首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anticancer T cells acquire a dysfunctional state characterized by poor effector function and expression of inhibitory receptors, such as PD‐1. Blockade of PD‐1 leads to T cell reinvigoration and is increasingly applied as an effective anticancer treatment. Recent work challenged the commonly held view that the phosphatase PTPN11 (known as SHP‐2) is essential for PD‐1 signaling in T cells, suggesting functional redundancy with the homologous phosphatase PTPN6 (SHP‐1). Therefore, we investigated the effect of concomitant Ptpn6 and Ptpn11 deletion in T cells on their ability to mount antitumour responses. In vivo data show that neither sustained nor acute Ptpn6/11 deletion improves T cell‐mediated tumor control. Sustained loss of Ptpn6/11 also impairs the therapeutic effects of anti‐PD1 treatment. In vitro results show that Ptpn6/11‐deleted CD8+ T cells exhibit impaired expansion due to a survival defect and proteomics analyses reveal substantial alterations, including in apoptosis‐related pathways. These data indicate that concomitant ablation of Ptpn6/11 in polyclonal T cells fails to improve their anticancer properties, implying that caution shall be taken when considering their inhibition for immunotherapeutic approaches.  相似文献   

2.
3.
Programmed death‐ligand 1 (PD‐L1) is involved in immunosuppression in variety of tumours. Regulatory B cells (Bregs) are critical immune regulatory cells, and it has been demonstrated that the number of regulatory B cells in patients with acute myeloid leukaemia (AML) is much higher than that in healthy donors (HDs), which is linked to a poor prognosis. This study aimed to determine whether increased expression of PD‐L1, including in Bregs, is associated with a worse prognosis in individuals with AML. The proportion of Bregs, PD‐L1 expression in Bregs and PD‐1 expression in T cells were determined using flow cytometry using patient samples from 21 newly diagnosed AML patients at different stages of treatment and 25 HDs. We confirmed PD‐L1 expression in Bregs, and PD‐1 expression in CD3+CD4+T cells in bone marrow and peripheral blood samples from AML patients was higher than that in samples from HDs. The complete remission (CR) and progression‐free survival (PFS) of Bregs with high PD‐L1 expression were significantly decreased following induction chemotherapy. PD‐L1 expression is indeed increased in Bregs from individuals with AML, and high PD‐L1 expression is related to a poor prognosis.  相似文献   

4.
Severe respiratory viral infectious diseases such as influenza and COVID‐19 especially affect the older population. This is partly ascribed to diminished CD8+ T‐cell responses a result of aging. The phenotypical diversity of the CD8+ T‐cell population has made it difficult to identify the impact of aging on CD8+ T‐cell subsets associated with diminished CD8+ T‐cell responses. Here we identify a novel human CD8+ T‐cell subset characterized by expression of Killer‐cell Immunoglobulin‐like Receptors (KIR+) and CD45RA (RA+). These KIR+RA+ T cells accumulated with age in the blood of healthy individuals (20–82 years of age, n = 50), expressed high levels of aging‐related markers of T‐cell regulation, and were functionally capable of suppressing proliferation of other CD8+ T cells. Moreover, KIR+RA+ T cells were a major T‐cell subset becoming activated in older adults suffering from an acute respiratory viral infection (n = 36), including coronavirus and influenza virus infection. In addition, older adults with influenza A infection showed that higher activation status of their KIR+RA+ T cells associated with longer duration of respiratory symptoms. Together, our data indicate that KIR+RA+ T cells are a unique human T‐cell subset with regulatory properties that may explain susceptibility to viral respiratory disease at old age.  相似文献   

5.
Oral lichen planus (OLP) is a T cell–mediated chronic inflammatory disease with uncertain aetiology. Exosomes are nanosized particles with biological capacities. Here, we aimed to study the effects of T cell–derived exosomes (T‐exos) on the pathogenesis of OLP and its mechanism. T‐exos were incubated with Jurkat cells for 48 hours, and 26 cytokines in the supernatant were measured by luminex assay. The expression of macrophage inflammatory protein (MIP)‐1α/β was detected using immunohistochemistry and ELISA; that of CCR1/3/5 on peripheral T cells was determined by flow cytometry. Transwell assay was performed to investigate the chemotactic effect of MIP‐1α/β, and cells in the lower chambers were examinated by flow cytometry. As a result, OLP T‐exos elevated the production of MIP‐1α/β, which were highly expressed in OLP tissues and plasma. CCR1/5 were markedly expressed on OLP peripheral T cells, and the majority of CCR1/5+ T cells were CD8+ T cells. Besides, MIP‐1α/β promoted the migration of OLP mononuclear cells, while inhibiting CCR1/5 significantly decreased the trafficking of mononuclear cells, especially that of CD8+ T cells. Conclusively, OLP T‐exos‐induced MIP‐1α/β may drive the trafficking of CD8+ T cells after binding with CCR1/5 in OLP, contributing to the development of OLP.  相似文献   

6.
7.
8.
9.
CD4+T cells differentiate into distinct functional effector and inhibitory subsets are facilitated by distinct cytokine cues present at the time of antigen recognition. Maintaining a balance between T helper 17 (Th17) and regulatory T (Treg) cells are critical for the control of the immunopathogenesis of liver diseases. Here, by using the mouse model of helminth Schistosoma japonicum (S japonicum) infection, we show that the hepatic mRNA levels of P21‐activated kinase 1 (PAK1), a key regulator of the actin cytoskeleton, adhesion and cell motility, are significantly increased and associated with the development of liver pathology during S japonicum infection. In addition, PAK1‐deficient mice are prone to suppression of Th17 cell responses but increased Treg cells. Furthermore, PAK1 enhances macrophage activation through promoting IRF1 nuclear translocation in an NF‐κB‐dependent pathway, resulting in promoting Th17 cell differentiation through inducing IL‐6 production. These findings highlight the importance of PAK1 in macrophages fate determination and suggest that PAK1/IRF1 axis‐dependent immunomodulation can ameliorate certain T cell–based immune pathologies.  相似文献   

10.
Human oral squamous cell carcinoma (OSCC) is the common head and neck malignancy in the world. While surgery, radiotherapy and chemotherapy are emerging as the standard treatment for OSCC patients, the outcome is limited to the recurrence and side effects. Therefore, patients with OSCC require alternative strategies for treatment. In this study, we aimed to explore the therapeutic effect and the mode of action of the novel curcumin analog, HO‐3867, against human OSCC cells. We analysed the cytotoxicity of HO‐3867 using MTT assay. In vitro mechanic studies were performed to determine whether MAPK pathway is involved in HO‐3867 induced cell apoptosis. As the results, we found HO‐3867 suppressed OSCC cells growth effectively. The flow cytometry data indicate that HO‐3867 induce the sub‐G1 phase. Moreover, we found that HO‐3867 induced cell apoptosis by triggering formation of activated caspase 3, caspase 8, caspase 9 and PARP. After dissecting MAPK pathway, we found HO‐3867 induced cell apoptosis via the c‐Jun N‐terminal kinase (JNK)1/2 pathway. Our results suggest that HO‐3867 is an effective anticancer agent as its induction of cell apoptosis through JNK1/2 pathway in human oral cancer cells.  相似文献   

11.
Oral squamous cell carcinoma (OSCC) is usually diagnosed at late stages, which leads to high morbidity. There are evidence that chronic inflammation (eg oral lichen planus [OLP]) was a risk factor of OSCC, but often misdiagnosed or ignored until invasion and metastasis. By applying precision medicine, the molecular microenvironment variations and relevant biomarkers for the malignant transformation from OLP to OSCC can be fully investigated. Several studies pointed out that the metabolic pathway were suppressed in OSCC. However, it remains unclear how the systemic profile of the metabolites change during the malignant transformation. In this study, we examined and compared the mucosa samples from 11 healthy individuals, 10 OLP patients and 21 OSCC patients. Based on the results, succinate, a key metabolite of the tricarboxylic acid cycle pathway, was accumulated in the primary cultured precancerous OLP keratinocytes and OSCC cells. Then, we found that succinate activated the hypoxia‐inducible factor‐1 alpha (HIF‐1α) pathway and induced apoptosis, which could also be up‐regulated by the tumour suppressor lncRNA MEG3. These results suggested the critical roles of succinate and MEG3 in the metabolic changes during malignant transformation from OLP to OSCC, which indicated that succinate, HIF1α and downstream proteins might serve as new biomarkers of precancerous OLP for early diagnosis and therapeutic monitoring. In addition, succinate or its prodrugs might become a potential therapy for the prevention or treatment of OSCC.  相似文献   

12.
Failures to produce neutralizing antibodies upon HIV‐1 infection result in part from B‐cell dysfunction due to unspecific B‐cell activation. How HIV‐1 affects antigen‐specific B‐cell functions remains elusive. Using an adoptive transfer mouse model and ex vivo HIV infection of human tonsil tissue, we found that expression of the HIV‐1 pathogenesis factor NEF in CD4 T cells undermines their helper function and impairs cognate B‐cell functions including mounting of efficient specific IgG responses. NEF interfered with T cell help via a specific protein interaction motif that prevents polarized cytokine secretion at the T‐cell–B‐cell immune synapse. This interference reduced B‐cell activation and proliferation and thus disrupted germinal center formation and affinity maturation. These results identify NEF as a key component for HIV‐mediated dysfunction of antigen‐specific B cells. Therapeutic targeting of the identified molecular surface in NEF will facilitate host control of HIV infection.  相似文献   

13.
The suppressive capacity of regulatory T cells (Tregs) has been extensively studied and is well established for many diseases. The expansion, accumulation, and activation of Tregs in viral infections are of major interest in order to find ways to alter Treg functions for therapeutic benefit. Tregs are able to dampen effector T cell responses to viral infections and thereby contribute to the establishment of a chronic infection. In the Friend retrovirus (FV) mouse model, Tregs are known to expand in all infected organs. To better understand the characteristics of these Treg populations, their phenotype was analyzed in detail. During acute FV-infection, Tregs became activated in the spleen and bone marrow, as indicated by various T cell activation markers, such as CD43 and CD103. Interestingly, Tregs in the bone marrow, which contains the highest viral loads during acute infection, displayed greater levels of activation than Tregs from the spleen. Treg expansion was driven by proliferation but no FV-specific Tregs could be detected. Activated Tregs in FV-infection did not produce Granzyme B (GzmB) or tumor necrosis factor α (TNFα), which are thought to be a potential mechanism for their suppressive activity. Furthermore, Tregs expressed inhibitory markers, such as TIM3, PD-1 and PD-L1. Blocking TIM3 and PD-L1 with antibodies during chronic FV-infection increased the numbers of activated Tregs. These data may have important implications for the understanding of Treg functions during chronic viral infections.  相似文献   

14.
15.
16.
Exhausted T cells and regulatory T (Treg) cells have been recently proposed to be new risk factors for recurrent miscarriage (RM). Intravenous immunoglobulin G (IVIG) treatment reported to modulate various immune cells. In this study, the effects of IVIG on the frequency and function of exhausted T cells, exhausted Tregs, and Treg cells, as well as pregnancy outcome in women with unexplained RM (URM), were investigated. Ninety-four pregnant women with RM were enrolled. At the time of positive pregnancy, blood samples were drawn. Forty-four patients with URM were included as IVIG receiving treated group and received 400 mg/kg of IVIG and the rest fifty patients were considered as a control group and received no IVIG administration. IVIG was given intravenously every 4 weeks during 32 weeks of gestation. Blood samples of patients were collected after the latest administration. Exhausted T cells, exhausted Tregs, and Treg cells were evaluated pre- and posttreatment in both groups. IVIG induced a significant decrease in the frequency of exhausted Tregs population and function as well as a significant increase in Treg cells population, however, IVIG failed to affect population and the function of exhausted T cells. Pregnancy outcome was successful in IVIG treated women (86.3%) and were significantly different (P = 0.0006) in compared with the untreated URM subjects (42%). Therefore, employing of IVIG increases Treg cells and diminishes exhausted Tregs responses in RM patients with cellular immune anomalies throughout the pregnancy. Immunemodulatory effects of IVIG are probably associated with successful pregnancy outcome.  相似文献   

17.
The outbreak of COVID‐19 has become a serious public health emergency. The virus targets cells by binding the ACE2 receptor. After infection, the virus triggers in some humans an immune storm containing the release of proinflammatory cytokines and chemokines followed by multiple organ failure. Several vaccines are enrolled, but an effective treatment is still missing. Mesenchymal stem cells (MSCs) have shown to secrete immunomodulatory factors that suppress this cytokine storm. Therefore, MSCs have been suggested as a potential treatment option for COVID‐19. We report here that the ACE2 expression is minimal or nonexistent in MSC derived from three different human tissue sources (adipose tissue, umbilical cord Wharton`s jelly and bone marrow). In contrast, TMPRSS2 that is implicated in SARS‐CoV‐2 entry has been detected in all MSC samples. These results are of particular importance for future MSC‐based cell therapies to treat severe cases after COVID‐19 infection.  相似文献   

18.
Oral squamous cell carcinoma (OSCC) is a prevalent cancer that develops in the head and neck area and has high annual mortality despite optimal treatment. microRNA‐218 (miR‐218) is a tumour inhibiting non‐coding RNA that has been reported to suppress the cell proliferation and invasion in various cancers. Thus, our study aims to determine the mechanism underlying the inhibitory role of miR‐218 in OSCC. We conducted a bioinformatics analysis to screen differentially expressed genes in OSCC and their potential upstream miRNAs. After collection of surgical OSCC tissues, we detected GREM1 expression by immunohistochemistry, RT‐qPCR and Western blot analysis, and miR‐218 expression by RT‐qPCR. The target relationship between miR‐218 and GREM1 was assessed by dual‐luciferase reporter gene assay. After loss‐ and gain‐of‐function experiments, OSCC cell proliferation, migration and invasion were determined by MTT assay, scratch test and Transwell assay, respectively. Expression of TGF‐β1, Smad4, p21, E‐cadherin, Vimentin and Snail was measured by RT‐qPCR and Western blot analysis. Finally, effects of miR‐218 and GREM1 on tumour formation and liver metastasis were evaluated in xenograft tumour‐bearing nude mice. GREM1 was up‐regulated, and miR‐218 was down‐regulated in OSCC tissues, and GREM1 was confirmed to be the target gene of miR‐218. Furthermore, after up‐regulating miR‐218 or silencing GREM1, OSCC cell proliferation, migration and invasion were reduced. In addition, expression of TGF‐β signalling pathway‐related genes was diminished by overexpressing miR‐218 or down‐regulating GREM1. Finally, up‐regulated miR‐218 or down‐regulated GREM1 reduced tumour growth and liver metastasis in vivo. Taken together, our findings suggest that the overexpression of miR‐218 may inhibit OSCC progression by inactivating the GREM1‐dependent TGF‐β signalling pathway.  相似文献   

19.

Background

Cigarette smoke is a major risk factor for chronic obstructive pulmonary disease (COPD), an inflammatory lung disorder. COPD is characterized by an increase in CD8+ T cells within the central and peripheral airways. We hypothesized that the CD8+ T cells in COPD patients have increased Toll-like receptor (TLR) expression compared to control subjects due to the exposure of cigarette smoke in the airways.

Methods

Endobronchial biopsies and peripheral blood were obtained from COPD patients and control subjects. TLR4 and TLR9 expression was assessed by immunostaining of lung tissue and flow cytometry of the peripheral blood. CD8+ T cells isolated from peripheral blood were treated with or without cigarette smoke condensate (CSC) as well as TLR4 and TLR9 inhibitors. PCR and western blotting were used to determine TLR4 and TLR9 expression, while cytokine secretion from these cells was detected using electrochemiluminescence technology.

Results

No difference was observed in the overall expression of TLR4 and TLR9 in the lung tissue and peripheral blood of COPD patients compared to control subjects. However, COPD patients had increased TLR4 and TLR9 expression on lung CD8+ T cells. Exposure of CD8+ T cells to CSC resulted in an increase of TLR4 and TLR9 protein expression. CSC exposure also caused the activation of CD8+ T cells, resulting in the production of IL-1β, IL-6, IL-10, IL-12p70, TNFα and IFNγ. Furthermore, inhibition of TLR4 or TLR9 significantly attenuated the production of TNFα and IL-10.

Conclusions

Our results demonstrate increased expression of TLR4 and TLR9 on lung CD8+ T cells in COPD. CD8+ T cells exposed to CSC increased TLR4 and TLR9 levels and increased cytokine production. These results provide a new perspective on the role of CD8+ T cells in COPD.  相似文献   

20.
Nerve growth factor (NGF), the prototypical neurotrophic factor, is involved in the maintenance and growth of specific neuronal populations, whereas its precursor, proNGF, is involved in neuronal apoptosis. Binding of NGF or proNGF to TrkA, p75NTR, and VP10p receptors triggers complex intracellular signaling pathways that can be modulated by endogenous small‐molecule ligands. Here, we show by isothermal titration calorimetry and NMR that ATP binds to the intrinsically disordered pro‐peptide of proNGF with a micromolar dissociation constant. We demonstrate that Mg2+, known to play a physiological role in neurons, modulates the ATP/proNGF interaction. An integrative structural biophysics analysis by small angle X‐ray scattering and hydrogen‐deuterium exchange mass spectrometry unveils that ATP binding induces a conformational rearrangement of the flexible pro‐peptide domain of proNGF. This suggests that ATP may act as an allosteric modulator of the overall proNGF conformation, whose likely distinct biological activity may ultimately affect its physiological homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号