首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Empirical studies for different life histories have shown an inverse relationship between elasticity (i.e. the proportional contribution to population growth rate) and temporal variation in vital rates. It is accepted that this relationship indicates the effect of selective pressures in reducing variation in those life‐history traits with a major impact on fitness. In this paper, we sought to determine whether changes in environmental conditions affect the relationship between elasticity of vital rates and their temporal variation, and whether vital rates with simultaneously large elasticity and temporal variation might represent a characteristic life‐history strategy. We used demographic data on 13 populations of the short‐lived Hypericum cumulicola over 5–6 years, in three time‐since‐fire classes. For each population of each time‐since‐fire, we computed the mean matrix over years and its respective elasticity matrix, and the coefficients of variation in matrix entries over study years as an estimate of temporal variability. We found that mean elasticity negatively significantly correlated with temporal variation in vital rates in populations (overall eight out of 13) included in each time‐since‐fire. However, seedling recruitment exhibited both high elasticity and high temporal variation in almost all study populations. These results indicated that (1) the general relationship between elasticity and temporal variation in vital rates was not modified by environmental changes due to time‐since‐fire, and (2) high elasticity and high temporal variation in seedling recruitment in H. cumulicola is a particular trait of the species' life history. After seed survival in the soil seed bank, seedling recruitment represents the most important life‐history trait influencing H. cumulicola population growth rate (and fitness). The high temporal variability in seedling recruitment suggests that this trait is determined by environmental cues, leading to an increase in population size and subsequent replenishment of the seed bank in favorable years.  相似文献   

2.
This paper considers the sensitivity of population growth to small changes in birth, growth, survival, and migration probabilities for an arbitrary population classification (i.e., age, instar, size, developmental stage, age, and spatial location, etc.). The stage-specific life history parameters are expressed in a discrete-time system of linear difference equations, the dominant eigenvalue of which defines the population growth rate. The sensitivity of this eigenvalue to production of class i by class j individuals is shown to be proportional to the product of the reproductive value of stage i and the abundance of stage j in the stable stage distribution. This formula is readily computable, and several examples are presented. For the special case of age-structured populations, this formula reduces to those derived by Hamilton, Emlen, and Goodman.  相似文献   

3.
Postglacial expansion to former range limits varies substantially among species of temperate deciduous forests in eastern Asia. Isolation hypotheses (with or without gene flow) have been proposed to explain this variance, but they ignore detailed population dynamics spanning geological time and neglect the role of life history traits. Using population genetics to uncover these dynamics across their Asian range, we infer processes that formed the disjunct distributions of Ginkgo biloba and the co‐occurring Cercidiphyllum japonicum (published data). Phylogenetic, coalescent, and comparative data suggest that Ginkgo population structure is regional, dichotomous (to west–east refugia), and formed ˜51 kya, resulting from random genetic drift during the last glaciation. This split is far younger than the north–south population structure of Cercidiphyllum (~1.89 Mya). Significant (recent) unidirectional gene flow has not homogenized the two Ginkgo refugia, despite 2Nm > 1. Prior to this split, gene flow was potentially higher, resulting in conflicting support for a priori hypotheses that view isolation as an explanation for the variation in postglacial range limits. Isolation hypotheses (with or without gene flow) are thus not necessarily mutually exclusive due to temporal variation of gene flow and genetic drift. In comparison with Cercidiphyllum, the restricted range of Ginkgo has been facilitated by uncompetitive life history traits associated with seed ecology, highlighting the importance of both demography and lifetime reproductive success when interpreting range shifts.  相似文献   

4.
In many vertebrates and invertebrates, living in a group may influence the life history traits, physiology and behaviour of its individual members, whereas genetic relatedness affects social interactions among individuals in a group. The two-spotted spider mite Tetranychus urticae is characterised by a communal organization, in which silk production plays a key role. A silken web protects the colony against biotic and abiotic agents such as predators, competitors, humidity, wind, rain and acaricides. To evaluate the potential costs and benefits of being associated with genetically distant vs genetically close individuals in T. urticae, we assessed various fitness indicators (faecal pellet production, fecundity, death rate) in pure and mixed groups of two distinct populations of T. urticae: a red-form population from Tunisia and a green-form population from Belgium. If genetic origin had no influence, the values of fitness indicators in mixed groups composed of green and red individuals, would be intermediate between those of the pure green-form and red-form groups. Our results show that in a mixed group, faecal pellet production and death rate were statistically similar to the values obtained in the pure group of green-form individuals. Therefore, our study suggests that strain recognition ability may occur in T. urticae and that the genetic background of an individual may have a great impact on several of its life history traits.  相似文献   

5.
Adaptation to a novel environment is expected to have a number of features. Among these is a temporal increase in fitness and some or all of its components. It is also expected that additive genetic variances for these fitness characters will fall. Finally, it is expected that at least some additive genetic correlations will decrease, from positive toward negative values. In a study of several life‐history variables in a Drosophila subobscura population sampled from the wild and then cultured in the laboratory, we did not find any such longitudinal trends over the first 29 generations. However, a temporal comparison (over 14 generations) of the later generations of this laboratory‐adapted population with a new population, derived from a more recent wild‐caught sample, indicated clearly that laboratory adaptation was nonetheless occurring. This study suggests the need for extensive replication and control in studies of the features of adaptation to a novel environment.  相似文献   

6.
Yamazaki T  Hirose Y 《Genetics》1984,108(1):213-221
Fifty lethal-free, sterility-free isogenic lines of Drosophila melanogaster that were randomly sampled from a natural population were tested for net fitness and other components of fitness by competition with D. hydei. Larval viability and developmental time were also measured using the balanced marker method. Distribution patterns of these fitness components were similar, but correlation between the fitness components varied depending on the combinations used. The highest correlations were obtained between net fitness and productivity (rp = 0.6987, rg = 0.9269). The correlation between net fitness and total larval viability was much lower (rp = 0.1473 and rg = 0.2171). These results indicate that measuring net fitness, not just a component of fitness, is necessary for the good understanding of the genetic structures of natural populations.  相似文献   

7.
 We examine the dynamics of an age-structured population model in which the life expectancy of an offspring may be mutated with respect to that of the parent. While the total population of the system always reaches a steady state, the fitness and age characteristics exhibit counter-intuitive behavior as a function of the mutational bias. By analytical and numerical study of the underlying rate equations, we show that if deleterious mutations are favored, the average fitness of the population reaches a steady state, while the average population age is a decreasing function of the average fitness. When advantageous mutations are favored, the average population fitness grows linearly with time t, while the average age is independent of the average fitness. For no mutational bias, the average fitness grows as $t^{2/3}$. Received: 21 December 1999 / Revised version: 31 October 2001 / Published online: 14 March 2002  相似文献   

8.
The recent discovery that the unicellular green alga Oophila amblystomatis, invades embryonic tissues and cells of the salamander Ambystoma maculatum prompted us to investigate the growth and life history transformations of the algal symbionts in egg capsules. During embryonic development, symbionts were first detected microscopically as a cohesive population of swimming cells in the vicinity of the blastopore around embryonic stage 17. This population of cells grew and at embryonic stage 25, a fraction of the population began to affix to the inside of the egg capsule. Cells then underwent syngamy, lost flagella, and transformed into non-motile cells. We observed a linear increase in the accumulation of such capsule-associated cells from embryonic stage 25 to 40. The population of zoospores did not grow over this period and showed a declining trend between stage 39 and 40. We verified the population growth by measuring relative chlorophyll a content and also measured quantum yield (QY) of photosystem II (PS II) using pulse amplitude modulated (PAM) fluorometry. The population, but not the cell size, of non-motile capsule membrane-bound cells increased modestly during a one-month period after hatching, and continued to contain high levels of chlorophyll a and photosynthetic capacity. We conclude that O. amblystomatis undergoes a life history transition in egg capsules and speculate that many of these symbionts become zygotes, rather than invading the embryo.  相似文献   

9.
This study was conducted to increase the understanding of the temporal dynamics of the plecopteran-associated endosymbiont species Orphella helicospora and Orphella catalaunica (Harpellales, Zygomycota) in the middle reaches of a stream in Montseny Natural Park (Barcelona, Spain). Previous studies addressing the temporal dynamics of Harpellales have focused on Diptera-related species. Statistical analyses revealed that the temporal dynamics of Plecoptera-associated Harpellales do not respond directly to environmental factors but are more directly dependent on biotic factors, such as the particular preference and fitness of each Orphella species towards a specific Leuctra host, the relative host abundance, and its annual cycle. We report that an in situ host shift linked to Leuctra species replacement occurred during the years 2012–2013, with a resulting decline of O. catalaunica in this environment. The ecological implications of the specificity range and fitness of the host are discussed. We also provide information about the possible causes of this macroinvertebrate shift and the effects on the associated endozoic community.  相似文献   

10.
M. J. Vanni 《Oecologia》1987,72(2):263-271
Summary A series of experiments revealed significant differences in the potential ability of seven Daphnia pulex genotypes to colonize two lakes in which this species does not naturally reside. Life table experiments, in which individuals from each genotype were raised separately on water and natural phytoplankton from the two lakes, revealed several significant differences among genotypes in life history traits, including age and size at first reproduction, clutch size and offspring body size. Significant differences among genotypes were also found in mean genotype fitness and rate of population increase, although all genotypes were able to increase in absolute numbers. Significant genotypexlake interaction was found for several life history traits and mean fitness, indicating that the relative success of invading genotypes may depend on habitat characteristics. Enclosure experiments, in which all seven genotypes were introduced together into enclosures in both lakes, revealed that some genotypes increased greatly while others declined in relative abundance, and that the most successful genotypes differed between lakes. In addition, the most successful genotypes in the enclosures were not necessarily the genotypes that displayed the highest fitness in the life table experiments, possibly because individuals in the enclosures competed for food resources, leading to exclusion of certain genotypes.  相似文献   

11.
Temporal autocorrelation in demographic processes is an important aspect of population dynamics, but a comprehensive examination of its effects on different life‐history strategies is lacking. We use matrix population models from 454 plant and animal populations to simulate stochastic population growth rates (log λs) under different temporal autocorrelations in demographic rates , using simulated and observed covariation among rates. We then test for differences in sensitivities, or changes of log λs to changes in autocorrelation among two major axes of life‐history strategies, obtained from phylogenetically informed principal component analysis: the fast‐slow and reproductive‐strategy continua. Fast life histories exhibit highest sensitivities to simulated autocorrelation in demographic rates across reproductive strategies. Slow life histories are less sensitive to temporal autocorrelation, but their sensitivities increase among highly iteroparous species. We provide cross‐taxonomic evidence that changes in the autocorrelation of environmental variation may affect a wide range of species, depending on complex interactions of life‐history strategies.  相似文献   

12.
The paper considers the properties of individual life history corresponding to the Leslie model of age-structured population. The life history is modelled as a finite Markov chain with absorption at a death state of individual. In this model, individual longevity, average number of offspring R L (produced by an individual over the entire life), and some other known characteristics of the life history have been derived using simple probability methods that do not involve matrix calculus and their individual components have been interpreted. In the linear Leslie population model (derived by simple modification of a Markov chain), R L determines the growth or decline of a population. Individuals with higher R L values have evolutionary advantages in the population due to accelerated growth in their number. The selection of fertility as a factor of the increase in R L is considered. In the Leslie model, fertility is a set of correlated quantitative traits, where the age-specific fertility components are determined both by multiple loci and the environment. According to the genetic theory of quantitative trait selection, they evolve towards an increase in R L . Taking into account the limited resources for reproduction, selection optimizes the fertility distribution according to age. Optimal distribution corresponds to the attainment of the maximum R L . This complies with the maximization of the rate of population growth (r-selection), which is characteristic of linear population models. The search for the R L maximum and optimal distribution of fertility belongs to the field of linear programming.  相似文献   

13.
Inherited intracellular insect endosymbionts may manipulate host reproduction or provide fitness benefits to their hosts in ways that result in their rapid spread throughout a host population. Fitness benefits in particular can result in the increased pest potential of agriculturally important insects. While benefits due to endosymbiont infection have been well studied in laboratory assays, very little is known about how these benefits translate to insect performance in the field. Laboratory experiments have shown that the maternally inherited bacterial endosymbiont, Rickettsia, increases the fitness of its whitefly host, Bemisia tabaci, through improved fecundity, faster development times and female-biased sex ratios. We conducted field population cage studies to determine whether the benefits conferred by Rickettsia to whiteflies in the laboratory were evident on one of its major hosts, cotton, under field conditions in Arizona, USA. In cages with either Rickettsia-infected or uninfected whiteflies, we observed up to ten-fold higher whitefly egg and nymph densities when whiteflies were Rickettsia-infected compared with uninfected whiteflies throughout the season. We also observed a steep initial increase in Rickettsia frequency in population cages started with either 25% or 50% Rickettsia-infected whiteflies, with the 50% cages approaching fixation within three generations. Using growth rates obtained in the density cages, we calculated and compared an expected trajectory of the frequencies of Rickettsia infection with the observed frequencies. Results showed similar observed and expected frequencies of Rickettsia in the first two generations, followed by a significantly lower than expected frequency in three of four treatment/sample combinations at the end of the season. Taken together, these results confirm the patterns of fecundity and population growth observed in laboratory assays, under field conditions, as well as provides preliminary empirical support for a Rickettsia equilibrium frequency of less than 100%.  相似文献   

14.
Phenotypic plasticity is predicted to evolve in more variable environments, conferring an advantage on individual lifetime fitness. It is less clear what the potential consequences of that plasticity will have on ecological population dynamics. Here, we use an invertebrate model system to examine the effects of environmental variation (resource availability) on the evolution of phenotypic plasticity in two life history traits—age and size at maturation—in long‐running, experimental density‐dependent environments. Specifically, we then explore the feedback from evolution of life history plasticity to subsequent ecological dynamics in novel conditions. Plasticity in both traits initially declined in all microcosm environments, but then evolved increased plasticity for age‐at‐maturation, significantly so in more environmentally variable environments. We also demonstrate how plasticity affects ecological dynamics by creating founder populations of different plastic phenotypes into new microcosms that had either familiar or novel environments. Populations originating from periodically variable environments that had evolved greatest plasticity had lowest variability in population size when introduced to novel environments than those from constant or random environments. This suggests that while plasticity may be costly it can confer benefits by reducing the likelihood that offspring will experience low survival through competitive bottlenecks in variable environments. In this study, we demonstrate how plasticity evolves in response to environmental variation and can alter population dynamics—demonstrating an eco‐evolutionary feedback loop in a complex animal moderated by plasticity in growth.  相似文献   

15.
Effective conservation management requires an understanding of the spatiotemporal dynamics driving large carnivore density and resource partitioning. In African ecosystems, reduced prey populations and the loss of competing guild members, most notably lion (Panthera leo), are expected to increase the levels of competition between remaining carnivores. Consequently, intraguild relationships can be altered, potentially increasing the risk of further population decline. Kasungu National Park (KNP), Malawi, is an example of a conservation area that has experienced large‐scale reductions in both carnivore and prey populations, leaving a resident large carnivore guild consisting of only leopard (Panthera pardus) and spotted hyena (Crocuta crocuta). Here, we quantify the spatiotemporal dynamics of these two species and their degree of association, using a combination of co‐detection modeling, time‐to‐event analyses, and temporal activity patterns from camera trap data. The detection of leopard and spotted hyena was significantly associated with the detection of preferred prey and competing carnivores, increasing the likelihood of species interaction. Temporal analyses revealed sex‐specific differences in temporal activity, with female leopard activity patterns significantly different to those of spotted hyena and male conspecifics. Heightened risk of interaction with interspecific competitors and male conspecifics may have resulted in female leopards adopting temporal avoidance strategies to facilitate coexistence. Female leopard behavioral adaptations increased overall activity levels and diurnal activity rates, with potential consequences for overall fitness and exposure to sources of mortality. As both species are currently found at low densities in KNP, increased risk of competitive interactions, which infer a reduction in fitness, could have significant implications for large carnivore demographics. The protection of remaining prey populations is necessary to mitigate interspecific competition and avoid further alterations to the large carnivore guild.  相似文献   

16.
The Asian corn borer, Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae) is an economically important pest of corn. Finding simple, cheap, and suitable rearing techniques of O. furnacalis is an urgent need to support research for management of this insect. This research aimed to determine the suitability of a read bean and rice bran-based artificial diet used for mass rearing of this insect since 2009.The tested artificial diet was compared with the natural diet (sweet corn kernel) and each diet was tested in individual rearing method (one larva in each vial). The criteria used to justify the quality of diet and mass rearing procedure were based on the fitness of O. furnacalis. The degree of fitness was based on life history, growth, and development. In general, the fitness parameteres observed from O. furnacalis reared in the artificial diet at 25.7?±?1.6?°C with 57.7?±?3.8% RH, and L12:D12 were similar than those in the natural diet.Therefore, the existing artificial diet and rearing procedure were considered suitable and qualified for O. furnacalis. It is important to periodically check the laboratory colony to ensure that they have similar fitness to those found in the natural population.  相似文献   

17.
Allocation of resources to competing processes of growth, maintenance, or reproduction is arguably a key process driving the physiology of life history trade‐offs and has been shown to affect immune defenses, the evolution of aging, and the evolutionary ecology of offspring quality. Here, we develop a framework to investigate the evolutionary consequences of physiological dynamics by developing theory linking reproductive cell dynamics and components of fitness associated with costly resource allocation decisions to broader life history consequences. We scale these reproductive cell allocation decisions to population‐level survival and fecundity using a life history approach and explore the effects of investment in reproduction or tissue‐specific repair (somatic or reproductive) on the force of selection, reproductive effort, and resource allocation decisions. At the cellular level, we show that investment in protecting reproductive cells increases fitness when reproductive cell maturation rate is high or reproductive cell death is high. At the population level, life history fitness measures show that cellular protection increases reproductive value by differential investment in somatic or reproductive cells and the optimal allocation of resources to reproduction is moulded by this level of investment. Our model provides a framework to understand the evolutionary consequences of physiological processes underlying trade‐offs and highlights the insights to be gained from considering fitness at multiple levels, from cell dynamics through to population growth.  相似文献   

18.
Explaining the evolution of human life history traits remains an important challenge for evolutionary anthropologists. Progress is hindered by a poor appreciation of how demographic factors affect the action of natural selection. I review life history theory showing that the quantity maximized by selection depends on whether and how population growth is regulated. I show that the common use of R, a strategy’s expected lifetime number of offspring, as a fitness maximand is only appropriate under a strict set of conditions, which are apparently unappreciated by anthropologists. To concretely show how demography-free life history theory can lead to errors, I reanalyze an influential model of human life history evolution, which investigated the coevolution of a long lifespan and late age of maturity. I show that the model’s conclusions do not hold under simple changes to the implicitly assumed mechanism of density dependence, even when stated assumptions remain unchanged. This analysis suggests that progress in human life history theory requires better understanding of the demography of our ancestors.  相似文献   

19.
The evolution of population dynamics in a stochastic environment is analysed under a general form of density-dependence with genetic variation in r and K, the intrinsic rate of increase and carrying capacity in the average environment, and in σe2, the environmental variance of population growth rate. The continuous-time model assumes a large population size and a stationary distribution of environments with no autocorrelation. For a given population density, N, and genotype frequency, p, the expected selection gradient is always towards an increased population growth rate, and the expected fitness of a genotype is its Malthusian fitness in the average environment minus the covariance of its growth rate with that of the population. Long-term evolution maximizes the expected value of the density-dependence function, averaged over the stationary distribution of N. In the θ-logistic model, where density dependence of population growth is a function of Nθ, long-term evolution maximizes E[Nθ]=[1−σe2/(2r)]Kθ. While σe2 is always selected to decrease, r and K are always selected to increase, implying a genetic trade-off among them. By contrast, given the other parameters, θ has an intermediate optimum between 1.781 and 2 corresponding to the limits of high or low stochasticity.  相似文献   

20.
Woodruff RC  Thompson JN  Barker JS  Huai H 《Genetica》1999,107(1-3):261-269
Some transposable DNA elements in higher organisms are active in somatic cells, as well as in germinal cells. What effect does the movement of DNA elements in somatic cells have on life history traits? It has previously been reported that somatically active P and mariner elements in Drosophila induce genetic damage and significantly reduce lifespan. In this study, we report that the movement of P elements in somatic cells also significantly reduces fitness, mating activity, and locomotion of Drosophila melanogaster. If other elements cause similar changes in life history traits, it is doubtful if transposable DNA elements remain active for long in somatic cells in natural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号