首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The use of polymer carriers for the controlled release of bioactive agents including polypeptides is discussed. This paper reviews release mechanisms from polymers, examines applications of these systems, explores approaches to control drug delivery in response to physiological needs, and discusses the impact of controlled drug release with respect to biotechnology.  相似文献   

2.
Targeting melanoma inhibitor of apoptosis protein with cancer immunotherapy   总被引:4,自引:0,他引:4  
Aberrantly expressed or mutated proteins in cancer cells evoke immune recognition, but host reactions are usually insufficient to prevent disease progression. Vaccination with irradiated tumor cells engineered to secrete granulocyte-macrophage colony stimulating factor (GM-CSF) augments host immunity through improved tumor antigen presentation by recruited dendritic cells and macrophages. By analyzing the immune response of a metastatic melanoma patient who achieved a long-term response to vaccination, we identified melanoma inhibitor of apoptosis protein (ML-IAP) as a target for immune-mediated tumor destruction. Vaccination stimulated a coordinated cellular and humoral reaction to ML-IAP that was associated with extensive tumor necrosis, whereas lethal disease progression was linked with the loss of ML-IAP expression and the absence of intra-tumoral lymphocyte infiltrates. These findings demonstrate that ML-IAP can serve as a tumor rejection antigen, although additional vaccine targets will be required to circumvent immune escape and tumor heterogeneity.  相似文献   

3.
The plant-derived terpenoids are considered to be the most potent anticancer, anti-inflammatory and anticarcinogenic compounds known. Enzymatic biotransformation is a very useful approach to expand the chemical diversity of natural products. Recent enzymatic biotransformation studies on terpenoids have resulted in the isolation of novel compounds. 14-hydroxy methyl caryophyllene oxide produced from caryophyllene oxide showed a potent inhibitory activity against the butyryl cholinesterase enzyme, and was found to be more potent than parent caryophyllene oxide. The metabolites 3β,7β-dihydroxy-11-oxo-olean-12-en-30-oic acid, betulin, betulonic acid, argentatin A, incanilin, 18β glycyrrhetinic acid, 3,11-dioxo-olean-12-en-30-oic acid produced from 18β glycyrrhetinic acid were screened against the enzyme lipoxygenase. 3,11-Dioxo-olean-12-en-30-oic acid, was found to be more active than the parent compound. The metabolites 3β-hydroxy sclareol 18α-hydroxy sclareol, 6α,18α-dihydroxy sclareol, 11S,18α-dihydroxy sclareol, and 1β-hydroxy sclareol and 11S,18α-dihydroxy sclareol produced from sclareol were screened for antibacterial activity. 1β-Hydroxy sclareol was found to be more active than parent sclareol. There are several reports on natural product enzymatic biotransformation, but few have been conducted on terpenes. This review summarizes the classification, advantages and agents of enzymatic transformation and examines the potential role of new enzymatically transformed terpenoids and their derivatives in the chemoprevention and treatment of other diseases.  相似文献   

4.
5.
As a prerequisite for the use of liposomes for delivery of biologically active agents, techniques are required for the efficient and rapid entrapment of such agents in liposomes. Here we review the variety of procedures available for trapping hydrophilic and hydrophobic compounds. Considerations which are addressed include factors influencing the choice of a particular liposomal system and techniques for the passive entrapment of drugs in multilamellar vesicles and unilamellar vesicles. Attention is also paid to active trapping procedures relying on the presence of (negatively) charged lipid or transmembrane ion gradients. Such gradients are particularly useful for concentrating lipophilic cationic drugs inside liposomes, allowing trapping efficiencies approaching 100%.  相似文献   

6.
Erythrocyte production is regulated by balancing precursor cell apoptosis and survival signaling. Previously, we found that BH3-only proapoptotic factor, Nix, opposed erythroblast-survival signaling by erythropoietin-induced Bcl-xl during normal erythrocyte formation. Since erythropoietin treatment of human anemia has limitations, we explored the therapeutic potential of abrogating Nix-mediated erythroblast apoptosis to enhance erythrocyte production. Nix gene ablation blunted the phenylhydrazine-induced fall in blood count, enhanced hematocrit recovery, and reduced erythroblast apoptosis, despite lower endogenous erythropoietin levels. Similar to erythropoietin, Nix ablation increased early splenic erythroblasts and circulating reticulocytes, while maintaining a pool of mature erythroblasts as erythropoietic reserve. Erythrocytes in Nix-deficient mice showed morphological abnormalities, suggesting that apoptosis during erythropoiesis not only controls red blood cell number, but also serves a “triage” function, preferentially eliminating abnormal erythrocytes. These results support the concept of targeting erythroblast apoptosis to maximize erythrocyte production in acute anemia, which may be of value in erythropoietin resistance. Abhinav Diwan and Andrew G. Koesters contributed equally to this work.  相似文献   

7.
Marine microorganisms as a source of bioactive agents   总被引:12,自引:0,他引:12  
Several ecological factors of the marine environment were used in developing a strategy for discovering useful bioactive agents from marine microorganisms. By consideration of sea water requirements, production and degradation of marine polymers, and plasmid content, several novel anti-malarial antibiotics, anti-tumor polysaccharides, glucan-degrading enzymes, and aminoglycoside antibiotics were found.  相似文献   

8.
Bode AM  Dong Z 《Mutation research》2004,555(1-2):33-51
Cancer is a dynamic process that involves many complex factors, which may explain why a "magic bullet" cure for cancer has not been found. Death rates are still rising for many types of cancers, which possibly contributes to the increased interest in chemoprevention as an alternative approach to the control of cancer. This strategy for cancer control is based on the presumption that because cancer develops through a multi-step process, each step may be a prospective target for reversing or suppressing the process. Thus, the design and development of chemopreventive agents that act on specific and/or multiple molecular and cellular targets is gaining support as a rational approach to control cancer. Nutritional or dietary factors have attracted a great deal of interest because of their perceived ability to act as highly effective chemopreventive agents. They are professed as being generally safe and may have efficacy as chemopreventive agents by preventing or reversing premalignant lesions and/or reducing second primary tumor incidence. Many of these dietary compounds appear to act on multiple target signaling pathways. Some of the most interesting and well documented are resveratrol and components of tea, including EGCG, theaflavins and caffeine. This review will focus on recent work regarding three well-accepted cellular/molecular mechanisms that may at least partially explain the effectiveness of selected food factors, including those indicated above, as chemopreventive anti-promotion agents. These food compounds may act by: (1) inducing apoptosis in cancer cells; (2) inhibiting neoplastic transformation through the inhibition of AP-1 and/or NF-kappaB activation; and/or (3) suppressing COX-2 overexpression in cancer cells.  相似文献   

9.
10.
Lorenzo Galluzzi 《BBA》2009,1787(5):402-413
Mitochondrial membrane permeabilization (MMP) is commonly regarded as the “point-of-no-return” in the cascade of events that delineate the intrinsic pathway of apoptosis. MMP leads to the functional impairment of mitochondria and to the release into the cytosol of toxic proteins that are normally confined within the mitochondrial intermembrane space. These include direct activators of caspases and caspase-independent effectors of the cell death program. MMP has been implicated in a plethora of pathophysiological settings. In particular, MMP contributes to both the immediate and delayed phases of cell loss that follow acute neuronal injury by ischemia/reperfusion or trauma. Although preventing MMP a priori would be the most desirable therapeutic choice, prophylactic interventions are rarely (if ever) achievable in the treatment of stroke and trauma patients. Conversely, interventions that block the post-mitochondrial phase of apoptosis (if administered within the first few hours after the accident) hold great promises for the development of novel neuroprotective strategies. In animal models of acute neuronal injury, the inhibition of caspases, apoptosis-inducing factor (AIF) and other apoptotic effectors can confer significant neuroprotection. Our review recapitulates the results of these studies and proposes novel strategies of inhibiting post-mitochondrial apoptosis in neurons.  相似文献   

11.
Mutational inactivation of the p53 tumor-suppressor gene, which regulates apoptosis mainly via the cell-intrinsic pathway, reduces the sensitivity of many cancers to conventional treatments. Targeting the cell-extrinsic pathway, which triggers p53-independent apoptosis, offers a unique therapeutic strategy to induce apoptosis in cancer cells. This article focuses on two proapoptotic receptor agonists, recombinant human Apo2-ligand/TNF-related apoptosis-inducing ligand (rhApo2L/TRAIL) and Apomab, which activate death receptor (DR) 4 and/or DR5, thus stimulating the cell-extrinsic pathway. These agents are under investigation for the treatment of solid tumor and hematologic malignancies. Preclinical data indicate that both molecules cause significant regression or growth inhibition of malignant tumors without significant toxicity. Initial data on rhApo2L/TRAIL and Apomab from phase 1 safety trials also confirm that these agents are suitable for further clinical investigation.  相似文献   

12.
《Trends in microbiology》2023,31(8):788-804
Herpesviruses are among the most successful viruses found in human populations. They establish lifelong latent infections, which are punctuated by recurrent reactivations. The entry process of herpesviruses into specific target cells requires a well-orchestrated teamwork involving multiple envelope glycoproteins. The conserved glycoprotein B (gB) is the membrane fusogen, of which conformational changes are induced by an entry complex (EC) consisting of at least gH and gL. Despite the high prevalence and heavy disease burdens associated with human herpesviruses (HHVs), vaccines against these pathogens are still lacking, except for varicella zoster virus (VZV). Recent advances in understanding the coordinated mechanisms of action of the key EC glycoproteins and fusogen will help to improve approaches for effective vaccine development and neutralizing antibody (nAb) screening.  相似文献   

13.
Antiresorptive agents have proven to be effective therapies for the treatment of bone diseases associated with excessive osteoclast activity. Decreased osteoclast formation, inhibition of osteoclast actions, and reduced osteoclast survival represent mechanisms by which antiresorptive agents could act. The goals of this article are to present the evidence that antiresorptive agents can decrease osteoclast survival through apoptosis, to review the mechanisms by which they are thought to activate the apoptotic process, and to consider whether the actions on apoptosis fully account for the antiresorptive effects. As background, the apoptotic process will be briefly summarized together with the evidence that factors that promote osteoclast survival affect steps in the process. Following this, therapeutic agents that are both antiresorptive and can stimulate osteoclast apoptosis will be discussed. Other bone therapeutic agents that are either antiresorptive or apoptotic, but not both, will be described. Finally, newer antiresorptive compounds that elicit apoptosis and could represent potential therapeutic agents will be noted.  相似文献   

14.
15.
The incorporation of abiotic transition metal catalysis into the chemical biology space has significantly expanded the tool kit of bioorthogonal chemistries accessible for cell culture and in vivo applications. A rich variety of homogeneous and heterogeneous catalysts has shown functional compatibility with physiological conditions and biostability in complex environs, enabling their exploitation as extracellular or intracellular factories of bioactive agents. Current trends in the field are focusing on investigating new metals and sophisticated catalytic devices and toward more applied activities, such as the integration of subcellular, cell- and site-targeting capabilities or the exploration of novel biomedical applications. We present herein an overview of the latest advances in the field, highlighting the increasing role of transition metals for the controlled release of therapeutics.  相似文献   

16.
Hydroxymethylacylfulvene (HMAF) is a novel agent with alkylating activity and is a potent inducer of apoptosis that is currently undergoing Phase II clinical trials for prostate cancer. This study explored the pro-apoptosis and anti-proliferative potential of HMAF in combination with gamma radiation in human prostate tumor cell lines. Apoptosis was assessed based on the generation of fragmented DNA, a terminal transferase flow cytometry assay, and cell morphology. In each of the tumor cell lines examined, radiation alone induced a marginal level of apoptosis, even after a prolonged 48-h incubation after exposure. In contrast, HMAF alone was a potent inducer of apoptosis in prostate tumor cells but not in normal cells. Marked levels of apoptosis in tumor cells were also observed for the combination of HMAF with gamma radiation. When drug treatment preceded irradiation, at least additive levels of apoptosis were observed in both androgen-responsive and androgen-independent cells. The combined treatment with ionizing radiation and HMAF reduced the radiation dose needed for the same level of clonogenic survival up to 2.5-fold. The potentiation of apoptosis and reduction in the clonogenic survival of tumor cells occurred at HMAF concentrations lower than that which reduced survival to 10% and at doses up to 6 Gy. No potentiation of apoptosis or clonogenic inhibition was noted in normal cells. These results suggest that the combination of HMAF with gamma radiation may have clinical utility for treatments of prostate cancer.  相似文献   

17.
Microtubules,microtubule-interfering agents and apoptosis   总被引:13,自引:0,他引:13  
Microtubules are dynamic polymers that play crucial roles in a large number of cellular functions. Their pivotal role in mitosis makes them a target for the development of anticancer drugs. Microtubule-damaging agents suppress microtubule dynamics, leading to disruption of the mitotic spindle in dividing cells, cell cycle arrest at M phase, and late apoptosis. A better understanding of the processes coupling microtubule damage to the onset of apoptosis will reveal sites of potential intervention in cancer chemotherapy. Inhibition of microtubule dynamics induces persistent modification of biological processes (M arrest) and signaling pathways (mitotic spindle assembly checkpoint activation, Bcl-2 phosphorylation, c-Jun NH2-terminal kinase activation), which ultimately lead to apoptosis through the accumulation of signals that finally reach the threshold for the onset of apoptosis or through diminishing the threshold for engagement of cell death. Microtubules serve also as scaffolds for signaling molecules that regulate apoptosis, such as Bim and survivin, and their release from microtubules affect the activities of these apoptosis regulators. Thus, sustained modification of signaling routes and changes in the scaffolding properties of microtubules seem to constitute two major processes in the apoptotic response induced by microtubule-interfering agents.  相似文献   

18.
The extrinsic apoptosis pathway is triggered by the binding of death ligands of the tumor necrosis factor (TNF) family to their appropriate death receptors (DRs) on the cell surface. One TNF family member, TNF-related apoptosis-inducing ligand (TRAIL or Apo2L), seems to preferentially cause apoptosis of transformed cells and can be systemically administered in the absence of severe toxicity. Therefore, there has been enthusiasm for the use of TRAIL or agonist antibodies to the TRAIL DR4 and DR5 in cancer therapy. Nonetheless, many cancer cells are very resistant to TRAIL apoptosis in vitro. Therefore, there is much interest in identifying compounds that can be combined with TRAIL to amplify its apoptotic effects. In this review, I will provide a brief overview of apoptosis signaling by TRAIL and discuss apoptosis-sensitizing agents, focusing mainly on the proteasome inhibitor bortezomib (VELCADE) and some novel sensitizers that we have recently identified. Alternative ways to administer TRAIL or DR agonist antibodies as therapeutic agents will also be described. Finally, I will discuss some of the gaps in our understanding of TRAIL apoptosis signaling and suggest some research directions that may provide additional information for optimizing the targeting of the extrinsic apoptosis pathway for future cancer therapy.  相似文献   

19.
Targeting of Miz-1 is essential for Myc-mediated apoptosis   总被引:3,自引:0,他引:3  
  相似文献   

20.
For many years, medical drug discovery has extensively exploited peptides as lead compounds. Currently, novel structures of therapeutic peptides are derived from active pre-existing peptides or from high-throughput screening, and optimized following a rational drug design approach. Molecules of interest may prove their ability to influence the disease outcome in animal models and must respond to a set of criteria based on toxicity studies, ease of administration, the cost of their synthesis, and logistic for clinical use to validate it as a good candidate in a therapeutic perspective. This applies to the potential use of peptides to target one central intracellular organelle, the mitochondrion, to modulate (i.e. activate or prevent) apoptosis. Putative mitochondrial protein targets and the strategies already elaborated to correct the defects linked to these proteins (overexpression, inactivation, mutation..., etc.) are described, and recent advances that led or may lead to the conception of therapeutic peptides via a specific action on these mitochondrial targets in the future are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号