystems have been by exotic plants, insects and vertebrates. Invasions by exotic earthworms, although not as well studied, may be increasing with global commerce in agriculture, waste management and bioremediation. A number of cases has documented where invasive earthworms have caused significant changes in soil profiles, nutrient and organic matter dynamics, other soil organisms or plant communities. Most of these cases are in areas that have been disturbed (e.g., agricultural systems) or were previously devoid of earthworms (e.g., north of Pleistocene glacial margins). It is not clear that such effects are common in ecosystems inhabited by native earthworms, especially where soils are undisturbed. We explore the idea that indigenous earthworm fauna and/or characteristics of their native habitats may resist invasion by exotic earthworms and thereby reduce the impact of exotic species on soil processes. We review data and case studies from temperate and tropical regions to test this idea. Specifically, we address the following questions: Is disturbance a prerequisite to invasion by exotic earthworms? What are the mechanisms by which exotic earthworms may succeed or fail to invade habitats occupied by native earthworms? Potential mechanisms could include (1) intensity of propagule pressure (how frequently and at what densities have exotic species been introduced and has there been adequate time for proliferation?); (2) degree of habitat matching (once introduced, are exotic species faced with unsuitable habitat conditions, unavailable resources, or unsuited feeding strategies?); and (3) degree of biotic resistance (after introduction into an otherwise suitable habitat, are exotic species exposed to biological barriers such as predation or parasitism, “unfamiliar” microflora, or competition by resident native species?). Once established, do exotic species co-exist with native species, or are the natives eventually excluded? Do exotic species impact soil processes differently in the presence or absence of native species? We conclude that (1) exotic earthworms do invade ecosystems inhabited by indigenous earthworms, even in the absence of obvious disturbance; (2) competitive exclusion of native earthworms by exotic earthworms is not easily demonstrated and, in fact, co-existence of native and exotic species appears to be common, even if transient; and (3) resistance to exotic earthworm invasions, if it occurs, may be more a function of physical and chemical characteristics of a habitat than of biological interactions between native and exotic earthworms.  相似文献   

8.
Despite the potential for competition to generate equilibrium coexistence of infinitely tightly packed species along a trait axis, prior work has shown that the classical expectation of system-specific limits to the similarity of stably coexisting species is sound. A key reason is that known instances of continuous coexistence are fragile, requiring fine-tuning of parameters: A small alteration of the parameters leads back to the classical limiting similarity predictions. Here we present, but then cast aside, a new theoretical challenge to the expectation of limiting similarity. Robust continuous coexistence can arise if competition between species is modeled as a nonsmooth function of their differences—specifically, if the competition kernel (differential response of species’ growth rates to changes in the density of other species along the trait axis) has a nondifferentiable sharp peak at zero trait difference. We will say that these kernels possess a “kink.” The difference in predicted behavior stems from the fact that smooth kernels do not change to a first-order approximation around their maxima, creating strong competitive interactions between similar species. “Kinked” kernels, on the other hand, decrease linearly even for small species differences, reducing interspecific competition compared with intraspecific competition for arbitrarily small species differences. We investigate what mechanisms would lead to kinked kernels in the first place. It turns out that discontinuities in resource utilization generate them. We argue that such sudden jumps in the utilization of resources are unrealistic, and therefore, one should expect kernels to be smooth in reality.  相似文献   

9.
To address how species interactions, dispersal and environmental disturbances interplay to affect the spatial distribution and diversity of species, we present a compartment model in which multiple species undergo competitive interaction of Lotka-Volterra type in a patchy environment arranged in a square lattice. Dispersal of species occurs between adjacent patches. Disturbances are periodically imposed on a central part of the environment in a belt-like block or an island-like block of various sizes where each species is killed for a certain time interval and then allowed to recover for the rest of a disturbance cycle. We deal with a case in which the local population dynamics within each patch is analytically determinable and has multiple locally stable equilibrium states in the absence of environmental disturbance. We further assume a trade-off between the reproductive rate of species and its dispersal ability. With these settings, we numerically examine how the spatio-temporal distributions of species are affected by changes in the pattern, size and duration of disturbances. The results demonstrate that: (1) in the undisturbed area, environmental disturbances could generate spatially segregated distributions of species; (2) in the disturbed area, species with higher dispersal abilities quickly invade and preferentially recover their population during the post-disturbance period, being temporarily relieved of competition from other species. These mechanisms collectively lead to increased species diversity in the whole habitat, functioning best when both the size and duration of disturbances are intermediate. In particular, the belt-like disturbance is more effective than the island-like disturbance in sustaining spatial heterogeneity for a wider range of duration of disturbance.  相似文献   

10.
Models of metapopulations have often ignored local community dynamics and spatial heterogeneity among patches. However, persistence of a community as a whole depends both on the local interactions and the rates of dispersal between patches. We study a mathematical model of a metacommunity with two consumers exploiting a resource in a habitat of two different patches. They are the exploitative competitors or the competing predators indirectly competing through depletion of the shared resource. We show that they can potentially coexist, even if one species is sufficiently inferior to be driven extinct in both patches in isolation, when these patches are connected through diffusive dispersal. Thus, dispersal can mediate coexistence of competitors, even if both patches are local sinks for one species because of the interactions with the other species. The spatial asynchrony and the competition-colonization trade-off are usual mechanisms to facilitate regional coexistence. However, in our case, two consumers can coexist either in synchronous oscillation between patches or in equilibrium. The higher dispersal rate of the superior prompts rather than suppresses the inferior. Since differences in the carrying capacity between two patches generate flows from the more productive patch to the less productive, loss of the superior by emigration relaxes competition in the former, and depletion of the resource by subsidized consumers decouples the local community in the latter.  相似文献   

11.
According to the equilibrium theory of island biogeography, high colonization ability of species is associated with low exponents (z) of the species–area relationship (SAR) and weak spatial patterns in species number and dissimilarity. However, the relationship between z and the strength of these spatial patterns has not been investigated systematically. We used a multispecies metapopulation model to investigate these relationships in an archipelago of islands. We conclude that this relationship can only be predicted if either the dispersal ability or the power of establishment of species is known. With species richness limited by establishment, we generated high z‐values associated with weak spatial patterns in species number and dissimilarity. If species richness was constrained by the dispersal ability of species, we observed low to medium z‐values but strong spatial patterns. If the dispersal ability and the abilities of species to establish were both high, z‐values and spatial pattern tend to be low and species numbers were limited by the size of the regional species pool.  相似文献   

12.
To understand the evolution of dispersal, we study a Lotka–Volterra reaction–diffusion–advection model for two competing species in a heterogeneous environment. The two species are assumed to be identical except for their dispersal strategies: both species disperse by random diffusion and advection along environmental gradients, but with slightly different random dispersal or advection rates. Two new phenomena are found for one-dimensional habitats and monotone intrinsic growth rates: (i) If both species disperse only by random diffusion, i.e., no advection, it was well known that the slower diffuser always wins. We show that if both species have the same advection rate which is suitably large, the faster dispersal will evolve; (ii) If both species have the same random dispersal rate, it was known that the species with a little advection along the resource gradient always wins, provided that the other species is a pure random disperser and the habitat is convex. We show that if both species have the same random dispersal rate and both also have suitably large advection rates, the species with a little smaller advection rate always wins. Implications of these results for the habitat choices of species will be discussed. Some future directions and open problems will be addressed.  相似文献   

13.
Of established nonindigenous plant species in California, Florida, and Tennessee, 5.8%, 9.7%, and 13.4%, respectively, invade natural areas according to designations tabulated by state Exotic Pest Plant Councils. Only Florida accords strictly with the tens rule, though California and Tennessee fall within the range loosely viewed as obeying the rule. The species that invaded natural areas in each state were likely, if they invaded either of the other states at all, to have invaded natural areas there. There was a detectable but inconsistent tendency for species that invade natural areas to come from particular families. At the genus level in California and Florida, and the family level in California, there was also a tendency for natural area invaders to come from taxa that were not represented in the native flora. All three of the above patterns deserve further studies to determine management implications. Only the first (that natural area invaders of one state are likely to invade natural areas if they invade another state) seems firm enough from our data to suggest actions on the part of managers. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Understanding biological invasions patterns and mechanisms is highly needed for forecasting and managing these processes and their negative impacts. At small scales, ecological processes driving plant invasions are expected to produce a spatially explicit pattern driven by propagule pressure and local ground heterogeneity. Our aim was to determine the interplay between the intensity of seed rain, using distance to a mature plantation as a proxy, and microsite heterogeneity in the spreading of Pinus contorta in the treeless Patagonian steppe. Three one‐hectare plots were located under different degrees of P. contorta invasion (Coyhaique Alto, 45° 30′S and 71° 42′W). We fitted three types of inhomogeneous Poisson models to each pine plot in an attempt for describing the observed pattern as accurately as possible: the “dispersal” models, “local ground heterogeneity” models, and “combined” models, using both types of covariates. To include the temporal axis in the invasion process, we analyzed both the pattern of young and old recruits and also of all recruits together. As hypothesized, the spatial patterns of recruited pines showed coarse scale heterogeneity. Early pine invasion spatial patterns in our Patagonian steppe site is not different from expectations of inhomogeneous Poisson processes taking into consideration a linear and negative dependency of pine recruit intensity on the distance to afforestations. Models including ground‐cover predictors were able to describe the point pattern process only in a couple of cases but never better than dispersal models. This finding concurs with the idea that early invasions depend more on seed pressure than on the biotic and abiotic relationships seed and seedlings establish at the microsite scale. Our results show that without a timely and active management, P. contorta will invade the Patagonian steppe independently of the local ground‐cover conditions.  相似文献   

15.
Most spatial ecology focuses on how species dispersal affects community dynamics and coexistence. Ecosystems, however, are also commonly connected by flows of resources. We experimentally tested how neighbouring communities indirectly influence each other in absence of dispersal, via resource exchanges. Using two‐patch microcosm meta‐ecosystems, we manipulated community composition and dynamics, by varying separately species key functional traits (autotroph versus heterotroph species and size of consumer species) and trophic structure of aquatic communities (species growing alone or in presence of competitors or predators). We then analysed the effects of species functional traits and trophic structure on communities connected through spatial subsidies in the absence of actual dispersal. Both functional traits and trophic structure strongly affected dynamics across neighbouring communities. Heterotroph communities connected to autotroph neighbours developed better than with heterotroph neighbours, such that coexistence of competitors was determined by the functional traits of the neighbouring community. Densities in autotroph communities were also strikingly higher when receiving subsidies from heterotroph communities compared to their own subsidies when grown in isolated ecosystems. In contrast, communities connected to predator‐dominated ecosystems collapsed, without any direct contact with the predators. Our results demonstrate that because community composition and structure modify the distribution of biomass within a community, they may also affect communities connected through subsidies through quantitative and qualitative changes of detritus flows. This stresses that ecosystem management should account for such interdependencies mediated by spatial subsidies, given that local community alterations cascade across space onto other ecosystems even if species dispersal is completely absent.  相似文献   

16.
We study the evolution of dispersal rates in a two patch metapopulation model. The local dynamics in each patch are given by difference equations, which, together with the rate of dispersal between the patches, determine the ecological dynamics of the metapopulation. We assume that phenotypes are given by their dispersal rate. The evolutionary dynamics in phenotype space are determined by invasion exponents, which describe whether a mutant can invade a given resident population. If the resident metapopulation is at a stable equilibrium, then selection on dispersal rates is neutral if the population sizes in the two patches are the same, while selection drives dispersal rates to zero if the local abundances are different. With non-equilibrium metapopulation dynamics, non-zero dispersal rates can be maintained by selection. In this case, and if the patches are ecologically identical, dispersal rates always evolve to values which induce synchronized metapopulation dynamics. If the patches are ecologically different, evolutionary branching into two coexisting dispersal phenotypes can be observed. Such branching can happen repeatedly, leading to polymorphisms with more than two phenotypes. If there is a cost to dispersal, evolutionary cycling in phenotype space can occur due to the dependence of selection pressures on the ecological attractor of the resident population, or because phenotypic branching alternates with the extinction of one of the branches. Our results extend those of Holt and McPeek (1996), and suggest that phenotypic branching is an important evolutionary process. This process may be relevant for sympatric speciation.  相似文献   

17.
达尔文的归化假说提出,由于生态位的不同,成功建群的外来物种与本地物种的关系不太密切。先前的研究对这一假设有支持也有反对,其中一个原因是外来物种和本地物种在大的空间尺度上有系统发育聚类的倾向,而在细微尺度上存在过度分散的倾向。然而,对于外来物种的系统发育关系如何改变其入侵群落的系统发育结构,以及在何种空间尺度上可能表现出这种影响,人们知之甚少。在本研究中,我们调查被入侵的森林下层植物群落在系统发育上是聚集的还是或过度分散的,亲缘关系如何随空间尺度变化,以及外来物种如何影响下层群落的系统发育模式。在澳大利亚东南部干旱森林的下层群落进行了5个空间尺度(1, 20, 500, 1500和4500 m2)的实地调查。使用两个指标的标准化效应量[(i)平均成对距离和(ii)平均最近分类单元距离]来量化群落与其外来和本地亚群落之间的系统发育关系,并研究系统发育模 式如何随空间尺度变化。研究结果表明,外来物种之间的亲缘关系非常密切,而且这种亲缘关系会随着尺度的增加而增加。在中等空间尺 度下(20–500 m2), 整个群落呈随机分布趋势,而本地物种高度分散,外来亚群落高度聚集。这说明亲缘关系密切的外来物种入侵使群落系统发育结构由过度分散向随机分布转变。外来物种和本地物种在空间尺度上是远亲,这支持了达尔文的归化假说,但只是在系统发育距离被量化为平均最近分类单元距离时成立。外来物种和本地物种的系统发育差异随着空间尺度的增加而增加,这与预期的模式相反。我们的研究结果表明,外来物种强大的系统发育聚类是由人类干预的引入驱动的,牵涉能够成功建群和传播的密切相关的类群。系统发育相关性的尺度依赖模式可能是由火灾和散布等随机过程引起的,这表明竞争和生境过滤并不是分别在小和大尺度上控制系统发育关系的唯一因素。区分不同进化深度的指标很重要,因为不同的指标可以显示不同的尺度依赖模式。  相似文献   

18.
Mark-recapture methods cannot estimate both mortality and dispersal rates of a wild population simultaneously. However, when an artificially cultured population is released into an area, the initial population size and the initial population distribution are usually known. If artificially cultured individuals are released with marks or distinguished from wild individuals or if no wild individual exists in the study area, we can estimate both the mortality and dispersal rates of the artificial population. The numbers of dispersed and dead individuals are estimated from the dispersal rate from the diffusion model and the total decreasing rate estimated from a mark-recapture data. We can estimate both the time-dependent and time-independent dispersal rates from the data. We choose the best fit model that has the smallest value of Akaike's Information Criteria. We also consider ‘concentric circles approximation” of spatial distribution, in which the cumulative and frequency distributions are analytically obtained.  相似文献   

19.
Dispersal is a fundamental component of the life history of most species. Dispersal influences fitness, population dynamics, gene flow, genetic drift and population genetic structure. Even small differences in dispersal can alter ecological interactions and trigger an evolutionary cascade. Linking such ecological processes with evolutionary patterns is difficult, but can be carried out in the proper comparative context. Here, we investigate how differences in phoretic dispersal influence the population genetic structure of two different parasites of the same host species. We focus on two species of host‐specific feather lice (Phthiraptera: Ischnocera) that co‐occur on feral rock pigeons (Columba livia). Although these lice are ecologically very similar, “wing lice” (Columbicola columbae) disperse phoretically by “hitchhiking” on pigeon flies (Diptera: Hippoboscidae), while “body lice” (Campanulotes compar) do not. Differences in the phoretic dispersal of these species are thought to underlie observed differences in host specificity, as well as the degree of host–parasite cospeciation. These ecological and macroevolutionary patterns suggest that body lice should exhibit more genetic differentiation than wing lice. We tested this prediction among lice on individual birds and among lice on birds from three pigeon flocks. We found higher levels of genetic differentiation in body lice compared to wing lice at two spatial scales. Our results indicate that differences in phoretic dispersal can explain microevolutionary differences in population genetic structure and are consistent with macroevolutionary differences in the degree of host–parasite cospeciation.  相似文献   

20.
The distribution of pigment granules in eggs of three species of sea urchins is described with reference to developmental stage and an egg's animal-vegetal axis of organization. Polarity in unfertilized sea urchin eggs has been a debated subject; present evidence demonstrates that the animal-vegetal axis is established before fertilization. The pigment pattern in some batches of Paracentrotus eggs exhibiting the celebrated “pigment band,” originally described by Theodor Boveri, is revised and is interpreted as a comparatively precocious expression of the underlying egg polarity. “Unbanded” Paracentrotus eggs and eggs of Arbacia lixula and Arbacia punctulata can be induced to exhibit the same pigment pattern by artificial activation. The induced pigment pattern aligns with an axis defined by polar bodies and the jelly canal, which are two external markers of the animal pole which are only rarely seen. It is therefore concluded that all of these eggs possess an animal-vegetal axis before fertilization even though it usually remains unexpressed until later developmental stages. Polarized changes in pigmentation are consistent with the following general mechanism: A change is triggered in the cortex of the vegetal pole; the change is programmed for a time which corresponds to the fourth mitotic division, even though mitosis itself is not involved; activation at fertilization initiates the “clock” in most cases, although in “banded” Paracentrotus eggs the “clock” is apparently started before ovulation; only the vegetal hemisphere's pigment is affected by the change. The nature of the underlying axis which defines animal and vegetal poles is discussed. Aspects of the axis have been tentatively traced back to the primary oocyte stage, but its fundamental nature remains unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号