首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Cytoplasmic linker protein (CLIP)-170 is a microtubule (MT) plus-end-tracking protein that regulates MT dynamics and links MT plus ends to different intracellular structures. We have shown previously that intramolecular association between the N and C termini results in autoinhibition of CLIP-170, thus altering its binding to MTs and the dynactin subunit p150Glued (J. Cell Biol. 2004: 166, 1003–1014). In this study, we demonstrate that conformational changes in CLIP-170 are regulated by phosphorylation that enhances the affinity between the N- and C-terminal domains. By using site-directed mutagenesis and phosphoproteomic analysis, we mapped the phosphorylation sites in the third serine-rich region of CLIP-170. A phosphorylation-deficient mutant of CLIP-170 displays an “open” conformation and a higher binding affinity for growing MT ends and p150Glued as compared with nonmutated protein, whereas a phosphomimetic mutant confined to the “folded back” conformation shows decreased MT association and does not interact with p150Glued. We conclude that phosphorylation regulates CLIP-170 conformational changes resulting in its autoinhibition.  相似文献   

2.
Microtubule dynamics are modulated by regulatory proteins that bind to their plus ends (+TIPs [plus end tracking proteins]), such as cytoplasmic linker protein 170 (CLIP-170) or end-binding protein 1 (EB1). We investigated the role of +TIPs during phagocytosis in macrophages. Using RNA interference and dominant-negative approaches, we show that CLIP-170 is specifically required for efficient phagocytosis triggered by αMβ2 integrin/complement receptor activation. This property is not observed for EB1 and EB3. Accordingly, whereas CLIP-170 is dynamically enriched at the site of phagocytosis, EB1 is not. Furthermore, we observe that CLIP-170 controls the recruitment of the formin mDia1, an actin-nucleating protein, at the onset of phagocytosis and thereby controls actin polymerization events that are essential for phagocytosis. CLIP-170 directly interacts with the formin homology 2 domain of mDia1. The interaction between CLIP-170 and mDia1 is negatively regulated during αMβ2-mediated phagocytosis. Our results unravel a new microtubule/actin cooperation that involves CLIP-170 and mDia1 and that functions downstream of αMβ2 integrins.  相似文献   

3.
Axons act like cables, electrically wiring the nervous system. Polar bundles of microtubules (MTs) form their backbones and drive their growth. Plus end–tracking proteins (+TIPs) regulate MT growth dynamics and directionality at their plus ends. However, current knowledge about +TIP functions, mostly derived from work in vitro and in nonneuronal cells, may not necessarily apply to the very different context of axonal MTs. For example, the CLIP family of +TIPs are known MT polymerization promoters in nonneuronal cells. However, we show here that neither Drosophila CLIP-190 nor mammalian CLIP-170 is a prominent MT plus end tracker in neurons, which we propose is due to low plus end affinity of the CAP-Gly domain–containing N-terminus and intramolecular inhibition through the C-terminus. Instead, both CLIP-190 and CLIP-170 form F-actin–dependent patches in growth cones, mediated by binding of the coiled-coil domain to myosin-VI. Because our loss-of-function analyses in vivo and in culture failed to reveal axonal roles for CLIP-190, even in double-mutant combinations with four other +TIPs, we propose that CLIP-190 and -170 are not essential axon extension regulators. Our findings demonstrate that +TIP functions known from nonneuronal cells do not necessarily apply to the regulation of the very distinct MT networks in axons.  相似文献   

4.
Proteins that track growing microtubule (MT) ends are important for many aspects of intracellular MT function, but the mechanism by which these +TIPs accumulate at MT ends has been the subject of a long-standing controversy. In this issue, Bieling et al. (Bieling, P., S. Kandels-Lewis, I.A. Telley, J. van Dijk, C. Janke, and T. Surrey. 2008. J. Cell Biol. 183:1223–1233) reconstitute plus end tracking of EB1 and CLIP-170 in vitro, which demonstrates that CLIP-170 plus end tracking is EB1-dependent and that both +TIPs rapidly exchange between a soluble and a plus end–associated pool. This strongly supports the hypothesis that plus end tracking depends on a biochemical property of growing MT ends, and that the characteristic +TIP comets result from the generation of new +TIP binding sites through MT polymerization in combination with the exponential decay of these binding sites.  相似文献   

5.
Cytoplasmic linker protein 170 (CLIP-170) is a microtubule (MT) plus-end tracking protein (+ TIP) that dynamically localizes to the MT plus end and regulates MT dynamics. The mechanisms of these activities remain unclear because the CLIP-170-MT interaction is poorly understood, and even less is known about how CLIP-170 and other + TIPs act together as a network. CLIP-170 binds to the acidic C-terminal tail of α-tubulin. However, the observation that CLIP-170 has two CAP-Gly (cytoskeleton-associated protein glycine-rich) motifs and multiple serine-rich regions suggests that a single CLIP-170 molecule has multiple tubulin binding sites, and that these sites might bind to multiple parts of the tubulin dimer. Using a combination of chemical cross-linking and mass spectrometry, we find that CLIP-170 binds to both α-tubulin and β-tubulin, and that binding is not limited to the acidic C-terminal tails. We provide evidence that these additional binding sites include the H12 helices of both α-tubulin and β-tubulin and are significant for CLIP-170 activity. Previous work has shown that CLIP-170 binds to end-binding protein 1 (EB1) via the EB1 C-terminus, which mimics the acidic C-terminal tail of tubulin. We find that CLIP-170 can utilize its multiple tubulin binding sites to bind to EB1 and MT simultaneously. These observations help to explain how CLIP-170 can nucleate MTs and alter MT dynamics, and they contribute to understanding the significance and properties of the + TIP network.  相似文献   

6.
The nucleotide state of actin (ATP, ADP-Pi, or ADP) is known to impact its interactions with other actin molecules upon polymerization as well as with multiple actin binding proteins both in the monomeric and filamentous states of actin. Recently, molecular dynamics simulations predicted that a sequence located at the interface of subdomains 1 and 3 (W-loop; residues 165–172) changes from an unstructured loop to a β-turn conformation upon ATP hydrolysis (Zheng, X., Diraviyam, K., and Sept, D. (2007) Biophys. J. 93, 1277–1283). This region participates directly in the binding to other subunits in F-actin as well as to cofilin, profilin, and WH2 domain proteins and, therefore, could contribute to the nucleotide sensitivity of these interactions. The present study demonstrates a reciprocal communication between the W-loop region and the nucleotide binding cleft on actin. Point mutagenesis of residues 167, 169, and 170 and their site-specific labeling significantly affect the nucleotide release from the cleft region, whereas the ATP/ADP switch alters the fluorescence of probes located in the W-loop. In the ADP-Pi state, the W-loop adopts a conformation similar to that in the ATP state but different from the ADP state. Binding of latrunculin A to the nucleotide cleft favors the ATP-like conformation of the W-loop, whereas ADP-ribosylation of Arg-177 forces the W-loop into a conformation distinct from those in the ADP and ATP-states. Overall, our experimental data suggest that the W-loop of actin is a nucleotide sensor, which may contribute to the nucleotide state-dependent changes in F-actin and nucleotide state-modulated interactions of both G- and F-actin with actin-binding proteins.  相似文献   

7.
Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis by production of the Rho GTPase-glucosylating toxins A and B. Recently emerging hypervirulent Clostridium difficile strains additionally produce the binary ADP-ribosyltransferase toxin CDT (Clostridium difficile transferase), which ADP-ribosylates actin and inhibits actin polymerization. Thus far, the role of CDT as a virulence factor is not understood. Here we report by using time-lapse- and immunofluorescence microscopy that CDT and other binary actin-ADP-ribosylating toxins, including Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin, induce redistribution of microtubules and formation of long (up to >150 µm) microtubule-based protrusions at the surface of intestinal epithelial cells. The toxins increase the length of decoration of microtubule plus-ends by EB1/3, CLIP-170 and CLIP-115 proteins and cause redistribution of the capture proteins CLASP2 and ACF7 from microtubules at the cell cortex into the cell interior. The CDT-induced microtubule protrusions form a dense meshwork at the cell surface, which wrap and embed bacterial cells, thereby largely increasing the adherence of Clostridia. The study describes a novel type of microtubule structure caused by less efficient microtubule capture and offers a new perspective for the pathogenetic role of CDT and other binary actin-ADP-ribosylating toxins in host–pathogen interactions.  相似文献   

8.
The FKBP12-rapamycin-associated protein (FRAP) is a CLIP-170 kinase   总被引:3,自引:0,他引:3       下载免费PDF全文
CLIP-170/Restin belongs to a family of conserved microtubule (MT)-associated proteins, which are important for MT organization and functions. CLIP-170 is a phosphoprotein and phosphorylation is thought to regulate the binding of CLIP-170 to MTs. However, little is known about the kinase(s) involved. In this study, we show that FKBP12-rapamycin-associated protein (FRAP, also called mTOR/RAFT) interacts with CLIP-170. CLIP-170 is phosphorylated in vivo at multiple sites, including rapamycin-sensitive and -insensitive sites, and is phosphorylated by FRAP in vitro at the rapamycin-sensitive sites. In addition, rapamycin inhibited the ability of CLIP-170 to bind to MTs. Our observations suggest that multiple CLIP-170 kinases are involved in positive and negative control of CLIP-170, and FRAP is a CLIP-170 kinase positively regulating the MT-binding behavior of CLIP-170.  相似文献   

9.
Motile cells transduce environmental chemical signals into mechanical forces to achieve properly controlled migration. This signal–force transduction is thought to require regulated mechanical coupling between actin filaments (F-actins), which undergo retrograde flow at the cellular leading edge, and cell adhesions via linker “clutch” molecules. However, the molecular machinery mediating this regulatory coupling remains unclear. Here we show that the F-actin binding molecule cortactin directly interacts with a clutch molecule, shootin1, in axonal growth cones, thereby mediating the linkage between F-actin retrograde flow and cell adhesions through L1-CAM. Shootin1–cortactin interaction was enhanced by shootin1 phosphorylation by Pak1, which is activated by the axonal chemoattractant netrin-1. We provide evidence that shootin1–cortactin interaction participates in netrin-1–induced F-actin adhesion coupling and in the promotion of traction forces for axon outgrowth. Under cell signaling, this regulatory F-actin adhesion coupling in growth cones cooperates with actin polymerization for efficient cellular motility.  相似文献   

10.
Although actin at neuronal growth cones is well-studied, much less is known about actin organization and dynamics along axon shafts and presynaptic boutons. Using probes that selectively label filamentous-actin (F-actin), we found focal “actin hotspots” along axons—spaced ∼3–4 µm apart—where actin undergoes continuous assembly/disassembly. These foci are a nidus for vigorous actin polymerization, generating long filaments spurting bidirectionally along axons—a phenomenon we call “actin trails.” Super-resolution microscopy reveals intra-axonal deep actin filaments in addition to the subplasmalemmal “actin rings” described recently. F-actin hotspots colocalize with stationary axonal endosomes, and blocking vesicle transport diminishes the actin trails, suggesting mechanistic links between vesicles and F-actin kinetics. Actin trails are formin—but not Arp2/3—dependent and help enrich actin at presynaptic boutons. Finally, formin inhibition dramatically disrupts synaptic recycling. Collectively, available data suggest a two-tier F-actin organization in axons, with stable “actin rings” providing mechanical support to the plasma membrane and dynamic "actin trails" generating a flexible cytoskeletal network with putative physiological roles.  相似文献   

11.
A widespread belief in phagocyte biology is that FcγR-mediated phagocytosis utilizes membrane pseudopods, whereas Mac-1–mediated phagocytosis does not involve elaborate plasma membrane extensions. Here we report that dynamic membrane ruffles in activated macrophages promote binding of C3bi-opsonized particles. We identify these ruffles as components of the macropinocytosis machinery in both PMA- and LPS-stimulated macrophages. C3bi-particle capture is facilitated by enrichment of high-affinity Mac-1 and the integrin-regulating protein talin in membrane ruffles. Membrane ruffle formation and C3bi-particle binding are cytoskeleton dependent events, having a strong requirement for F-actin and microtubules (MTs). MT disruption blunts ruffle formation and PMA- and LPS-induced up-regulation of surface Mac-1 expression. Furthermore, the MT motor, kinesin participates in ruffle formation implicating a requirement for intracellular membrane delivery to active membrane regions during Mac-1–mediated phagocytosis. We observed colocalization of Rab11-positive vesicles with CLIP-170, a MT plus-end binding protein, at sites of particle adherence using TIRF imaging. Rab11 has been implicated in recycling endosome dynamics and mutant Rab11 expression inhibits both membrane ruffle formation and C3bi-sRBC adherence to macrophages. Collectively these findings represent a novel membrane ruffle “capture” mechanism for C3bi-particle binding during Mac-1–mediated phagocytosis. Importantly, this work also demonstrates a strong functional link between integrin activation, macropinocytosis and phagocytosis in macrophages.  相似文献   

12.
Activation of macrophages causes increased cell spreading, increased secretion of cytokines and matrix metalloproteinases, and enhanced phagocytosis. The intracellular mechanisms driving the up-regulation of these activities have not been completely clarified. We observe that classical activation of murine resident peritoneal or RAW 264.7 macrophages with a combination of IFN-gamma and LPS induces an increase in stabilized cytoplasmic microtubules (MTs), measured with an anti-acetylated alpha-tubulin Ab. We examined the mechanism of this MT stabilization and find that macrophage activation causes redistribution of the MT plus-end tracking protein, cytoplasmic linker protein-170 (CLIP-170). CLIP-170 is localized at the distal plus-ends of MTs in resting macrophages, but accumulates along the length of MTs in IFN-gamma/LPS-activated cells. A direct involvement of CLIP-170 in MT stabilization has not been thoroughly established. In this study, we show that expression of a mutant CLIP-170 chimeric protein (dominant-negative CLIP-170-GFP), lacking the MT-binding domain, prevents MT stabilization in activated RAW 264.7 macrophages. Furthermore, we find enhanced CLIP-170 association with MTs and MT stabilization by treating resting macrophages with okadaic acid, implicating the protein phosphatase 2A in CLIP-170 binding and MT stabilization in RAW 264.7 cells. Finally, we observed enhanced cell spreading and phagocytosis in both IFN-gamma/LPS-activated and okadaic acid-treated resting RAW 264.7 cells, which are markedly reduced in activated cells expressing dominant-negative CLIP-170-GFP. These results identify CLIP-170 as a key regulator of MT stabilization and establish a prominent role for stabilized MTs in cell spreading and phagocytosis in activated macrophages.  相似文献   

13.
Red blood cell (RBC) shape and deformability are supported by a planar network of short actin filament (F-actin) nodes (∼37 nm length, 15–18 subunits) interconnected by long spectrin strands at the inner surface of the plasma membrane. Spectrin-F-actin network structure underlies quantitative modeling of forces controlling RBC shape, membrane curvature, and deformation, yet the nanoscale organization and dynamics of the F-actin nodes in situ are not well understood. We examined F-actin distribution and dynamics in RBCs using fluorescent-phalloidin labeling of F-actin imaged by multiple microscopy modalities. Total internal reflection fluorescence and Zeiss Airyscan confocal microscopy demonstrate that F-actin is concentrated in multiple brightly stained F-actin foci ∼200–300 nm apart interspersed with dimmer F-actin staining regions. Single molecule stochastic optical reconstruction microscopy imaging of Alexa 647-phalloidin-labeled F-actin and computational analysis also indicates an irregular, nonrandom distribution of F-actin nodes. Treatment of RBCs with latrunculin A and cytochalasin D indicates that F-actin foci distribution depends on actin polymerization, while live cell imaging reveals dynamic local motions of F-actin foci, with lateral movements, appearance and disappearance. Regulation of F-actin node distribution and dynamics via actin assembly/disassembly pathways and/or via local extension and retraction of spectrin strands may provide a new mechanism to control spectrin-F-actin network connectivity, RBC shape, and membrane deformability.  相似文献   

14.
CLIP-associating protein (CLASP) 1 and CLASP2 are mammalian microtubule (MT) plus-end binding proteins, which associate with CLIP-170 and CLIP-115. Using RNA interference in HeLa cells, we show that the two CLASPs play redundant roles in regulating the density, length distribution and stability of interphase MTs. In HeLa cells, both CLASPs concentrate on the distal MT ends in a narrow region at the cell margin. CLASPs stabilize MTs by promoting pauses and restricting MT growth and shortening episodes to this peripheral cell region. We demonstrate that the middle part of CLASPs binds directly to EB1 and to MTs. Furthermore, we show that the association of CLASP2 with the cell cortex is MT independent and relies on its COOH-terminal domain. Both EB1- and cortex-binding domains of CLASP are required to promote MT stability. We propose that CLASPs can mediate interactions between MT plus ends and the cell cortex and act as local rescue factors, possibly through forming a complex with EB1 at MT tips.  相似文献   

15.
Cadherin-mediated cell–cell adhesion is required for epithelial tissue integrity in homeostasis, during development, and in tissue repair. E-cadherin stability depends on F-actin, but the mechanisms regulating actin polymerization at cell–cell junctions remain poorly understood. Here we investigated a role for formin-mediated actin polymerization at cell–cell junctions. We identify mDia1 and Fmnl3 as major factors enhancing actin polymerization and stabilizing E-cadherin at epithelial junctions. Fmnl3 localizes to adherens junctions downstream of Src and Cdc42 and its depletion leads to a reduction in F-actin and E-cadherin at junctions and a weakening of cell–cell adhesion. Of importance, Fmnl3 expression is up-regulated and junctional localization increases during collective cell migration. Depletion of Fmnl3 or mDia1 in migrating monolayers results in dissociation of leader cells and impaired wound repair. In summary, our results show that formin activity at epithelial cell–cell junctions is important for adhesion and the maintenance of epithelial cohesion during dynamic processes, such as wound repair.  相似文献   

16.
Cytoplasmic microtubules (MTs) continuously grow and shorten at their free plus ends, a behavior that allows them to capture membrane organelles destined for MT minus end-directed transport. In Xenopus melanophores, the capture of pigment granules (melanosomes) involves the +TIP CLIP-170, which is enriched at growing MT plus ends. Here we used Xenopus melanophores to test whether signals that stimulate minus end MT transport also enhance CLIP-170-dependent binding of melanosomes to MT tips. We found that these signals significantly (>twofold) increased the number of growing MT plus ends and their density at the cell periphery, thereby enhancing the likelihood of interaction with dispersed melanosomes. Computational simulations showed that local and global increases in the density of CLIP-170-decorated MT plus ends could reduce the half-time of melanosome aggregation by ~50%. We conclude that pigment granule aggregation signals in melanophores stimulate MT minus end-directed transport by the increasing number of growing MT plus ends decorated with CLIP-170 and redistributing these ends to more efficiently capture melanosomes throughout the cytoplasm.  相似文献   

17.
Plant viral movement proteins (MPs) enable viruses to pass through cell walls by increasing the size exclusion limit (SEL) of plasmodesmata (PD). Here, we report that the ability of Cucumber mosaic virus (CMV) MP to increase the SEL of the PD could be inhibited by treatment with the actin filament (F-actin)–stabilizing agent phalloidin but not by treatment with the F-actin–destabilizing agent latrunculin A. In vitro studies showed that CMV MP bound globular and F-actin, inhibited actin polymerization, severed F-actin, and participated in plus end capping of F-actin. Analyses of two CMV MP mutants, one with and one without F-actin severing activities, demonstrated that the F-actin severing ability was required to increase the PD SEL. Furthermore, the Tobacco mosaic virus MP also exhibited F-actin severing activity, and its ability to increase the PD SEL was inhibited by treatment with phalloidin. Our data provide evidence to support the hypothesis that F-actin severing is required for MP-induced increase in the SEL of PD. This may have broad implications in the study of the mechanisms of actin dynamics that regulate cell-to-cell transport of viral and endogenous proteins.  相似文献   

18.
Actin plays fundamental roles in a variety of cell functions in eukaryotic cells. The polymerization-depolymerization cycle, between monomeric G-actin and fibrous F-actin, drives essential cell processes. Recently, we proposed the atomic model for the F-actin structure and found that actin was in the twisted form in the monomer and in the untwisted form in the filament. To understand how the polymerization process is regulated (Caspar, D. L. (1991) Curr. Biol. 1, 30–32), we need to know further details about the transition from the twisted to the untwisted form. For this purpose, we focused our attention on the Ala-108–Pro-112 loop, which must play crucial roles in the transition, and analyzed the consequences of the amino acid replacements on the polymerization process. As compared with the wild type, the polymerization of P109A was accelerated in both the nucleation and the elongation steps, and this was attributed to an increase in the frequency factor of the Arrhenius equation. The multiple conformations allowed by the substitution presumably resulted in the effective formation of the collision complex, thus accelerating polymerization. On the other hand, the A108G mutation reduced the rates of both nucleation and elongation due to an increase in the activation energy. In the cases of polymerization acceleration and deceleration, each functional aberration is attributed to a distinct elementary process. The rigidity of the loop, which mediates neither too strong nor too weak interactions between subdomains 1 and 3, might play crucial roles in actin polymerization.  相似文献   

19.
Microtubule (MT) plus end-tracking proteins (+TIPs) specifically recognize the ends of growing MTs. +TIPs are involved in diverse cellular processes such as cell division, cell migration, and cell polarity. Although +TIP tracking is important for these processes, the mechanisms underlying plus end specificity of mammalian +TIPs are not completely understood. Cytoplasmic linker protein 170 (CLIP-170), the prototype +TIP, was proposed to bind to MT ends with high affinity, possibly by copolymerization with tubulin, and to dissociate seconds later. However, using fluorescence-based approaches, we show that two +TIPs, CLIP-170 and end-binding protein 3 (EB3), turn over rapidly on MT ends. Diffusion of CLIP-170 and EB3 appears to be rate limiting for their binding to MT plus ends. We also report that the ends of growing MTs contain a surplus of sites to which CLIP-170 binds with relatively low affinity. We propose that the observed loss of fluorescent +TIPs at plus ends does not reflect the behavior of single molecules but is a result of overall structural changes of the MT end.  相似文献   

20.
In recent years, various serious diseases caused by Zika virus (ZIKV) have made it impossible to be ignored. Confirmed existence of ZIKV in semen and sexually transmission of ZIKV suggested that it can break the blood–testis barrier (BTB), or Sertoli cell barrier (SCB). However, little is known about the underlying mechanism. In this study, interaction between actin, an important component of the SCB, and ZIKV envelope (E) protein domain III (EDIII) was inferred from co-immunoprecipitation (Co-IP) liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis. Confocal microscopy confirmed the role of actin filaments (F-actin) in ZIKV infection, during which part of the stress fibers, the bundles that constituted by paralleled actin filaments, were disrupted and presented in the cell periphery. Colocalization of E and reorganized actin filaments in the cell periphery of transfected Sertoli cells suggests a participation of ZIKV E protein in ZIKV-induced F-actin rearrangement. Perturbation of F-actin by cytochalasin D (CytoD) or Jasplakinolide (Jas) enhanced the infection of ZIKV. More importantly, the transepithelial electrical resistance (TEER) of an in vitro mouse SCB (mSCB) model declined with the progression of ZIKV infection or overexpression of E protein. Co-IP and confocal microscopy analyses revealed that the interaction between F-actin and tight junction protein ZO-1 was reduced after ZIKV infection or E protein overexpression, highlighting the role of E protein in ZIKV-induced disruption of the BTB. We conclude that the interaction between ZIKV E and F-actin leads to the reorganization of F-actin network, thereby compromising BTB integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号