首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
ObjectivesCutaneous wound healing is one of the major medical problems worldwide. Epigenetic modifiers have been identified as important players in skin development, homeostasis and wound repair. SET domain–containing 2 (SETD2) is the only known histone H3K36 tri‐methylase; however, its role in skin wound healing remains unclear.Materials and MethodsTo elucidate the biological role of SETD2 in wound healing, conditional gene targeting was used to generate epidermis‐specific Setd2‐deficient mice. Wound‐healing experiments were performed on the backs of mice, and injured skin tissues were collected and analysed by haematoxylin and eosin (H&E) and immunohistochemical staining. In vitro, CCK8 and scratch wound‐healing assays were performed on Setd2‐knockdown and Setd2‐overexpression human immortalized keratinocyte cell line (HaCaT). In addition, RNA‐seq and H3K36me3 ChIP‐seq analyses were performed to identify the dysregulated genes modulated by SETD2. Finally, the results were validated in functional rescue experiments using AKT and mTOR inhibitors (MK2206 and rapamycin).ResultsEpidermis‐specific Setd2‐deficient mice were successfully established, and SETD2 deficiency resulted in accelerated re‐epithelialization during cutaneous wound healing by promoting keratinocyte proliferation and migration. Furthermore, the loss of SETD2 enhanced the scratch closure and proliferation of keratinocytes in vitro. Mechanistically, the deletion of Setd2 resulted in the activation of AKT/mTOR signalling pathway, while the pharmacological inhibition of AKT and mTOR with MK2206 and rapamycin, respectively, delayed wound closure.ConclusionsOur results showed that SETD2 loss promoted cutaneous wound healing via the activation of AKT/mTOR signalling.  相似文献   

2.
Bone marrow‐derived mesenchymal stem cell (BMSC)‐derived small extracellular vesicles (sEVs) are potent candidates for the suppression of acute rejection post‐renal allograft and have been reported to halt dendritic cells (DCs) maturation. However, whether BMSC‐derived sEVs mitigate acute rejection post‐renal allograft by targeting DCs is still unclear. In this study, donor BMSC‐derived sEVs (sEVs) relieved the inflammatory response and suppressed mature DCs (mDCs) location in kidney grafts, and increased regulatory T (Treg) cell population in the spleens of the rats that underwent kidney allograft. In lipopolysaccharide (LPS)‐stimulated immature DCs (imDCs), sEVs suppressed the maturation and migration of DCs and inactivated toll‐like receptor 4 (TLR4) signaling. Compared with LPS‐treated imDCs, imDCs treated with LPS+sEVs promoted CD4+T cells differentiated toward Treg cells. Subsequently, we found that Loc108349490, a long non‐coding RNA (lncRNA) abundant in sEVs, mediated the inhibitory effect of sEVs on DC maturation and migration by promoting TLR4 ubiquitination. In rats that underwent an allograft, Loc108349490 deficiency weakened the therapeutic effect of sEVs on acute rejection. The present study firstly found that sEVs alleviated acute rejection post‐renal allograft by transferring lncRNA to DCs and screened out the functional lncRNA loaded in sEVs was Loc108349490.  相似文献   

3.
Hydrogel dressings have significant advantages such as absorption of tissue exudate, maintenance of proper moist environment, and promotion of cell proliferation. However, facile preparation method and high-efficient antibacterial hydrogel dressings are still a great challenge. In this study, a facile approach to prepare antibacterial nanocomposite hydrogel dressing to accelerate healing was explored. The hydrogels consisted of quaternized chitosan and chemically cross-linked polyacrylamide, as well as silver nanoparticles (AgNPs) stabilized by chitosan. The synthesis of the hydrogels including the formation of AgNPs and polymerization of acrylamide was accomplished simultaneously under UV irradiation in 1 hour without adding initiator. The hydrogels showed favorable tensile strength of ∼100 kPa with elongation at break over 1000% and shear modulus of ∼104 Pa as well as suitable swelling ratio, which were appropriate for wound dressing. The combination of quaternized chitosan and AgNPs exhibited high-efficient and synergetic antibacterial performance with low cytotoxicity. In vivo animal experiments showed that the hydrogel can effectively prevent wound infection and promote wound healing. This study provides a facile method to produce antibacterial hydrogel wound dressing materials.  相似文献   

4.
为了获得更为理想的皮肤创口修复敷料,在海藻酸钠(SA)和聚丙烯酰胺(PAM)水凝胶的基础上复合人发角蛋白(KTN),制得KTN/SA/PAM水凝胶皮肤敷料.用电子万能测试机、扫描电子显微镜等对其进行表征,结果显示,KTN/SA/PAM水凝胶皮肤敷料拉伸强度为42.41 kPa,弹性模量11.19 kPa,接近人体皮肤组...  相似文献   

5.
This review covers the use of plasma technology relevant to the preparation of dressings for wound healing. The current state of knowledge of plasma treatments that have potential to provide enhanced functional surfaces for rapid and effective healing is summarized. Dressings that are specialized to the needs of individual cases of chronic wounds such as diabetic ulcers are a special focus. A summary of the biology of wound healing and a discussion of the various types of plasmas that are suitable for the customizing of wound dressings are given. Plasma treatment allows the surface energy and air permeability of the dressing to be controlled, to ensure optimum interaction with the wound. Plasmas also provide control over the surface chemistry and in cases where the plasma creates energetic ion bombardment, activation with long-lived radicals that can bind therapeutic molecules covalently to the surface of the dressing. Therapeutic innovations enabled by plasma treatment include the attachment of microRNA or antimicrobial peptides. Bioactive molecules that promote subsequent cell adhesion and proliferation can also be bound, leading to the recruitment of cells to the dressing that may be stem cells or patient-derived cells. The presence of a communicating cell population expressing factors promotes healing.  相似文献   

6.
Several studies have examined the functions of nucleic acids in small extracellular vesicles (sEVs). However, much less is known about the protein cargos of sEVs and their functions in recipient cells. This study demonstrates the presence of lysine‐specific demethylase 1 (LSD1), which is the first identified histone demethylase, in the culture medium of gastric cancer cells. We show that sEVs derived from gastric cancer cells and the plasma of patients with gastric cancer harbor LSD1. The shuttling of LSD1‐containing sEVs from donor cells to recipient gastric cancer cells promotes cancer cell stemness by positively regulating the expression of Nanog, OCT4, SOX2, and CD44. Additionally, sEV‐delivered LSD1 suppresses oxaliplatin response of recipient cells in vitro and in vivo, whereas LSD1‐depleted sEVs do not. Taken together, we demonstrate that LSD1‐loaded sEVs can promote stemness and chemoresistance to oxaliplatin. These findings suggest that the LSD1 content of sEV could serve as a biomarker to predict oxaliplatin response in gastric cancer patients.  相似文献   

7.
The genetically diabetic db/db mouse exhibits symptoms that resemble human type 2 diabetes mellitus, demonstrates delayed wound healing, and has been used extensively as a model to study the role of therapeutic topical reagents in wound healing. The purpose of the authors' study was to validate an excisional wound model using a 6-mm biopsy punch to create four full-thickness dorsal wounds on a single db/db mouse. Factors considered in developing the db/db wound model include reproducibility of size and shape of wounds, the effect of semiocclusive dressings, comparison with littermate controls (db/-), clinical versus histologic evidence of wound closure, and cross-contamination of wounds with topically applied reagents. The size of wounds was larger, with less variation in the db/db mice (31.11 +/- 3.76 mm2) versus db/- mice (23.64 +/- 4.78 mm2). Wounds on db/db mice that were covered with a semiocclusive dressing healed significantly more slowly (mean, 27.75 days) than wounds not covered with the dressing (mean, 13 days; p < 0.001), suggesting the dressings may splint the wounds open. As expected, wounds healed more slowly on db/db mice than db/- mice (covered wounds, 27.75 days versus 11.86 days, p < 0.001; wounds not covered, 13 days versus 11.75 days, p = 0.39). Covered wounds, thought to be closed by clinical examination, were confirmed closed by histology only 62 percent of the time in the db/db and 100 percent of the time in the db/- mice. Topical application of blue histologic dye or soluble biotinylated laminin 5 to one of the four wounds did not spread locally and contaminate adjacent wounds. Multiple, uniform, 6-mm wounds in db/db mice heal in a relatively short time, decrease the number of animals needed for each study, and allow each animal to serve as its own control. The db/db diabetic mouse appears to be an excellent model of delayed wound healing, particularly for studying factors related to epithelial migration.  相似文献   

8.
The use of active ingredients in wound management have evolved alongside the pharmaceutical agents and dressings used to deliver them. However, the development of gauzes, dressings with specific properties, still remains a challenge for several medical applications. A new methodology for the controlled release of active components for the healing of burn wounds is proposed herein. Cotton and non‐woven bandages have been cationised to promote the attachment of protein microspheres. The active agents, piroxicam and vegetable oil, were entrapped into the microspheres using ultrasound energy. Active agents were released from the microspheres by a change in pH. Wound healing was assessed through the use of standardised burn wounds induced by a cautery in human full‐thickness skin equivalents (EpidermFT). The best re‐epithelialisation and fastest wound closure was observed in wounds treated with proteinaceous microspheres attached to gauzes, after six days of healing, in comparison with commercial collagen dressing and other controls. Furthermore, the ability of these materials to reduce the inflammation process, together with healing improvement, makes these biomaterials suitable for wound‐dressing applications.  相似文献   

9.
Impaired wound healing is an important clinical problem in diabetes mellitus and results in failure to completely heal diabetic foot ulcers (DFUs), which may lead to lower extremity amputations. In the present study, collagen based dressings were prepared to be applied as support for the delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. The performance of NT alone and NT–loaded collagen matrices to treat wounds in streptozotocin (STZ) diabetic induced mice was evaluated. Results showed that the prepared dressings were not-cytotoxic up to 72 h after contact with macrophages (Raw 264.7) and human keratinocyte (HaCaT) cell lines. Moreover, those cells were shown to adhere to the collagen matrices without noticeable change in their morphology. NT–loaded collagen dressings induced faster healing (17% wound area reduction) in the early phases of wound healing in diabetic wounded mice. In addition, they also significantly reduced inflammatory cytokine expression namely, TNF-α (p < 0.01) and IL-1β (p < 0.01) and decreased the inflammatory infiltrate at day 3 post-wounding (inflammatory phase). After complete healing, metalloproteinase 9 (MMP-9) is reduced in diabetic skin (p < 0.05) which significantly increased fibroblast migration and collagen (collagen type I, alpha 2 (COL1A2) and collagen type III, alpha 1 (COL3A1)) expression and deposition. These results suggest that collagen-based dressings can be an effective support for NT release into diabetic wound enhancing the healing process. Nevertheless, a more prominent scar is observed in diabetic wounds treated with collagen when compared to the treatment with NT alone.  相似文献   

10.

Background

Hydrocellular foam dressing, modern wound dressing, induces moist wound environment and promotes wound healing: however, the regulatory mechanisms responsible for these effects are poorly understood. This study was aimed to reveal the effect of hydrocellular foam dressing on hyaluronan, which has been shown to have positive effects on wound healing, and examined its regulatory mechanisms in rat skin.

Methodology/Principal Findings

We created two full-thickness wounds on the dorsolateral skin of rats. Each wound was covered with either a hydrocellular foam dressing or a film dressing and hyaluronan levels in the periwound skin was measured. We also investigated the mechanism by which the hydrocellular foam dressing regulates hyaluronan production by measuring the gene expression of hyaluronan synthase 3 (Has3), peroxisome proliferator-activated receptor α (PPARα), and CD44. Hydrocellular foam dressing promoted wound healing and upregulated hyaluronan synthesis, along with an increase in the mRNA levels of Has3, which plays a primary role in hyaluronan synthesis in epidermis. In addition, hydrocellular foam dressing enhanced the mRNA levels of PPARα, which upregulates Has3 gene expression, and the major hyaluronan receptor CD44.

Conclusions/Significance

These findings suggests that hydrocellular foam dressing may be beneficial for wound healing along with increases in hyaluronan synthase 3 and PPARα gene expression in epidermis. We believe that the present study would contribute to the elucidation of the mechanisms underlying the effects of hydrocellular foam dressing-induced moist environment on wound healing and practice evidence-based wound care.  相似文献   

11.
IntroductionSkin is susceptible to senescence‐associated secretory phenotype (SASP) and inflamm‐ageing partly owing to the degeneration of mitochondria. AdipoRon (AR) has protective effects on mitochondria in metabolic diseases such as diabetes. We explored the role of AR on mitochondria damage induced by skin inflamm‐ageing and its underlying mechanism.MethodsWestern blot, immunofluorescence and TUNEL staining were used to detect inflammatory factors and apoptosis during skin ageing. Transmission electron microscopy, ATP determination kit, CellLight Mitochondria GFP (Mito‐GFP), mitochondrial stress test, MitoSOX and JC‐1 staining were used to detect mitochondrial changes. Western blot was applied to explore the underlying mechanism. Flow cytometry, scratch test, Sulforhodamine B assay and wound healing test were used to detect the effects of AR on cell apoptosis, migration and proliferation.ResultsAR attenuated inflammatory factors and apoptosis that increased in aged skin, and improved mitochondrial morphology and function. This process at least partly depended on the suppression of dynamin‐related protein 1 (Drp1)‐mediated excessive mitochondrial division. More specifically, AR up‐regulated the phosphorylation of Drp1 at Serine 637 by activating AMP‐activated protein kinase (AMPK), thereby inhibiting the mitochondrial translocation of Drp1. Moreover, AR reduced mitochondrial fragmentation and the production of superoxide, preserved the membrane potential and permeability of mitochondria and accelerated wound healing in aged skin.ConclusionAR rescues the mitochondria in aged skin by suppressing its excessive division mediated by Drp1.  相似文献   

12.
Wound dressings have experienced continuous and significant changes over the years based on the knowledge of the biochemical events associated with chronic wounds. The development goes from natural materials used to just cover and conceal the wound to interactive materials that can facilitate the healing process, addressing specific issues in non-healing wounds. These new types of dressings often relate with the proteolytic wound environment and the bacteria load to enhance the healing. Recently, the wound dressing research is focusing on the replacement of synthetic polymers by natural protein materials to delivery bioactive agents to the wounds. This article provides an overview on the novel protein-based wound dressings such as silk fibroin keratin and elastin. The improved properties of these dressings, like the release of antibiotics and growth factors, are discussed. The different types of wounds and the effective parameters of healing process will be reviewed.  相似文献   

13.
ABSTRACT

A method has been developed for impregnating alginate-based wound dressings with trace elements required for wound healing and for quantifying the transfer from these dressing to wound fluid (for which a substitute—blood serum—was used in these experiments). Under ideal conditions, up to 85% can be carried across from the tow to the wound fluid.  相似文献   

14.
Background aimsRecalcitrant diabetic wounds are not responsive to the most common treatments. Bone marrow-derived stem cell transplantation is used for the healing of chronic lower extremity wounds.MethodsWe report on the treatment of eight patients with aggressive, refractory diabetic wounds. The marrow-derived cells were injected/applied topically into the wound along with platelets, fibrin glue and bone marrow-impregnated collagen matrix.ResultsFour weeks after treatment, the wound was completely closed in three patients and significantly reduced in the remaining five patients.ConclusionsOur study suggests that the combination of the components mentioned can be used safely in order to synergize the effect of chronic wound healing.  相似文献   

15.
Material barrier properties to microbes are an important issue in many pharmaceutical applications like wound dressings. A wide range of biomaterials has been used to manage the chronic inflamed wounds. Eight hydrogel membranes of poly vinyl alcohol (PVA) with κ-carrageenan (KC) and Lactobacillus bulgaricus extract (LAB) have been prepared by using freeze–thawing technique. To evaluate the membranes efficiency as wound dressing agents, various tests have been done like gel fraction, swelling behavior, mechanical properties, etc. The antibacterial activities of the prepared membranes were tested against the antibiotic-resistant bacterial isolates. In addition, the safety usage of the prepared hydrogel was checked on human dermal fibroblast cells. The anti-inflammatory properties of the prepared hydrogel on LPS-PBMC cell inflammatory model were quantified using enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-qPCR). The analysis data of TGA, SEM, gel fraction, and swelling behavior showed changes in properties of prepared PVA\KC\LAB hydrogel membrane than pure PVA hydrogel membrane. The antibacterial activities of the prepared membranes augmented in LAB extract-prepared membranes. Out of the eight used hydrogel membranes, the PVAKC4 hydrogel membrane is the safest one on fibroblast cellular proliferation with a maximum proliferation percentage 97.3%. Also, all the used hydrogel membrane showed abilities to reduce the concentration of IL-2 and IL-8 compared with both negative and positive control. In addition, almost all the prepared hydrogel membrane showed variable abilities to downregulate the expression of TNF-α gene with superior effect of hydrogel membrane KC1. PVA/KC/LAB extract hydrogel membrane may be a promising material for wound dressing application and could accelerate the healing process of the chronic wound because of its antimicrobial and anti-inflammatory properties.  相似文献   

16.
《Cytotherapy》2021,23(8):672-676
Background aimsThe treatment and care of human wounds represent an enormous burden on the medical system and patients alike. Chronic or delayed healing wounds are characterized by the inability to form proper granulation tissue, followed by deficiencies in keratinocyte migration and wound re-epithelialization, leading to increased likelihood of infection and poor wound outcomes. Human reticular acellular dermal matrix (HR-ADM) is one type of tissue graft developed to enhance closure of delayed healing wounds that has demonstrated clinical utility through accelerating closure of lower extremity diabetic ulcers, but the mechanisms underlying this clinical success are not well understood.MethodsThe authors utilized a diabetic murine splinted excisional wound model to investigate the effects of HR-ADM application on wound closure.ResultsThe authors demonstrate that application of HR-ADM served as a dermal scaffold and promoted rapid re-epithelialization and keratinocyte proliferation, resulting in accelerated wound closure while minimizing granulation tissue formation. HR-ADM-applied wounds also demonstrated evidence of cellular infiltration, neovascularization and collagen remodeling by the host organism.ConclusionsThese data suggest that HR-ADM supports epidermal closure in delayed healing wounds and remodeling of the matrix into host tissue, lending further support to the clinical success of HR-ADM described in clinical reports.  相似文献   

17.
Biocompatible silver-based nanofibrous frameworks have attracted intensive attention in wound dressing materials ascribed to their greater stability, minimal toxicity, excellent antibacterial activity, and extended therapeutic efficiency. The present investigation delineates a simple approach to synthesize silver nanoparticles (Ag NPs), and riboflavin (RF) decorated polyvinyl alcohol/β-Cyclodextrin (PVA/β-CD) electrospun nanofibrous scaffolds envisioning their application in wound dressings. PVA/β-CD polymer matrix regulates the stabilization of Ag NPs and RF. Also, it promotes the wound healing process and skin regeneration. The morphology, thermal properties, and their structure were also evaluated. Likewise, mechanical properties, biodegradation and drug release profile of the nanofibrous scaffolds were evaluated. In addition Antibacterial studies of the resultant nanofibrous scaffolds showed a strong inhibitory effect against Staphylococcus aureus and Escherichia coli at a considerable level. Moreover, Ag NPs-RF/PVA/β-CD nanofibrous scaffold were studied for its in vitro cytotoxicity using human embryonic kidney cells (HEK-293), and the results suggested that Ag NPs and RF present in the nanofibrous scaffolds exhibited its cytotoxicity. Besides, wound healing efficiency of the Ag NPs-RF decorated nanofibrous scaffolds was assessed using full thickness excision wounds in rat models displayed as an excellent biomaterial for wound dressings.  相似文献   

18.
静电纺丝伤口敷料作为一种新型功能性敷料,具有较大的比表面积、可调控的孔隙率和良好的生物性能,既有益于细胞呼吸,又 可抑制细菌感染伤口,并能促进细胞增殖和加速创面愈合,是未来伤口敷料研发领域发展的新方向。介绍静电纺丝纳米纤维的原理、特点, 重点阐述各类聚合物、生物活性物质在静电纺丝伤口敷料制备中的应用进展。  相似文献   

19.
Yuan  Jifang  Hou  Qian  Chen  Deyun  Zhong  Lingzhi  Dai  Xin  Zhu  Ziying  Li  Meirong  Fu  Xiaobing 《中国科学:生命科学英文版》2020,63(4):552-562
Small molecules loaded into biological materials present a promising strategy for stimulating endogenous repair mechanisms for in situ skin regeneration. Lithium can modulate various biologic processes, promoting proliferation, angiogenesis, and decreasing inflammation. However, its role in skin repair is rarely reported. In this study, we loaded lithium chloride(LiCl) into the chitosan(CHI) hydrogel and develop a sterile and biocompatible sponge scaffold through freeze-drying. In-vitro assessment demonstrated that the CHI-LiCl composite scaffolds(CLiS) possessed favorable cytocompatibility, swelling and biodegradation.We created full-thickness skin wounds in male C57BL/c mice to evaluate the healing capacity of CLiS. Compared with the wounds of control and CHI scaffold(CS) groups, the wounds in the CLiS-treated group showed reduced inflammation, improved angiogenesis, accelerated re-epithelialization, sustained high expression of β-catenin with a small amount of regenerated hair follicles. Therefore, CLiS may be a promising therapeutic dressing for skin wound repair and regeneration.  相似文献   

20.
目的:探讨壳聚糖护创敷料用于烧伤创面的治疗效果和安全性。方法:采用回顾性方法分析,选取中国人民解放军空降兵军医院烧伤科(本院)自2014年1月-2018年9月就诊的80例烧伤患者的临床资料,根据治疗方法分为对照组(40例,给予单纯紫草油覆盖创面)与研究组(40例,给予壳聚糖护创敷料覆盖创面),比较两组创面愈合时间、疼痛度、瘢痕生长及不同时期分泌物细菌培养阳性率。结果:研究组的创面愈合时间(18.45±4.64)及瘢痕生长评分(3.23±1.12)均低于对照组(22.45±5.23、5.34±1.23),均有显著差异(P0.05)。治疗后7 d、14 d、21 d研究组的创面疼痛度低于对照组(P0.05)。治疗后3 d、7 d、14 d研究组的细菌培养阳性率低于对照组(P0.05)。两组治疗期间均没有出现不良事件和严重不良事件的发生。结论:壳聚糖护创敷料用于烧伤创面患者治疗中,可缩短创面愈合时间,抑菌,减少创面愈合后的瘢痕增生,从而减轻患者疼痛,安全性高,值得临床推广应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号