首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The delivery of protein fragments to major histocompatibility complex (MHC)-loading compartments of professional antigen-presenting cells is essential in the adaptive immune response against pathogens. Apart from the crucial role of the transporter associated with antigen processing (TAP) for peptide loading of MHC class I molecules in the endoplasmic reticulum, TAP-independent translocation pathways have been proposed but not identified so far. Based on its overlapping substrate specificity with TAP, we herein investigated the ABC transporter ABCB9, also named TAP-like (TAPL). Remarkably, TAPL expression is strongly induced during differentiation of monocytes to dendritic cells and to macrophages. TAPL does not, however, restore MHC class I surface expression in TAP-deficient cells, demonstrating that TAPL alone or in combination with single TAP subunits does not form a functional transport complex required for peptide loading of MHC I in the endoplasmic reticulum. In fact, by using quantitative immunofluorescence and subcellular fractionation, TAPL was detected in the lysosomal compartment co-localizing with the lysosome-associated membrane protein LAMP-2. By in vitro assays, we demonstrate a TAPL-specific translocation of peptides into isolated lysosomes, which strictly requires ATP hydrolysis. These results suggest a mechanism by which antigenic peptides have access to the lysosomal compartment in professional antigen-presenting cells.  相似文献   

2.
Within the adaptive immune system the transporter associated with antigen processing (TAP) plays a pivotal role in loading of peptides onto major histocompatibility (MHC) class I molecules. As a central tool to investigate the structure and function of the TAP complex, we created cysteine-less human TAP subunits by de novo gene synthesis, replacing all 19 cysteines in TAP1 and TAP2. After expression in TAP-deficient human fibroblasts, cysteine-less TAP1 and TAP2 are functional with respect to adenosine triphosphate (ATP)-dependent peptide transport and inhibition by ICP47 from herpes simplex virus. Cysteine-less TAP1 and TAP2 restore maturation and intracellular trafficking of MHC class I molecules to the cell surface.  相似文献   

3.
The transporter associated with antigen processing (TAP) binds peptides in its cytosolic part and subsequently translocates the peptides into the lumen of the endoplasmic reticulum (ER), where assembly of major histocompatibility complex (MHC) class I and peptide takes place. Tapasin is a subunit of the TAP complex and binds both to TAP1 and MHC class I. In the absence of tapasin, the assembly of MHC class I in the ER is impaired, and the surface expression is reduced. To clarify the function of tapasin in the processing of antigenic peptides, we studied the interaction of peptide and TAP, peptide transport across the membrane of the ER, and association of peptides with MHC class I molecules in the microsomes derived from tapasin mutant cell line 721.220, its sister cell line 721.221 expressing tapasin, and their HLA-A2 transfectants. The binding of peptides to TAP in tapasin mutant 721.220 cells was significantly diminished in comparison with 721.221 cells. Impaired peptide-TAP interaction resulted in a defective peptide transport in tapasin mutant 721.220 cells. Interestingly, despite the diminished peptide binding to TAP, the transport rate of TAP-associated peptides was not significantly altered in 721.220 cells. After transfection of tapasin cDNA into 721.220 cells, efficient peptide-TAP interaction was restored. Thus, we conclude that tapasin is required for efficient peptide-TAP interaction.  相似文献   

4.
杨杰  董宋鹏  李子彬  高凤山 《生命科学》2014,(10):1018-1025
抗原处理相关转运体(transporter associated with antigen processing,TAP)蛋白在抗原提呈途径中发挥重要作用,它负责将内源性抗原从胞浆运送到内质网(endoplasmic reticulum,ER),以便主要组织相容性复合体(major histocompatibility complex,MHC)I结合多肽。TAP属于ATP结合盒(ATP-binding cassette,ABC)转运蛋白超家族B族,是由TAP1和TAP2两个亚基构成的异二聚体蛋白,其每个亚基各含有一个亲水的核酸结合区和一个疏水的跨膜结构域,并具有促进肽段转运的结构域。TAP参与MHC I类分子的组装,并在人获得性免疫系统中起着至关重要的作用。TAP基因具有多态性,因而增加了个体对疾病的易感性。TAP基因的突变及其调节机制的缺陷都可以导致其活性和表达下调,从而影响病毒性感染和肿瘤等疾病的发生。  相似文献   

5.
Kim Y  Park B  Cho S  Shin J  Cho K  Jun Y  Ahn K 《PLoS pathogens》2008,4(8):e1000123
Human cytomegalovirus (HCMV) US6 glycoprotein inhibits TAP function, resulting in down-regulation of MHC class I molecules at the cell surface. Cells lacking MHC class I molecules are susceptible to NK cell lysis. HCMV expresses UL18, a MHC class I homolog that functions as a surrogate to prevent host cell lysis. Despite a high level of sequence and structural homology between UL18 and MHC class I molecules, surface expression of MHC class I, but not UL18, is down regulated by US6. Here, we describe a mechanism of action by which HCMV UL18 avoids attack by the self-derived TAP inhibitor US6. UL18 abrogates US6 inhibition of ATP binding by TAP and, thereby, restores TAP-mediated peptide translocation. In addition, UL18 together with US6 interferes with the physical association between MHC class I molecules and TAP that is required for optimal peptide loading. Thus, regardless of the recovery of TAP function, surface expression of MHC class I molecules remains decreased. UL18 represents a unique immune evasion protein that has evolved to evade both the NK and the T cell immune responses.  相似文献   

6.
Impairment of MHC class I Ag processing is a commonly observed mechanism that allows viruses and tumors to escape immune destruction by CTL. The peptide transporter TAP that is responsible for the delivery of MHC class I-binding peptides into the endoplasmic reticulum is a pivotal target of viral-immune evasion molecules, and expression of this transporter is frequently lost in advanced cancers. We recently described a novel population of CTL that intriguingly exhibits reactivity against such tumor-immune escape variants and that recognizes self-peptides emerging at the cell surface due to defects in the processing machinery. Investigations of this new type of CTL epitopes are hampered by the lack of an efficient inhibitor for peptide transport in mouse cells. In this article, we demonstrate that the varicellovirus protein UL49.5, in contrast to ICP47 and US6, strongly impairs the activity of the mouse transporter and mediates degradation of mouse TAP1 and TAP2. Inhibition of TAP was witnessed by a strong reduction of surface MHC class I display and a decrease in recognition of conventional tumor-specific CTL. Analysis of CTL reactivity through the nonclassical molecule Qa-1(b) revealed that the presentation of the predominant leader peptide was inhibited. Interestingly, expression of UL49.5 in processing competent tumor cells induced the presentation of the new category of peptides. Our data show that the varicellovirus UL49.5 protein is a universal TAP inhibitor that can be exploited for preclinical studies on CTL-based immune intervention.  相似文献   

7.
Function of the transport complex TAP in cellular immune recognition   总被引:9,自引:0,他引:9  
The transporter associated with antigen processing (TAP) is essential for peptide loading onto major histocompatibility complex (MHC) class I molecules by translocating peptides into the endoplasmic reticulum. The MHC-encoded ABC transporter works in concert with the proteasome and MHC class I molecules for the antigen presentation on the cell surface for T cell recognition. TAP forms a heterodimer where each subunit consists of a hydrophilic nucleotide binding domain and a hydrophobic transmembrane domain. The transport mechanism is a multistep process composed of an ATP-independent peptide association step which induces a structural reorganization of the transport complex that may trigger the ATP-driven transport of the peptide into the endoplasmic reticulum lumen. By using combinatorial peptide libraries, the substrate selectivity and the recognition principle of TAP have been elucidated. TAP maximizes the degree of substrate diversity in combination with high substrate affinity. This ABC transporter is also unique as it is closely associated with chaperone-like proteins involved in bonding of the substrate onto MHC molecules. Most interestingly, virus-infected and malignant cells have developed strategies to escape immune surveillance by affecting TAP expression or function.  相似文献   

8.
9.
The transporter associated with Ag processing (TAP) translocates antigenic peptides into the endoplasmic reticulum for binding onto MHC class I (MHC I) molecules. Tapasin organizes a peptide-loading complex (PLC) by recruiting MHC I and accessory chaperones to the N-terminal regions (N domains) of the TAP subunits TAP1 and TAP2. To investigate the function of the tapasin-docking sites of TAP in MHC I processing, we expressed N-terminally truncated variants of TAP1 and TAP2 in combination with wild-type chains, as fusion proteins or as single subunits. Strikingly, TAP variants lacking the N domain in TAP2, but not in TAP1, build PLCs that fail to generate stable MHC I-peptide complexes. This correlates with a substantially reduced recruitment of accessory chaperones into the PLC demonstrating their important role in the quality control of MHC I loading. However, stable surface expression of MHC I can be rescued in post-endoplasmic reticulum compartments by a proprotein convertase-dependent mechanism.  相似文献   

10.
Presentation of antigen-derived peptides by major histocompatibility complex (MHC) class I molecules is dependent on an endoplasmic reticulum (ER) resident glycoprotein, tapasin, which mediates their interaction with the transporter associated with antigen processing (TAP). Independently of TAP, tapasin was required for the presentation of peptides targeted to the ER by signal sequences in MHC class I-transfected insect cells. Tapasin increased MHC class I peptide loading by retaining empty but not peptide-containing MHC class I molecules in the ER. Upon co-expression of TAP, this retention/release function of tapasin was sufficient to reconstitute MHC class I antigen presentation in insect cells, thus defining the minimal non-housekeeping functions required for MHC class I antigen presentation.  相似文献   

11.
12.
 Major histocompatibility complex (MHC) class I molecules are heterodimers of a class I heavy chain and β2-microglobulin that bind peptides supplied by the MHC region-encoded transporters associated with antigen processing (TAP). Peptide binding by class I heterodimers is necessary for their maturation into stable complexes and is dependent on their physical association with TAP. In human mutant 721.220 cells, however, a novel genetic defect causes the failure of class I heterodimers to associate with TAP. This deficiency correlates with lack of expression of a glycoprotein, tapasin (TAP-associated glycoprotein), which has been found in association with class I heterodimers and TAP. Employing a transcomplementation analysis, we obtained evidence co-localizing the genetic defect of mutant 220 cells and the structural or a regulatory gene controlling the expression of tapasin on the short arm of chromosome 6, which includes the MHC. Expression of tapasin and the normal interaction of class I heterodimers with TAP are concomitantly restored, indicating the probable function of tapasin as a physical link between these complexes. In further support of this model, the absence of tapasin in mutant 220 cells correlates with reduced class I heterodimer stability, suggesting that tapasin may stabilize class I heterodimers and thereby enhance their association with TAP. These results further implicate tapasin in a mechanism that promotes peptide binding by class I heterodimers through their interaction with TAP. Received: 20 March 1997 / Revised: 2 June 1997  相似文献   

13.
14.
CD1d molecules are structurally similar to MHC class I, but present lipid antigens as opposed to peptides. Here, we show that MHC class I molecules physically associate with (and regulate the functional expression of) mouse CD1d on the surface of cells. Low pH (3.0) acid stripping of MHC class I molecules resulted in increased surface expression of murine CD1d on antigen presenting cells as well as augmented CD1d-mediated antigen presentation to NKT cells. Consistent with the above results, TAP1-/- mice were found to have a higher percentage of type I NKT cells as compared to wild type mice. Moreover, bone marrow-derived dendritic cells from TAP1-/- mice showed increased antigen presentation by CD1d compared to wild type mice. Together, these results suggest that MHC class I molecules can regulate NKT cell function, in part, by masking CD1d.  相似文献   

15.
Major histocompatibility complex (MHC) class I molecules present antigenic peptides to CD8 T cells. The peptides are generated in the cytosol, then translocated across the membrane of the endoplasmic reticulum by the transporter associated with antigen processing (TAP). TAP is a trimeric complex consisting of TAP1, TAP2, and tapasin (TAP-A) as indicated for human cells by reciprocal coprecipitation with anti-TAP1/2 and anti-tapasin antibodies, respectively. TAP1 and TAP2 are required for the peptide transport. Tapasin is involved in the association of class I with TAP and in the assembly of class I with peptide. The mechanisms of tapasin function are still unknown. Moreover, there has been no evidence for a murine tapasin analogue, which has led to the suggestion that murine MHC class I binds directly to TAP1/2. In this study, we have cloned the mouse analogue of tapasin. The predicted amino acid sequence showed 78% identity to human tapasin with identical consensus sequences of signal peptide, N-linked glycosylation site, transmembrane domain and double lysine motif. However, there was less homology (47%) found at the predicted cytosolic domain, and in addition, mouse tapasin is 14 amino acids longer than the human analogue at the C terminus. This part of the molecule may determine the species specificity for interaction with MHC class I or TAP1/2. Like human tapasin, mouse tapasin binds both to TAP1/2 and MHC class I. In TAP2-mutated RMA-S cells, both TAP1 and MHC class I were coprecipitated by anti-tapasin antiserum indicative of association of tapasin with TAP1 but not TAP2. With crosslinker-modified peptides and purified microsomes, anti-tapasin coprecipitated both peptide-bound MHC class I and TAP1/2. In contrast, anti-calreticulin only coprecipitated peptide-free MHC class I molecules. This difference in association with peptide-loaded class I suggests that tapasin functions later than calreticulin during MHC class I assembly, and controls peptide loading onto MHC class I molecules in the endoplasmic reticulum.  相似文献   

16.
17.
The immune defences of our organism against pathogens and malignant transformation rely to a large extent on surveillance by cytotoxic T lymphocytes. This surveillance in turn depends on the antigen processing system, which provides peptide samples of the cellular protein composition to MHC (major histocompatibility complex) class I molecules displayed on the cell surface. To continuously and almost in real time provide a representative sample of the array of proteins synthesized by the cell, this system exploits some fundamental pathways of the cellular metabolism, with the help of several dedicated players acting exclusively in antigen processing. Thus, a key element in the turnover of cellular proteins, protein degradation by cytosolic proteasome complexes, is exploited as source of peptides, by recruiting a minor fraction of the produced peptides as ligands for MHC class I molecules. These peptides can be further processed and adapted to the precise binding requirements of allelic MHC class I molecules by enzymes in the cytosol and endoplasmic reticulum. The latter compartment is equipped with several dedicated players helping peptide assembly with class I molecules. These include the TAP (transporter associated with antigen processing) membrane transporter pumping peptides into the ER, and tapasin, a chaperone with a structure similar to MHC molecules that tethers class I molecules awaiting peptide loading to the TAP transporter, and mediates optimization of MHC class I ligand by a still somewhat mysterious mechanism. Additional "house-keeping" chaperones that are known to act in concert in ER quality control, assist and control correct folding, oxidation and assembly of MHC class I molecules. While this processing system handles exclusively endogenous cellular proteins in most cells, dendritic cells employ one or several special pathways to shuttle exogenous, internalized proteins into the system, in a process referred to as cross-presentation. Deciphering the cell biological mechanism creating the link between the endosomal and secretory pathways that enables cross-presentation is one of the challenges faced by contemporary research in the field of MHC class I antigen processing.  相似文献   

18.
Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP) plays an essential role in MHC class I-restricted antigen presentation, as TAP imports peptides into the ER, where peptide loading of MHC class I molecules takes place. In this study, the UL 49.5 proteins of the varicelloviruses bovine herpesvirus 1 (BHV-1), pseudorabies virus (PRV), and equine herpesvirus 1 and 4 (EHV-1 and EHV-4) are characterized as members of a novel class of viral immune evasion proteins. These UL 49.5 proteins interfere with MHC class I antigen presentation by blocking the supply of antigenic peptides through inhibition of TAP. BHV-1, PRV, and EHV-1 recombinant viruses lacking UL 49.5 no longer interfere with peptide transport. Combined with the observation that the individually expressed UL 49.5 proteins block TAP as well, these data indicate that UL 49.5 is the viral factor that is both necessary and sufficient to abolish TAP function during productive infection by these viruses. The mechanisms through which the UL 49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 block TAP exhibit surprising diversity. BHV-1 UL 49.5 targets TAP for proteasomal degradation, whereas EHV-1 and EHV-4 UL 49.5 interfere with the binding of ATP to TAP. In contrast, TAP stability and ATP recruitment are not affected by PRV UL 49.5, although it has the capacity to arrest the peptide transporter in a translocation-incompetent state, a property shared with the BHV-1 and EHV-1 UL 49.5. Taken together, these results classify the UL 49.5 gene products of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms.  相似文献   

19.
The transporter associated with antigen processing (TAP) is a crucial element of the adaptive immune system, which translocates proteasomal degradation products into the endoplasmic reticulum, for transfer of these peptides on major histocompatibility complex (MHC) I molecules within a macromolecular peptide-loading complex. After loading and intracellular transport to the cell surface, these peptide/MHC complexes are monitored by cytotoxic T-lymphocytes. This review summarizes the structural organization and function of the ABC transporter TAP. Furthermore, we discuss human diseases and viral evasion strategies associated with TAP function.  相似文献   

20.
In contrast to many other viruses that escape the cellular immune response by downregulating major histocompatibility complex (MHC) class I molecules, flavivirus infection can upregulate their cell surface expression. Previously we have presented evidence that during flavivirus infection, peptide supply to the endoplasmic reticulum is increased (A. Müllbacher and M. Lobigs, Immunity 3:207-214, 1995). Here we show that during the early phase of infection with different flaviviruses, the transport activity of the peptide transporter associated with antigen processing (TAP) is augmented by up to 50%. TAP expression is unaltered during infection, and viral but not host macromolecular synthesis is required for enhanced peptide transport. This study is the first demonstration of transient enhancement of TAP-dependent peptide import into the lumen of the endoplasmic reticulum as a consequence of a viral infection. We suggest that the increased supply of peptides for assembly with MHC class I molecules in flavivirus-infected cells accounts for the upregulation of MHC class I cell surface expression with the biological consequence of viral evasion of natural killer cell recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号