首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Emerging studies suggested that lncRNAs play a crucial molecular role in cancer development and progression. LncRNA LUCAT1 has been proved as oncogenic molecular in lung cancer, glioma, osteosarcoma, renal carcinoma and oesophageal squamous cell carcinoma. However, its roles and function mechanisms in tongue squamous cell carcinoma (TSCC) are still unknown. We showed that the expression of LUCAT1 was up-regulated in the TSCC cells and tissues and the higher LUCAT1 expression was associated with the poor overall survival (OS). Knockdown expression of LUCAT1 suppressed TSCC cell proliferation, cycle and migration. In addition, we demonstrated that miR-375 overexpression inhibited the luciferase activity of LUCAT1 wild-type and knockdown LUCAT1 promoted the miR-375 expression in TSCC cell. Furthermore, we indicated that miR-375 expression was down-regulated in the TSCC cell lines and tissues and the lower expression of miR-375 was associated with poor OS. The expression of miR-375 was inversely correlated with LUCAT1 expression in the TSCC tissues. Knockdown LUCAT1 promoted TSCC cell proliferation, cell cycle and migration partly through regulating miR-375 expression. In summary, this study suggested the tumorigenic effect of lncRNA LUCAT1 in TSCC cells by targeting miR-375 expression.  相似文献   

3.
Weng  Guohu  Gu  Minhua  Zhang  Yifan  Zhao  Guangfeng  Gu  Yong 《Journal of molecular histology》2021,52(5):943-953

The pathophysiological mechanism of carotid atherosclerosis (CAS) involves endothelial cell dysfunction, vascular smooth muscle cells (VSMCs), and macrophage activation, which ultimately leads to fibrosis of the vessel wall. lncRNA works weightily in the formation of CAS, but the function and mechanism of lncRNA LINC01123 in stable plaque formation are still equivocal. We collected blood samples from 35 CAS patients as well as 33 healthy volunteers. VSMCs treated with oxidized low-density lipoprotein (ox-LDL) were utilized as the CAS cell models. We applied qRT-PCR for detecting LINC01123, miR-1277-5p and KLF5 mRNA expression, CCK-8 method and BrdU test for determining cell proliferation, Transwell test for measuring cell migration, as well as Western blot for assaying KLF5 protein expression. Dual-luciferase reporter experiment was adopted for assessing the interaction between LINC01123 and miR-1277-5p, as well as KLF5 and miR-1277-5p. LINC01123 and KLF5 expression were dramatically up-regulated, while miR-1277-5p expression was down-regulated in CAS patients and ox-LDL-induced CAS cell models. Overexpressed LINC01123 notedly promoted VSMCs migration and proliferation. LINC01123 knockdown repressed cell proliferation and migration. Also, LINC01123 targeted miR-1277-5p and down-regulated its expression, while miR-1277-5p could negatively regulate KLF5 expression. LINC01123 is highly expressed in CAS patients, and promotes cell proliferation and migration via regulating miR-1277-5p/KLF5 axis in ox-LDL-induced VSMCs. It might be involved in the fibrous plaque formation.

  相似文献   

4.
Lung cancer is the leading cause of cancer mortality in the world today. Although some advances in lung cancer therapy have been made, patient survival is still poor. MicroRNAs (miRNAs) can act as oncogenes or tumor-suppressor genes in human malignancy. The miR-34 family consists of tumor-suppressive miRNAs, and its reduced expression has been reported in various cancers, including non-small cell lung cancer (NSCLC). In this study, we found that miR-34a and miR-34c target platelet-derived growth factor receptor alpha and beta (PDGFR-α and PDGFR-β), cell surface tyrosine kinase receptors that induce proliferation, migration and invasion in cancer. MiR-34a and miR-34c were downregulated in lung tumors compared to normal tissues. Moreover, we identified an inverse correlation between PDGFR-α/β and miR-34a/c expression in lung tumor samples. Finally, miR-34a/c overexpression or downregulation of PDGFR-α/β by siRNAs, strongly augmented the response to TNF-related apoptosis inducing ligand (TRAIL) while reducing migratory and invasive capacity of NSCLC cells.  相似文献   

5.
Simvastatin serves as an effective therapeutic potential in the treatment of dental disease via alternating proliferation of dental pulp stem cells. First, western-blot and real-time quantitative PCR were used to detect the effect of simvastatin or LY294002 on the expression levels of AKT, miR-9 and KLF5, or determine the effect of miR-9. Simvastatin, KLF5 and AKT significantly enhanced the proliferation of pulp stem cells, whilst this effect induced by simvastatin was suppressed by LY294002, AKT siRNA, KLF5 siRNA and miR-9, and simvastatin dose-dependently upregulated the expression of PI3K. Furthermore, simvastatin upregulated PI3K and p-AKT expression in a concentration-dependent manner. LY294002 abrogated the upregulation of p-AKT expression levels induced by simvastatin, and LY294002 induced the miR-9 expression and simvastatin dose-dependently inhibited the expression of miR-9, by contrast, LY294002 reduced the KLF5 expression and simvastatin dose-dependently promoted the expression of KLF5. And using computational analysis, KLF5 was found to be a candidate target gene of miR-9, and which was further verified using luciferase assay. Finally, the level of KLF5 in cells was much lower following the transfection with miR-9 and KLF5 siRNA, and the level of AKT mRNA in cells was significantly inhibited after transfection with AKT siRNA than control. These findings suggested simvastatin could promote the proliferation of pulp stem cells, possibly by suppressing the expression of miR-9 via activating the PI3K/AKT signalling pathway, and the downregulation of miR-9 upregulated the expression of its target gene, KLF5, which is directly responsible for the enhanced proliferation of pulp stem cells.  相似文献   

6.
Our pilot study using miRNA arrays found that miRNA-29c (miR-29c) is differentially expressed in the paired low-metastatic lung cancer cell line 95C compared to the high-metastatic lung cancer cell line 95D. Bioinformatics analysis shows that integrin β1 and matrix metalloproteinase 2 (MMP2) could be important target genes of miR-29c. Therefore, we hypothesized that miR-29c suppresses lung cancer cell adhesion to extracellular matrix (ECM) and metastasis by targeting integrin β1 and MMP2. The gain-of-function studies that raised miR-29c expression in 95D cells by using its mimics showed reductions in cell proliferation, adhesion to ECM, invasion and migration. In contrasts, loss-of-function studies that reduced miR-29c by using its inhibitor in 95C cells promoted proliferation, adhesion to ECM, invasion and migration. Furthermore, the dual-luciferase reporter assay demonstrated that miR-29c inhibited the expression of the luciferase gene containing the 3′-UTRs of integrin β1 and MMP2 mRNA. Western blotting indicated that miR-29c downregulated the expression of integrin β1 and MMP2 at the protein level. Gelatin zymography analysis further confirmed that miR-29c decreased MMP2 enzyme activity. Nude mice with xenograft models of lung cancer cells confirmed that miR-29c inhibited lung cancer metastasis in vivo, including bone and liver metastasis. Taken together, our results demonstrate that miR-29c serves as a tumor metastasis suppressor, which suppresses lung cancer cell adhesion to ECM and metastasis by directly inhibiting integrin β1 and MMP2 expression and by further reducing MMP2 enzyme activity. The results show that miR-29c may be a novel therapeutic candidate target to slow lung cancer metastasis.  相似文献   

7.
Wang  Ke  Lin  Xiaofeng 《Mammalian genome》2022,33(3):517-524

Despite considerable improvements in renal cell carcinoma (RCC) diagnostic and therapeutic strategy, the clinical prognosis of patients is far from satisfactory due to its recurrence and metastasis. Here, we attempted to explore the role of circMTO1 in RCC progression, and the underlying mechanism was further elucidated. We first detected the expression of circMTO1 in 90 pairs of RCC tissues and adjacent normal tissues using qRT-PCR. Besides, circMTO1, miR-211, miR-204 and KLF6 expression levels in RCC cells were also measured using qRT-PCR. MTT assay, cell migration, flow cytometry analysis, qRT-PCR and western blotting analysis were applied to evaluating the effect of circMTO1 in RCC cells. The bioinformatics analysis and the rescue experiment were devoted to the underlying mechanism. The results demonstrated CircMTO1 expression was significantly down-regulated in RCC tissues and cell lines. Besides, CircMTO1 inhibited cell proliferation, migration and invasion, induced apoptosis in RCC cells. In addition, CircMTO1 serves as a sponge for miR-211 and miR-204, KLF6 is a direct target of miR-211 and miR-204. Furthermore, circMTO1 and KLF6 overexpression rescued the suppression of miR-211/204 in RCC cell proliferation. In short, circMTO1 repressed RCC progression by regulating KLF6 via sponging miR-211 and miR-204, which may provide new idea of diagnosis and treatment in renal cell carcinoma.

  相似文献   

8.
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. We aimed to investigate the role of LINC00184 in NSCLC. Migration, proliferation and invasion of NSCLC cells were analysed using the wound healing assay, cell counting kit-8 assay and transwell assay, respectively. Apoptosis and cell cycle were assessed using flow cytometry. Online bioinformatics tools were utilized to predict downstream microRNAs (miRNA) or genes related to LINC00184 expression. The RNA pull-down experiment and luciferase reporter assay were performed to verify the predictions thereof. LINC00184, miR-524-5p, and high mobility group 2 protein (HMGB2) expression levels in NSCLC tissues and cell lines were detected using quantitative real-time polymerase chain reaction. An NSCLC mouse model was constructed for in vivo experiments. LINC00184 overexpression was observed in NSCLC tissues and cell lines and was found to be correlated with poor prognosis. LINC00184 knockdown inhibited cell proliferation, migration and invasion, induced cell cycle arrest and accelerated apoptosis in NSCLC cell lines. LINC00184 suppressed tumour growth and proliferation in NSCLC mouse models and directly targeted the miR-524-5p/HMGB2 axis. Moreover, the expression levels of LINC00184 and HMGB2 were negatively correlated with miR-524-5p expression, whereas LINC00184 expression was positively correlated with HMGB2 expression. LINC00184 affected the cell cycle, proliferation, apoptosis, migration and invasion in NSCLC via regulation of the miR-524-5p/HMGB2 axis.  相似文献   

9.
目的: 探讨miR-34a-5p在三阴性乳腺癌(triple negative breast cancer,TNBC)中的表达,分析miR-34a-5p对TNBC细胞增殖、凋亡、迁移的作用,对TNBC荷瘤小鼠肿瘤生长的影响以及在TNBC中对B7-H1表达的影响。方法: 利用RT-qPCR、Western blot分析TNBC细胞中miR-34a-5p、B7-H1的表达,并利用Kaplan-Meier分析二者的表达与TNBC患者的生存关系;将miR-34a-5p转染TNBC细胞,通过CCK-8、流式细胞术及划痕实验检测miR-34a-5p对TNBC细胞增殖、凋亡、迁移的影响;利用RT-qPCR、Western blot检测miR-34a-5p、B7-H1表达水平的变化,双荧光素酶基因报告验证miR-34a-5p与B7-H1的相互作用;利用RT-qPCR、Western blot、IHC检测miR-34a-5p对MDA-MB-231荷瘤小鼠miR-34a、B7-H1表达的影响。结果: TNBC细胞中miR-34a-5p呈低表达,B7-H1呈高表达,二者均与TNBC患者的不良预后有关,差距具有统计学意义(P<0.01);miR-34a-5p抑制TNBC细胞增殖、侵袭,促进细胞凋亡,并且在TNBC细胞中靶向抑制B7-H1;miR-34a-5p agomir在体内抑制MDA-MB-231成瘤裸鼠的肿瘤生长和B7-H1表达。结论: miR-34a-5p在TNBC发生、发展中发挥着重要作用,靶向miR-34a-5p/B7-H1可能成为TNBC患者新的分子治疗策略。  相似文献   

10.
The purpose of this study is to investigate the role of microRNA-125b (miR-125b) and its mechanism in spinal cord injury (SCI) by targeting Smurf1. After loss- and gain-function approaches were conducted in SCI rat models and neural stem cells (NSCs) isolated from foetal rats, the Basso-Beattie-Bresnahan (BBB) score was calculated, and related protein expression was determined by Western blot analysis and cell apoptosis by TUNEL staining. NSC viability was detected by CCK-8, migration abilities by Transwell assay and apoptosis by flow cytometry. The relationship between miR-125b, Smurf1 and KLF2 was evaluated by dual-luciferase reporter gene experiments, Co-IP and in vivo ubiquitin modification assays. Inhibition of miR-125b and KLF2 and the up-regulation of Smurf1 and ATF2 were observed in SCI rats. BBB scores were elevated, the expression of Nestin, NeuN, GFAP, NF-200 and Bcl-2 protein was enhanced but that of Bax protein was reduced, and cell apoptosis was inhibited in SCI rats after up-regulating miR-125b or silencing ATF2. Smurf1 was a target gene of miR-125b, which promoted KLF2 degradation through its E3 ubiquitin ligase function, and KLF2 repressed the expression of ATF2 in NSCs. The results in vivo were replicated in vitro. miR-125b overexpression promotes neurological function recovery after SCI.  相似文献   

11.
12.
13.
《Genomics》2022,114(2):110294
Circular RNA (circRNA) plays vital roles in diverse cancer progression, including non-small cell lung cancer (NSCLC). Herein, the role of circ_0004015 in regulating the sensitivity of NSCLC to cisplatin (DDP) is revealed. The RNA expression of circ_0004015, microRNA-198 (miR-198) and kruppel like factor 8 (KLF8) was detected by quantitative real-time polymerase chain reaction. Protein expression was checked by western blot. The half maximal inhibitory concentration of DDP and cell proliferation were determined by cell counting kit-8 assay. Cell colony formation ability, migration, invasion and apoptosis were investigated by colony-forming assay, transwell assay and flow cytometry analysis, respectively. The effect of circ_0004015 knockdown on DDP sensitivity in vivo was demonstrated by mouse model assay. The interactions among circ_0004015, miR-198 and KLF8 were predicted by bioinformatics methods, and identified by mechanism assays. The expression of circ_0004015 and KLF8 was apparently upregulated, while miR-198 expression was downregulated in DDP-resistant NSCLC tissues and cells compared with control groups. Additionally, circ_0004015 silencing repressed DDP resistance, cell proliferation, migration and invasion, but induced cell apoptosis in DDP-resistant NSCLC cells. Circ_0004015 knockdown promoted the effect of DDP on tumor formation in vivo. Also, miR-198 inhibitors attenuated circ_0004015 depletion-mediated action though associating with circ_0004015. MiR-198 regulated DDP sensitivity and NSCLC progression by targeting KLF8. Furthermore, circ_0004015 modulated KLF8 expression through interaction with miR-198. Circ_0004015 conferred DDP resistance and promoted NSCLC progression by miR-198/KLF8 pathway, proving a potential target for studying DDP-mediated treatment of NSCLC.  相似文献   

14.
Cervical cancer (CC) is a common gynecological cancer and a leading cause of cancer-related deaths in women globally. Therefore, this study explores the action of microRNA-205 (miR-205) in the invasion, migration, and angiogenesis of CC through binding to tumor suppressor lung cancer 1 (TSLC1). Initially, the microarray analysis was used to select the candidate gene and the regulatory microRNA. Then, the target relationship between miR-205 and TSLC1 as well as the expression of miR-205, TSLC1, and p-Akt/total Akt in CC cells were determined. Afterwards, CC cell invasion and migration were detected after the treatment of miR-205 mimics/inhibitors and short hairpin RNA against TSLC1. After coculture of cancer cells and vascular endothelial cells, cell proliferation, tube formation, and microvessel density (MVD) were detected to determine the roles of miR-205 in angiogenesis. Finally, tumor growth in nude mice was measured in vivo. TSLC1 was determined as the candidate gene, which was found to be targeted and negatively regulated by miR-205. Then, downregulated miR-205 or forced TSLC1 expression inhibited invasion, migration, and angiogenesis in CC, corresponding to suppressed cell proliferation, tube formation, and expression of IL-8, VEGF, and bFGF, as well as the inhibited activation of the Akt signaling pathway. Furthermore, downregulation of miR-205 was found to exert an inhibitory role in tumor formation and MVD by elevating TSLC1 in CC in vivo. This study demonstrated that downregulated miR-205 inhibited cell invasion, migration, and angiogenesis in CC by inactivating the Akt signaling pathway via TSLC1 upregulation.  相似文献   

15.
16.
ABSTRACT

Effect of miR-216a-3p on lung cancer hasn’t been investigated. Here, we explored its effects on lung cancer. MiR-216a-3p expression in lung cancer tissues and cells was detected by RT-qPCR. The target gene of miR-216a-3p was predicted by bioinformatics and confirmed by luciferase-reporter assay. After transfection, cell viability, migration, invasion, proliferation, and apoptosis were detected by MTT, scratch, transwell, colony formation, and flow cytometry. The expressions of COPB2 and apoptosis-related factors were detected by RT-qPCR or western blot. MiR-216a-3p was low-expressed and COPB2 was high-expressed in lung cancer tissues and cells. MiR-216a-3p targeted COPB2 and regulated its expression. MiR-216a-3p inhibited lung cancer cell viability, migration, invasion, and proliferation, while promoted apoptosis. Effect of miR-216a-3p on lung cancer was reversed by COPB2. MiR-216a-3p regulated proliferation, apoptosis, migration, and invasion of lung cancer cells via targeting COPB2.  相似文献   

17.
Lung carcinoma is the most common type of malignant tumors globally, and its molecular mechanisms remained unclear. With the aim to investigate the effects of microRNA (miR)-377-5p on the cell development, invasion, metastasis, and cycle of lung carcinoma, this study was performed. We evaluated miR-377-5p expression levels in lung cancer tissues and cell models. Cell viability, proliferation, migration, invasion abilities, and cell cycle distribution were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, crystal violet, transwell, and flow cytometry assay. Furthermore, expression levels of protein kinase B α subunit (AKT1) and proteins related to cell cycle and epithelial-mesenchymal transition (EMT) were assessed using Western blot analysis and quantitative real-time polymerase chain reaction. These results suggested that miR-377-5p was downregulated in vivo and in cell models, and miR-377-5p overexpression inhibited cell viability, proliferation, migration, invasion, and induced cell-cycle arrest. In addition, as a target of miR-377-5p, AKT1 alleviated the decreases of cell viability, proliferation, migration, invasion, the S-phase cells, the expression of cyclin D1, fibronectin, and vimentin, as well as the increases of the G0/G1-phase cells, the expression of Foxo1, p27 kip1, p21 Cip1 and E-cadherin when miR-377-5p overexpressed. In conclusion, miR-377-5p inhibited cell development and regulated cell cycle distribution and EMT by targeting AKT1, which provided a theoretical basis for further study of lung carcinoma therapeutics.  相似文献   

18.
Nasopharyngeal carcinoma (NPC) is the most common primary malignancy arising from the epithelial cells of nasopharynx. CircTMTC1 is upregulated in NPC patients, but its role and molecular mechanism in NPC are unknown. Normal nasopharyngeal epithelium and tumor tissues were collected. The expression of circTMTC1, miR-495, MET/eIF4G1 pathway-related molecules were examined. Colony formation and transwell assays were used to assess cell proliferation, migration, and invasion. Cell apoptosis was analyzed by annexin V and propidium iodide (PI) staining. Gene interaction was examined by RNA immunoprecipitation (RIP) and luciferase activity assays. Subcutaneous and intravenous xenograft mouse models were established to analyze NPC growth and metastasis in vivo. CircTMTC1 was highly expressed and miR-495 was downregulated in NPC, which were associated with poor prognosis of NPC. Both circTMTC1 knockdown and miR-495 overexpression inhibited NPC cell proliferation, migration, invasion, and epithelial–mesenchymal transition (EMT) and promoted cell apoptosis. CircTMTC1 directly targeted miR-495 to promote the expression of its downstream target gene MET. miR-495 knockdown enhanced the expression of c-Myc, Cyclin D1, and survivin and accelerated NPC cell proliferation, migration, invasion, and EMT through targeting MET and activating the MET-eIF4G1 axis. CircTMTC1 silence inhibited NPC growth and lung metastasis by targeting the miR-495-MET-eIF4G1 translational regulation axis in vivo. CircTMTC1 accelerates NPC progression through targeting miR-495 and consequently activating the MET-eIF4G1 translational regulation axis, suggesting potential therapeutic targets for NPC treatment.Subject terms: Cancer, Diseases  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号