首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-ray crystallographic studies of drug-nucleic acid crystalline complexes have suggested that DNA first bends or 'kinks' before accepting an intercalative drug or dye. This flexibility in DNA structure is made possible by altering the normal C2' endo deoxyribose sugar puckering in B DNA to a mixed sugar puckering pattern of the type C3' endo (3'-5') C2' endo and partially unstacking base pairs. A kinking scheme such as this would require minimal sterochemical rearrangement and would also involve small energies. This has prompted us to ask more generally if a conformational change such as this could be used by proteins in their interactions with DNA. Here we describe an interesting superhelical DNA structure formed by kinking DNA every ten base pairs. This structure may be used in the organization of DNA within the nucleosome structure in chromatin.  相似文献   

2.
Structural basis of RXR-DNA interactions   总被引:2,自引:0,他引:2  
  相似文献   

3.
The formation of an intramolecular dG.dG.dC triplex in Escherichia coli cells is demonstrated at single-base resolution. The intramolecular dG.dG.dC triplex structure was probed in situ for E. coli cells containing plasmid DNAs with varying lengths of poly(dG).poly(dC) tracts employing chloroacetaldehyde. This chemical probe reacts specifically with unpaired DNA bases. The triplex structure formed with the poly(dG).poly(dC) tracts of 35 and 44 base-pairs, but not with 25 base-pairs. The triplex was detected only one to two hours after the chloramphenicol treatment: the period at which the extracted plasmid DNA revealed the maximal superhelical density.  相似文献   

4.
A previous study in our laboratory of the reaction of formaldehyde with super-helical DNAs (φX replicative form and PM2) has led to a model for superhelical DNA in which there is a region or regions of altered secondary structure containing unpaired bases. Similar experiments using the nicked circular DNA gave no evidence of interruptions of base pairing. In this study we present additional data, which support the above model as well as extending our analysis of the secondary structure of superhelical DNA and the dynamics of the early denaturation process. In a series of experiments involving the binding of methyl-mercury as a chemical probe of unpaired bases, we obtained the following results. (1) Initially, both s020w and the buoyant density of the superhelical form of phage PM2 DNA increased as a function of methylmercuric hydroxide concentration, whereas the nicked form did not. (2) This initial binding is accompanied by an increase in superhelical content τ from ?41 to ?46 turns. (3) The binding analysis allows us to estimate that 3.7% of the bases contain methylmercury in this phase of the transition. This is in excellent agreement with the extent of formylation. (4) Such a preformylated molecule shows a shift in the transition to lower mercurial concentrations. These results are interpreted as follows. The initial increase in ?τ excludes the possibility that binding occurs to normal base-paired structures, since this would produce a coupled unwinding of duplex and superhelical turns. The additive effects of formylation and methylmercury binding support the concept that both chemical probes attack the same sites and induce similar structural changes. Thus the evidence clearly supports the view that superhelical DNA contains localized region(s) of interrupted base pairing. Recent studies from other laboratories using single strand-specific endonucleases are in complete agreement with this model.  相似文献   

5.
A sequence of 86 bp within the 5' region of the adult chicken beta-globin gene was found to undergo a DNA conformational transition at elevated levels of negative superhelical stress (- sigma = 0.068). In vitro chemical DNA modification studies which detect purine hyperreactivity (HR) to the alkylating agent diethyl pyrocarbonate (DEP) have identified this 86 bp long DEP-HR element. The DEP-HR element is composed of small, tandem segments with imperfect purine-pyrimidine alternations. Methylation of cytosines within GCGC sequences of the DEP-HR element facilitates this structural change. The binding of a monoclonal anti-Z-DNA antibody to the element has been revealed by chemical footprinting with DEP. These data suggest that the DEP-HR sequence can undergo a conformational transition to Z-DNA. It is unknown whether the conformational flexibility observed here occurs in vivo.  相似文献   

6.
7.
A method is described for the accurate determination of the superhelical density (omega) of highly underwound circular DNA molecules. Using this method, duplex DNA bound by RecA protein in the presence of ATP at pH 7.5 is found to be underwound by 39.6% (omega = -0.396), corresponding to a helical periodicity of 17.4 base-pairs per turn. The underwinding is increased to 41% (17.9 base-pairs per turn) in the presence of low levels of ATP gamma S, in good agreement with the 18.6 base-pairs per turn reported previously. In spite of the extensive underwinding, the distribution of DNA topoisomers produced by RecA protein binding is small. This indicates a high degree of structural uniformity among RecA-double-stranded DNA complexes in the presence of ATP.  相似文献   

8.
The combined biochemical and structural study of hundreds of protein-DNA complexes has indicated that sequence-specific interactions are mediated by two mechanisms termed direct and indirect readout. Direct readout involves direct interactions between the protein and base-specific atoms exposed in the major and minor grooves of DNA. For indirect readout, the protein recognizes DNA by sensing conformational variations in the structure dependent on nucleotide sequence, typically through interactions with the phosphodiester backbone. Based on our recent structure of Ndt80 bound to DNA in conjunction with a search of the existing PDB database, we propose a new method of sequence-specific recognition that utilizes both direct and indirect readout. In this mode, a single amino acid side-chain recognizes two consecutive base-pairs. The 3'-base is recognized by canonical direct readout, while the 5'-base is recognized through a variation of indirect readout, whereby the conformational flexibility of the particular dinucleotide step, namely a 5'-pyrimidine-purine-3' step, facilitates its recognition by the amino acid via cation-pi interactions. In most cases, this mode of DNA recognition helps explain the sequence specificity of the protein for its target DNA.  相似文献   

9.
This paper examines theoretically the effects that restraints on the tertiary structure of a superhelical DNA domain exert on the energetics of linking and the onset of conformational transitions. The most important tertiary constraint arises from the nucleosomal winding of genomic DNA in vivo. Conformational transitions are shown to occur at equilibrium at less extreme superhelicities in DNA whose tertiary structure is restrained than in unrestrained molecules where the residual linking difference alpha res (that part of the superhelical deformation which is not absorbed by transitions) may be freely partitioned between twisting and bending. In the extreme case of a rigidly held tertiary structure, this analysis predicts that the B-Z transition will occur at roughly half the superhelix density needed to drive the same transition in solution, other factors remaining fixed. This suggests that superhelical transitions may occur at more moderate superhelical deformations in vivo than in solution. The influence on transition behavior of the tertiary structural restraints imposed by gel conditions also are discussed.  相似文献   

10.
Fluctuations in superhelical DNA.   总被引:7,自引:1,他引:6       下载免费PDF全文
The effect of superhelicity on the base-pair opening probability and on the probability of occurrence of cruciform states in palindromic regions is theoretically treated. The calculations show that below the superhelix density value of -sigma=0.05 superhelicity does not appreciably affect the characteristics of DNA secondary structure fluctuations. In the range of physiological superhelix densities sigma (-sigma=0.05-0.09) the base-pair opening probability markedly increases. However, within this range of sigma the base-pairs are opened only transiently and permanently open regions are not formed. Permanently opened regions appear at higher negative superhelix densities (-sigma greater than 0.10). At the values of -sigma higher than 0.06 a cruciform structure in the palindromic region centred in position 3965 proves to be the most probable fluctuational disturbance in the 0x174 duplex DNA. Different experimental approaches used for probing the fluctuations in superhelical DNA have been analysed. The results suggest that most direct quantitative information can be derived from data on the nicking of closed DNA by single strand-specific endonucleases. Such data (Wang, 1974) accord with the results of theoretical calculations. Calculations show that, due to base-pair opening, the total free energy of superhelical DNA should depend parabolically on sigma only up to some critical value of sigma=sigmac. If negative superhelicity exceeds this critical value, which under physiological conditions proves to be -sigma=0.085, the free energy should increase linearly with -sigma. The biological role of supercoiling is discussed in the light of obtained results.  相似文献   

11.
Spectroscopic studies on lambda cro protein-DNA interactions   总被引:3,自引:0,他引:3  
Spectroscopic (circular dichroism and fluorescence) and thermodynamic studies were conducted on lambda Cro-DNA interactions. Some base substitutions were introduced to the operator and the effects on the conformation of the complex and thermodynamic parameters for dissociation of the complex were examined. It was found that, (1) in the specific binding of Cro with DNA which has a (pseudo) consensus sequence, DNA is overwound, while in non-specific binding it is unchanged, or rather unwound; (2) substitution of central base-pairs or the introduction of a mismatched base-pair at the center of the operator reduces the extent of DNA conformational change on Cro binding and lessens the stability of the Cro-DNA complex, even though there is apparently no direct interaction between Cro and DNA at these positions; (3) stability of the complex increases with the degree of DNA conformational change of the same type during binding; (4) in some cases of specific binding, there are three states in the dissociation of the complex as observed by salt titration: two conformational states for the complex depending on salt concentration and, in non-specific binding, dissociation is a two-state transition; (5) the number of ions involved in interactions between Cro and 17 base-pair DNA is about 7.7 for NaCl titrations; (6) dissociation free energy prediction of the Cro-DNA complex by simple addition of the dissociation free energy change of a single base-pair substitution agrees with our experimental results when DNA overwinding occurs during binding, i.e. in specific binding.  相似文献   

12.
We have studied the association of superhelical DNA (RFI)3 of phage G4 with defined single-stranded fragments isolated after cleavage of viral (+) strands by endonuclease R · HaeIII. The sedimentation rates of complexes formed by uptake of different single-stranded restriction fragments by G4 RFI were consistent with the view that base-pairing between the two components causes unwinding of superhelical turns, with one negative superhelical turn removed for every ten nucleotide residues of third strand taken up. The combining ratio of superhelical DNA and a single specific fragment was close to unity.At high concentrations of salt, nitrocellulose filters efficiently retained complexes of superhelical DNA and homologous fragments, which provided the basis for a rapid assay, and permitted the estimation of the thermodynamic and kinetic parameters of strand uptake in vitro. The reaction is reversible, with an apparent Keq of approximately 106m?1. Apparent rate constants, k1, for uptake of different fragments (85 to 1100 nucleotides long) varied about fourfold, with no obvious relationship to the length of the fragment. In 10 mm-Tris · HCl (pH 7.5), 200 mm-NaCl, fragments were taken up most rapidly at about 75 °C. Under these conditions, the apparent k1 for a fragment 250 nucleotides long was approximately 600 m?1s?1, which is two or three orders of magnitude slower than the calculated rate of association of complementary strands of that length. At physiological temperatures, appreciable rates of strand uptake were seen only at low concentrations of salt (4 mm-Na+ in 10 mm-Tris · HCl), and were one or two orders of magnitude less than the rate at 75 °C in 200 mm-NaCl. At a given concentration of counterion a threshold temperature exists above which the rate of reaction rises sharply from an undetectable level.Thermodynamic calculations indicate that the reaction is entropically driven, and that the rate is limited by a step exhibiting a positive entropy and enthalpy of activation. The data are consistent with a model for strand uptake in which the rate-limiting step is the unstacking of a small number of base-pairs in the superhelical DNA. Stabilization and extension of the nucleus of base-pairs formed with the incoming strand is favored by the decrease in free energy associated with removal of superhelical turns.  相似文献   

13.
The structure of a d(CGATCG)-daunomycin complex has been determined by single crystal X-ray diffraction techniques. Refinement, with the location of 40 solvent molecules, using data up to 1.5 A, converged with a final crystallographic residual, R = 0.25 (RW = 0.22). The tetragonal crystals are in space group P4(1)2(1)2, with cell dimensions of a = 27.98 A and c = 52.87 A. The self-complementary d(CGATCG) forms a distorted right-handed helix with a daunomycin molecule intercalated at each d(CpG) step. The daunomycin aglycon chromophore is oriented at right-angles to the long axis of the DNA base-pairs. This head-on intercalation is stabilized by direct hydrogen bonds and indirectly via solvent-mediated, hydrogen-bonding interactions between the chromophore and its intercalation site base-pairs. The cyclohexene ring and amino sugar substituent lie in the minor groove. The amino sugar N-3' forms a hydrogen bond with O-2 of the next neighbouring thymine. This electrostatic interaction helps position the sugar in a way that results in extensive van der Waals contacts between the drug and the DNA. There is no interaction between daunosamine and the DNA sugar-phosphate backbone. We present full experimental details and all relevant conformational parameters, and use the comparison with a d(CGTACG)-daunomycin complex to rationalize some neighbouring sequence effects involved in daunomycin binding.  相似文献   

14.
RecA protein will catalyze the in vitro pairing of homologous DNA molecules. To further explore the events involved in the search for homology, we have applied a nitrocellulose filter binding assay to follow pairing, and a sedimentation assay to follow the generation of aggregates (termed coaggregates) formed between RecA-complexed single-stranded (ss) DNA and double stranded (ds) DNA. Electron microscopy (EM) was used to visualize the structures involved. RecA protein promoted the pairing of circular M13 ssDNA and linear M13mp7 dsDNA efficiently in the absence of coaggregates. Indeed, pairing of homologous ss- and dsDNAs involved coaggregate formation only if the dsDNA was circular. For DNAs containing only a few hundred base-pairs of homology, for example pUC7 dsDNA and M13mp7 ssDNA, pairing and joint formation was observed if the dsDNA was superhelical but not if it was topologically relaxed or linear with the homology internal to an end of the dsDNA. The effect of non-covalently attached heterologous dsDNA on the RecA-promoted joining of M13 ssDNA and linear M13mp7 dsDNA (with non-M13 sequences at both ends) was found to depend on the topology and concentration of the heterologous DNA. A tenfold excess of superhelical pBR322 DNA strongly inhibited pairing. However, addition of relaxed or linear pBR322 DNA to the pairing reaction had little effect. As seen by EM, superhelical pBR322 DNA inhibited joint formation by excluding the homologous dsDNA form the coaggregates. EM also revealed heterologous DNA interactions presumably involved in the search for homology. Here the use of EM has provided a direct visualization of the form and architecture of coaggregates revealing a dense interweaving of presynaptic filaments and dsDNA.  相似文献   

15.
We have developed a technique of partially-restrained molecular mechanics enthalpy minimisation which enables the sequence-dependence of the DNA binding of a non-intercalating ligand to be studied for arbitrary sequences of considerable length (greater than = 60 base-pairs). The technique has been applied to analyse the binding of berenil to the minor groove of a 60 base-pair sequence derived from the tyrT promoter; the results are compared with those obtained by DNAse I and hydroxyl radical footprinting on the same sequence. The calculated and experimentally observed patterns of binding are in good agreement. Analysis of the modelling data highlights the importance of DNA flexibility in ligand binding. Further, the electrostatic component of the interaction tends to favour binding to AT-rich regions, whilst the van der Waals interaction energy term favours GC-rich ones. The results also suggest that an important contribution to the observed preference for binding in AT-rich regions arises from lower DNA perturbation energies and is not accompanied by reduced DNA structural perturbations in such sequences. It is therefore concluded that those modes of DNA distortion favourable to binding are probably more flexible in AT-rich regions. The structure of the modelled DNA sequence has also been analysed in terms of helical parameters. For the DNA energy-minimised in the absence of berenil, certain helical parameters show marked sequence-dependence. For example, purine-pyrimidine (R-Y) base pairs show a consistent positive buckle whereas this feature is consistently negative for Y-R pairs. Further, CG steps show lower than average values of slide while GC steps show lower than average values of rise. Similar analysis of the modelling data from the calculations including berenil highlights the importance of DNA flexibility in ligand binding. We observe that the binding of berenil induces characteristic responses in different helical parameters for the base-pairs around the binding site. For example, buckle and tilt tend to become more negative to the 5'-side of the binding site and more positive to the 3'-side, while the base steps at either side of the centre of the site show increased twist and decreased roll.  相似文献   

16.
DNA stretching in chromatin may facilitate its compaction and influence site recognition by nuclear factors. In vivo, stretching has been estimated to occur at the equivalent of one to two base-pairs (bp) per nucleosome. We have determined the crystal structure of a nucleosome core particle containing 145 bp of DNA (NCP145). Compared to the structure with 147 bp, the NCP145 displays two incidences of stretching one to two double-helical turns from the particle dyad axis. The stretching illustrates clearly a mechanism for shifting DNA position by displacement of a single base-pair while maintaining nearly identical histone-DNA interactions. Increased DNA twist localized to a short section between adjacent histone-DNA binding sites advances the rotational setting, while a translational component involves DNA kinking at a flanking region that initiates elongation by unstacking bases. Furthermore, one stretched region of the NCP145 displays an extraordinary 55° kink into the minor groove situated 1.5 double-helical turns from the particle dyad axis, a hot spot for gene insertion by HIV-integrase, which prefers highly distorted substrate. This suggests that nucleosome position and context within chromatin could promote extreme DNA kinking that may influence genomic processes.  相似文献   

17.
When DNA is bent around a protein, it must distort. The distortion occurs by changes in the conformation of successive dinucleotide steps. Bending does not necessarily occur uniformly: some steps might remain particularly rigid, i.e. they might deform relatively little, while others might take more than their proportional share of deformation. We investigate here the deformational capacity of specific dinucleotide steps by examining a database of crystallized oligomers. Dividing the steps into ten types by sequence (AA(=TT), AC(=GT), AG(=CT), AT, CA(=TG), CG, GA(=TC), GC, GG(=CC) and TA), we find that some step types are practically rigid, while others have considerable internal mobility or conformational flexibility. Now in general base-pairs are not planar, but have Propeller-Twist. We find a clear empirical correlation between the level of Propeller-Twist in the base-pairs and the flexibility of the dinucleotide step which they constitute. Propeller-Twist in the base-pairs makes stacking into a dinucleotide step more awkward than in plane base-pairs. In particular, it provides a stereochemical “locking” effect which can make steps with highly Propeller-Twisted base-pairs rigid. Although the origins of Propeller-Twist are not yet clearly understood, this result provides a key to understanding the flexibility of DNA in bending around proteins.  相似文献   

18.
Low molecular weight peptides from calf thymus cause a strong dose-dependent stabilization of the DNA. The strength of DNA-peptide interaction is pH-dependent and decreases rapidly above pH 6.5. Moreover the complete kinetics of DNA denaturation and renaturation demonstrates that the peptide fraction increases significantly the DNA renaturation mostly at low temperature, showing that the interaction DNA-thymic effector helps the recombination of complementary DNA segments. The DNA stabilization rate by the peptide fraction is comparable to that obtained by means of high concentration of histones or synthetic polycationic peptides. However, the lack of basic amino acids in the peptide structure is not in favor of strong electrostatic interactions and implies a specific binding of peptide to DNA. The possible correlation of the specific thymic peptides-DNA interaction with the stereochemical kinking scheme of DNA is discussed.  相似文献   

19.
The effect of specific DNA binding of the cAMP . cAMP receptor protein complex to two DNA fragments (301 and 2685 base-pairs in length) containing the lac operon has been investigated by electron microscopy. It is shown that specific DNA binding of the cAMP . cAMP receptor protein complex induces a kink of 30 to 45 degrees in the DNA with the apex of the kink located at the site of protein attachment. These findings lend direct visual support for the kinking hypothesis based on the observation of anomalous electrophoretic mobility of DNA fragments containing specifically bound cAMP receptor protein.  相似文献   

20.
The solution conformation and internal motions of five superhelical DNAs between 2100 and 10200 base-pairs in length have been characterized by dynamic light scattering (DLS). Variations in the diffusion coefficients and rotational relaxation times with molecular weight are both indicative of an anisotropic extended structure of these DNAs; we therefore conclude that under our conditions the interwound superhelical structure prevails. The internal dynamics can be described by a superposition of rotational diffusion and internal relaxation. The latter process is characterized by the internal diffusion of persistence length size segments within the DNA chain and faster bending motions within these segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号