首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Can plants exposed to SO2 excrete sulfuric acid through the roots?   总被引:2,自引:0,他引:2  
Hydroponically grown pea plants (Pisum sativum L., cv. Kleine Rheinländerin) and barley seedlings (Hordeum vulgare L., cv. Gerbel) were fumigated for several days with 1 or 2 μl l?1 SO2. Both species accumulated sulfate during fumigation, although the nutrient medium lacked sulfate. In pea, SO2-dependent sulfate accumulation in different plant parts accounted for 60 percent of the SO2 sulfur which, as calculated from a determination of boundary and stomatal flux resistances had entered the leaves. Up to 55% of the air-borne sulfate was translocated from pea leaves to roots during the period of fumigation, but no or only little sulfate was excreted into the nutrient solution. In contrast, barley retained sulfate in the leaves, and sulfate translocation from shoot to the root system could not be observed. In both species, protons were excreted by the roots. In fumigated plants, proton loss was higher than in untreated controls in pea, but not in barley. In pea, SO2-dependent proton loss into the medium accounted for up to 50% of the sulfuric acid formed from SO2. Proton excretion was strongly dependent on potassium availability in the nutrient medium. Cation uptake by the plants during fumigation was sufficient to compensate for proton loss, suggesting proton/cation exchange at the interface between root and medium. We conclude that by oxidation to sulfuric acid, plants are capable of detoxifying SO2 taken up by the leaves. Depending on plant species, either both protons and sulfate anions can be exported from the leaves, or the proton load on leaf cells can be relieved by proton/cation exchange at the plasmalemma. Finally, the problem of airborne plant acidification may be solved by proton/cation exchange at the level of roots. The burden of acidification is then shifted from the plant to the nutrient medium. Appreciable amounts of sulfate can be excreted neither by pea nor by barley plants.  相似文献   

2.
铅对几种作物生长的影响及其在植物体内的积累   总被引:5,自引:0,他引:5       下载免费PDF全文
根据将醋酸铅溶液施入土壤及喷洒叶片的盆栽试验可以确定:(1)铅对植物的毒性不大,植物对铅的忍耐力很强。目前自然界中的铅污染程度不足以直接伤害植物本身。(2)溶液中的铅可以被植物的根系吸收,也可以被叶片直接吸收。吸收量与环境中的铅浓度成正比。(3)铅在植物体中移动性很小,根吸收的铅主要积累在根部,叶片吸收的铅主要积累在叶部。有少量铅可以向上或向下转移,但极少能进入果实的内部及块根的淀粉中。  相似文献   

3.
硒肥对马铃薯硒素吸收、转化及产量、品质的影响   总被引:12,自引:0,他引:12  
通过设对照(CK)、保水缓释硒肥(W)、生物炭基硒肥(C)、硒酸钠硒肥(S)4个处理来研究不同硒肥对马铃薯(品种为早大白)硒素吸收、转化及产量、品质的影响。结果表明:各处理马铃薯各器官硒含量在生育期内总体上呈下降趋势,马铃薯各器官的硒含量呈现:苗期根茎叶片;成熟期叶片茎块茎的特点;随着硒肥用量的增加,W处理下的总硒、无机硒、有机硒含量呈增大趋势,产量、有机硒转化率、粗蛋白、还原糖和Vc呈先升高后降低的趋势;C处理和S处理下,马铃薯以上各指标均呈先升高后降低的趋势,在低施硒量(0.126 kg/hm2)时,3种硒肥显著降低了马铃薯块茎淀粉含量,之后随着施硒量的增加淀粉含量变化不显著;与对照相比,3种硒肥在适宜施硒量(0.379 kg/hm2)时,马铃薯产量提高了4.87%—5.44%,粗蛋白含量增加了12.18%—20.03%,还原糖提高了6.45%—12.90%,Vc含量提高-0.54%—3.11%,有机硒转化率增加13.00%—15.10%,淀粉含量增加了-0.73%—1.12%;综合考虑3种硒肥对马铃薯含硒量、产量、品质的影响,W处理最佳,C处理次之,S处理最差。  相似文献   

4.
Abstract: The significance of root nitrate reductase for sulfur assimilation was studied in tobacco (Nicotiana tabacum) plants. For this purpose, uptake, assimilation, and long-distance transport of sulfur were compared between wild-type tobacco and transformants lacking root nitrate reductase, cultivated either with nitrate or with ammonium nitrate. A recently developed empirical model of plant internal nitrogen cycling was adapted to sulfur and applied to characterise whole plant sulfur relations in wild-type tobacco and the transformant. Both transformation and nitrogen nutrition strongly affected sulfur pools and sulfur fluxes. Transformation decreased the rate of sulfate uptake in nitrate-grown plants and root sulfate and total sulfur contents in root biomass, irrespective of N nutrition. Nevertheless, glutathione levels were enhanced in the roots of transformed plants. This may be a consequence of enhanced APR activity in the leaves that also resulted in enhanced organic sulfur content in the leaves of the tranformants. The lack of nitrate reductase in the roots in the transformants caused regulatory changes in sulfur metabolism that resembled those observed under nitrogen deficiency. Nitrate nutrition reduced total sulfur content and all the major fractions analysed in the leaves, but not in the roots, compared to ammonium nitrate supply. The enhanced organic sulfur and glutathione levels in ammonium nitrate-fed plants corresponded well to elevated APR activity. But foliar sulfate contents also increased due to decreased re-allocation of sulfate into the phloem of ammonium nitrate-fed plants. Further studies will elucidate whether this decrease is achieved by downregulation of a specific sulfate transporter in vascular tissues.  相似文献   

5.
Translocation of Sulfate in Soybean (Glycine max L. Merr)   总被引:4,自引:4,他引:0       下载免费PDF全文
Smith IK  Lang AL 《Plant physiology》1988,86(3):798-802
Sulfate translocation in soybean (Glycine max L. Merr) was investigated. More than 90% of the sulfate entering the shoot system was recoverable in one or two developing trifoliate leaves. In young plants, the first trifoliate leaf contained between 10 to 20 times as much sulfate as the primary leaves, even though both types of leaf had similar rates of transpiration and photosynthesis. We conclude that most of the sulfate entering mature leaves is rapidly loaded into the phloem and translocated to sinks elsewhere in the plant. This loading was inhibited by carbonylcyanide m-chlorophenylhydrazone and selenate. At sulfate concentrations below 0.1 millimolar, more than 95% of the sulfate entering primary leaves was exported. At higher concentrations the rate of export increased but so did the amount of sulfate remaining in the leaves. Removal of the first trifoliate leaf increased two-fold the transport of sulfate to the apex, indicating that these are competing sinks for sulfate translocated from the primary leaves. The small amount of sulfate transported into the mesophyll cells of primary leaves is a result of feedback regulation by the intracellular sulfate pool, not a consequence of their metabolic inactivity. For example, treatment of plants with 2 millimolar aminotriazole caused a 700 nanomoles per gram fresh weight increase in the glutathione content of primary leaves, but had no effect on sulfate aquisition.  相似文献   

6.
植物硫营养代谢、调控与生物学功能   总被引:14,自引:0,他引:14  
植物作为无机硫的主要还原者,在全球的硫循环中起着关键作用。植物对土壤中硫酸盐的吸收运输和同化代谢,以及一系列具有重要生物学功能的含硫代谢产物的合成,不但与植物生长发育、耐逆和抗病虫害等密切相关,而且影响农作物产量与品质。硫营养的代谢和调控非常复杂,且生物学功能众多。本文综述了近年来植物硫营养代谢及调控及其在逆境胁迫中的生物学功能等方面的新进展,同时讨论了该领域悬而未决的重要生物学问题和研究动向,进而提出硫营养在农业生产上的重要性和所面临的新问题。  相似文献   

7.
植物作为无机硫的主要还原者, 在全球的硫循环中起着关键作用。植物对土壤中硫酸盐的吸收运输和同化代谢, 以及一系列具有重要生物学功能的含硫代谢产物的合成, 不但与植物生长发育、耐逆和抗病虫害等密切相关, 而且影响农作物产量与品质。硫营养的代谢和调控非常复杂, 且生物学功能众多。本文综述了近年来植物硫营养代谢及调控及其在逆境胁迫中的生物学功能等方面的新进展, 同时讨论了该领域悬而未决的重要生物学问题和研究动向, 进而提出硫营养在农业生产上的重要性和所面临的新问题。  相似文献   

8.
Two pot experiments were conducted to investigate the time course effects of the (S, S)-N, N'-ethylenediamine disuccinic acid (EDDS) addition to contaminated soil on the uptake of Cu and Zn by the Cu accumulator Elsholtzia splendens and on plant Cu and Zn concentrations at different growth stages. EDDS increased the amounts of Cu and Zn soluble in the soil, taken up by plants, concentrated in the xylem sap, and translocated from roots to stems and leaves. The increase in soil-soluble metals, especially Cu, resulted in a corresponding increase in metal concentrations in the xylem sap and leaves. The addition of EDDS to the soil increased plant Cu and Zn concentrations, especially in the leaves, and changed the proportions of Cu and Zn taken up by different plant parts. The proportions of Cu and Zn taken up by the roots were higher than by the leaves of control plants, but EDDS-treated plants showed the opposite trend. EDDS exerted greater effects at the end of the vegetative growth stage than at the start of the flowering or reproductive stages.  相似文献   

9.
Transgenic plants were constructed expressing a novel cytosolic inorganic pyrophosphatase in order to reduce the cytosolic pyrophosphate content. To this end the Escherichia coli gene ppa encoding inorganic pyrophosphatase was cloned between the 35S CaMV promoter and the poly(A) site of the octopine synthase gene and transferred into tobacco and potato plants by Agrobacterium-mediated gene transfer. Regenerated plants were tested for the expression of the ppa gene by Northern blots and activity gels. Plants expressing active inorganic pyrophosphatase showed a dramatic change in photoassimilate partitioning. In both transgenic tobacco and potato plants the ratio between soluble sugars and starch was increased by about 3-4-fold in source leaves as compared with the wild-type. However, whereas source leaves of transgenic tobacco plants accumulated much higher levels of glucose (up to 68-fold), fructose (up to 24-fold), sucrose (up to 12-fold) and starch (up to 8-fold) this was not observed in potato plants where the change in assimilate partitioning in source leaves was due to an increase of about 2-fold in sucrose and a reduction in starch content. Expression of the cytosolic inorganic pyrophosphatase in tobacco results in stunted growth of vegetatively growing plants due to a reduced internode distance. Upon flowering the transgenic plants increase their growth rate, reaching almost the same height as control plants at the end of the growth period. Old source leaves accumulate up to 100-fold more soluble sugars than control leaves. This increase in soluble sugars is accompanied by a reduction in chlorophyll content (up to 85%). Transgenic potato plants showed a less dramatic change in their growth behaviour. Plants were slightly reduced in size, with stems more highly branched. Tuber number increased 2-3-fold, but tuber weight was lower resulting in no net increase in fresh weight.  相似文献   

10.
盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用   总被引:43,自引:0,他引:43  
用含有NaCl0、50、100、200、300、400mmol/L的Hoagland培养液处理盐芥幼苗一定时间后,分别测定其根和叶含水量、渗透势、几种无机和有机渗透调节物质含量,并计算了渗透调节物质在不同条件下的计算渗透势值(COP).结果表明:随盐处理浓度的增加,盐芥根和叶的含水量和渗透势逐渐降低;Na 和Cl-是根和叶积累的无机渗透调节物质;SS、OA和FAA是根积累的有机渗透调节物质,Pro是叶和根积累的有机渗透调节物质.Na X-ray微区分析表明液泡是积累Na 的主要部位.  相似文献   

11.
The significance of ectomycorrhizal fungi for sulfur nutrition of trees   总被引:3,自引:0,他引:3  
Rennenberg  Heinz 《Plant and Soil》1999,215(2):115-122
Sulfur nutrition of plants is largely determined by sulfate uptake of the roots, the allocation of sulfate to the sites of sulfate reduction and assimilation, the reduction of sulfate to sulfide and its assimilation into reduced sulfur-containing amino acids and peptides, and the allocation of reduced sulfur to growing tissues that are unable to fulfill their own demand for reduced sulfur in growth and development. Association of the roots of pedunculate oak (Quercus robur L.) and beech (Fagus sylvatica L.) trees with ectomycorrhizal fungi seems to interact with these processes of sulfur nutrition in different ways, but the result of these interactions is dependent on both the plant and the fungal partners. Mycorrhizal colonisation of the roots can alter the response of sulfate uptake to sulfate availability in the soil and enhances xylem loading and, hence, xylem transport of sulfate to the leaves. As a consequence, sulfate reduction in the leaves may increase. Simultaneously, sulfate reduction in the roots seems to be stimulated by ectomycorrhizal association. Increased sulfate reduction in the leaves of mycorrhizal trees can result in enhanced phloem transport of reduced sulfur from the leaves to the roots. Different from herbaceous plants, enhanced phloem allocation of reduced sulfur does not negatively affect sulfate uptake by the roots of trees. These interactions between mycorrhizal association and the processes involved in sulfur nutrition are required to provide sufficient amounts of reduced sulfur for increased protein synthesis that is used for the enhanced growth of trees frequently observed in response to ectomycorrhizal association. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
酸雨是中国重要的环境问题,为研究酸雨对小麦籽粒品质的可能影响,以小麦品种扬麦15和汶农17为材料开展盆栽试验,研究了不同酸度(pH2.5、p H4.0和p H5.6)酸雨对小麦花后氮硫代谢关键酶活性和籽粒蛋白质含量及组分的影响。结果显示:酸雨处理抑制叶片硝酸还原酶(NR)活性,提高了扬麦15整个灌浆期及汶农17灌浆中后期叶片谷氨酰胺合成酶(GS)活性,促进了叶片蛋白的降解,降低了叶片可溶性蛋白含量。不同酸度酸雨提高了成熟期籽粒中蛋白质含量,酸度越强,增加幅度越大,籽粒中各蛋白组分含量和大部分氨基酸含量也有明显提高。酸雨提高了扬麦15叶片丝氨酸乙酰转移酶(SAT)和O-乙酰丝氨酸硫裂解酶(OAS-TL)活性,但对汶农17硫代谢关键酶活性影响较小,酸雨处理还提高了籽粒中二硫键和含硫氨基酸含量。可见酸雨对小麦氮硫代谢有不同程度影响,进而影响了小麦籽粒蛋白质含量和组成,酸度越强影响越大,但不同品种对酸雨响应有一定差异。  相似文献   

13.
于浩  陈展  尚鹤  曹吉鑫 《生态学报》2017,37(16):5418-5427
外生菌根真菌能够提高宿主植物对外界环境胁迫的抵抗力。主要探讨野外条件下外生菌根真菌对酸雨胁迫下马尾松(Pinus massoniana)幼苗生长、养分元素以及表层土壤的影响,以期为酸雨严重区马尾松林恢复提供科学依据。以2年生马尾松幼苗为材料,采用原位试验,共设置6个处理:p H5.6(对照)处理未接种、对照处理接种、p H4.5酸雨处理未接种、p H4.5酸雨处理接种、p H3.5酸雨处理未接种、p H3.5酸雨处理接种。研究表明:(1)酸雨处理与对照处理相比显著降低了非菌根苗总生物量及各部位生物量(根、茎、叶),对株高无显著影响,接种外生菌根真菌可以缓解酸雨对马尾松幼苗生长的不利影响;(2)与对照处理相比,酸雨处理的非菌根苗的针叶中N、P、Ca含量升高,Mg含量降低,根系中N、P、Ca含量降低,Mg含量随p H的降低先升高后降低。接种外生菌根真菌显著提高了p H3.5酸雨处理的马尾松幼苗根系中N、P、Ca、Mg含量,而对针叶中N、P、Ca、Mg含量无显著影响。(3)在非菌根土壤中,p H3.5酸雨处理与对照处理相比显著降低了土壤中有机质、速效磷、速效钾、可溶性碳、可溶性氮、铵态氮、硝态氮含量,而接种外生菌根真菌显著提高了上述指标。酸雨对土壤阳离子交换量无显著影响。总而言之,接种外生菌根真菌促进了酸雨处理的马尾松幼苗生长、缓解了酸雨对马尾松幼苗养分元素和表层土壤的不利影响,由此可见接种外生菌根真菌是减轻酸雨对马尾松危害的一个重要途径。  相似文献   

14.
Mature leaves of Ricinus communis fed with 35SO 4 2- in the light export labeled sulfate and reduced sulfur compounds by phloem transport. Only 1–2% of the absorbed radiosulfur is exported to the stem within 2–3 h, roughly 12% of 35S recovered was in reduced form. The composition of phloem translocate moving down the stem toward the root was determined from phloem exudate: 20–40% of the 35S moved in the form of organic sulfur compounds, however, the bulk of sulfur was transported as inorganic sulfate. The most important organic sulfur compound translocated was glutathione, carrying about 70% of the label present in the organic fraction. In addition, methionine and cysteine were involved in phloem sulfur transport and accounted for roughly 10%. Primarily, the reduced forms of both, glutathione and cysteine are prsent in the siever tubes.Abbreviations CySH cysteine - GSH glutathione - GSSG glutathione disulfide - NEM N-ethylmaleimide - CyS-SCy cystine  相似文献   

15.
In the roots of 4-day-old pea plants germinated in unsterile soil from Rhizobium-inoculated seeds, a higher level of native IAA was determined than in roots of pea plants germinated in sterile soil from superficially sterilized seeds. The IAA level in plants grown from inoculated seeds increased markedly up to the age of 6 days of the plant, while in plants growing under sterile conditions it did not significantly change during the same period. Between the 6th and 10th days of the age of the plant, a decline in the IAA level was observed in roots of plante growing from inoculated seeds. It was not until after 10 days of age of the plant that the level of IAA in nodulated roots again increased.  相似文献   

16.
Inorganic and organic metabolites, including carbohydrates, amino acids, and organic acids, may be leached from the foliage of 125 diverse plant species by the action of rain, dew, and mist. Ca45, P32, and Sr89 absorbed by roots, and C14 absorbed as C14O2 by foliage were leached from squash leaves and were subsequently reabsorbed by the roots and translocated to the aboveground parts of several plant species. This phenomenon of nutrient recycling is apparently a widespread natural phenomenon and has implications in plant nutrition. Bean plants were grown through 1 complete generation on the leachates from squash leaves. Leaching and reabsorption of the leachates are important in the distribution of fallout products, in the stimulation and suppression of plants beneath the spread of other plants, in plant competition, and in the development of plant associations.  相似文献   

17.
 干旱是限制水稻(Oryza sativa)作物产量的主要生态因子之一,渗透调节是作物适应干旱逆境的生理机制之一。在人为控制水分的盆栽条件下, 对水稻生长的分蘖期、幼穗分化期、抽穗期、结实期分别进行水分胁迫,研究水稻根系及叶片渗透调节物质的变化规律。结果表明, 不同生育期 干旱胁迫后叶片水势均显著下降,根系和叶片的有机渗透调节物质如可溶性糖、游离氨基酸、脯氨酸和无机渗透调节物质包括K+、Mg2+等含量 均大幅度上升,而且幼穗分化期和抽穗期这两个对水分胁迫最敏感的时期上升幅度最大,其中又以有机渗透调节物质变化最显著。不同生育期渗 透调节大小的顺序为:抽穗期>幼穗分化期>结实期>分蘖期,反映了不同生育时期渗透调节能力的差异。同时幼穗分化期和抽穗期水分胁迫结束 后再复水后根系和叶片的有机渗透调节物质含量仍长期明显高于对照,而无机离子则变化规律比较复杂,有的升高有的则降低。叶片的渗透调 节能力大于根系,无论是叶片或根系都是K+对渗透调节的贡献最大;其次是Ca2+, 6 种渗透调节物质含量大小排列顺序为K+ > Ca2+ >可溶性糖 > Mg2+ > 游离氨基酸 > 脯氨酸。  相似文献   

18.
To better understand some basic aspects of the nitrogen economy in Posidonia oceanica and, specifically, the seasonality of the processes of storage, translocation and assimilation, we examined nitrogen speciation into soluble compounds, both inorganic (nitrates, nitrites and ammonium) and organic (free amino acids, FAA, and total soluble protein, TSP), and the nitrogen assimilation potential (through the glutamine synthetase activity measurement) in the leaves, rhizomes and roots of P. oceanica over a 1-year cycle. Only a limited amount of inorganic nitrogen was found, accounting for less than 3.3% of the total nitrogen content, and it was mostly in the form of ammonium. Nitrate and nitrite concentrations were very low, always below 7.2 μmol g−1 dw in annual average. Among the organic soluble fractions, FAAs were the most abundant, accounting for up to 50% of N pools. Rhizomes were the organs in which FAA concentrations reached their maximum value. The leaves showed higher nitrogen assimilation potential than the roots and this assimilation potential was highest during and after the period of maximum leaf growth, probably corresponding to the assimilation of both new and recycled nitrogen. Our results suggest that 5% of the total nitrogen assimilation occurs in roots and 79% in leaves on an annual average. In addition, rhizomes contributed to the total shoot nitrogen assimilation by 32-54% between autumn and spring. Rhizomes appear as key organs in the nitrogen economy of the plant, not only as a major site for nitrogen assimilation but also as an organ for nitrogen storage. This storage, mostly in the form of FAA, occurs during periods of high availability and low demand (winter). This stored nitrogen can supply up to 33% of plant demands during the moment of maximum leaf growth (i.e. late spring).  相似文献   

19.
The aim of the research was to study a removal of polycyclic aromatic hydrocarbons (PAHs) and phytoextraction of bromine (Br) from contaminated soils. The experiments using pea and wheat seedlings as potential candidates for soil remediation were performed. The soil for the experiments was collected from a site slightly contaminated by some PAHs. Before planting, the soil was exposed to 20 mg of Br/kg of soil. In the soil taken from rhizosphere of pea and wheat, the concentrations of many PAHs decreased up to 7 times compared to the concentrations of the compounds in the initial soil. Pea was capable of more effectively influencing the soil PAHs than wheat. The growth of pea and wheat in the soil spiked with Br resulted in a significant increase of Br concentration in a plant. Concentration of Br in roots of pea and wheat increased 21 and 3 times, respectively. Bromine content in leaves of wheat and pea increased 10 and 4.5 times. This accumulation of Br in the plants led to a decrease of its concentration in the rhizosphere soil. The experimental results demonstrated a good ability of the plants to cleanup the soils contaminated with organic and inorganic compounds.  相似文献   

20.
The mitochondrial sn-glycerol-3-phosphate and 1-acyl-sn-glycerol-3-phosphate O-acyltransferases from potato tubers and pea leaves were investigated with respect to their intraorganelle localization, their positional and substrate specificities, and their fatty acid selectivities. In mitochondria from potato tubers both enzymes were found to be located in the outer membrane. The 1-acyl-sn-glycerol-3-phosphate O-acyltransferase of pea mitochondria showed the same intraorganelle localization whereas the sn-glycerol-3-phosphate O-acyltransferase behaved like a soluble protein of the intermembrane space. The sn-glycerol-3-phosphate O-acyltransferase of both potato and pea mitochondria used sn-glycerol-3-phosphate but not dihydroxyacetone phosphate as acyl acceptor and exclusively catalyzed the formation of 1-acyl-sn-glycerol-3-phosphate which subsequently served as substrate for the second acylation reaction at its C-2 position. Both acyltransferases of potato as well as pea mitochondria showed higher activities with acyl-CoA than with the corresponding acyl-(acyl carrier protein) thioesters. When different acyl-CoA thioesters were offered separately, the sn-glycerol-3-phosphate O-acyltransferase of potato mitochondria displayed no fatty acid specificity whereas the enzyme of pea mitochondria revealed one for saturated acyl groups. On the other hand, the mitochondrial 1-acyl-sn-glycerol-3-phosphate O-acyltransferases from both potato tubers and pea leaves were more active on unsaturated than on saturated acyl-CoA thioesters. Furthermore, these enzymes preferentially used oleoyl- and linoleoyl-CoA when they were offered in a mixture with saturated ones, although the fatty acid selectivity of the pea enzyme was less pronounced than that of the potato enzyme. The sn-glycerol-3-phosphate O-acyltransferase of potato mitochondria displayed a slight preference for saturated acyl groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号