首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A new class-II restriction endonuclease, McrI, with a novel sequence specificity as isolated from the Gram-positive eubacterium Micrococcus cryophilus. McrI recognizes the palindromic hexanucleotide sequence. [sequence: see text] The novel enzyme in the presence of Mg2(+)-ions cleaves specifically both strands as indicated by the arrows. The staggered cuts generate 3'-protruding ends with single-stranded 5'-RY-3' dinucleotide extensions. The McrI recognition sequence was deduced from mapping data on DNAs of bacteriophages theta X174RF and M13mp18RF characterized by one and four cleavage sites, respectively. The cut positions within both strands of the recognition sequence were determined in sequencing experiments by analyzing hydrolysis of phosphodiester bonds within a polylinker region of M13mp18RF DNA containing an additional McrI recognition site including treatment with T4 DNA polymerase. The novel enzyme may be a useful tool for cloning experiments by completion of the enzymes EclXI (5'-C/GGCCG-3'), NotI (5'-GC/GGCCGC-3'), PvuI (5'-CGAT/CG-3') as well as EaeI (5'-Y/GGCCR-3') and XhoII (5'-Y/GATCR-3') characterized by partly identical sequence specificities.  相似文献   

2.
A new restriction endonuclease Bse SI has been isolated from Bacillus stearothermophilus Jo10-553. Bse SI recognizes a degenerate hexanucleotide sequence 5'-G(G/T)GC(A/C)C-3' and cleaves DNA to produce 3[prime]-protruding tetranucleotide ends.  相似文献   

3.
The catabolite activator protein (CAP) sharply bends DNA in the CAP-DNA complex, introducing a DNA kink, with a roll angle of approximately 40 degrees and a twist angle of approximately 20 degrees, between positions 6 and 7 of the DNA half-site, 5'-A(1)A(2)A(3)T(4)G(5)T(6)G(7)A(8)T(9)C(10)T(11)-3' ("primary kink"). CAP recognizes the base-pair immediately 5' to the primary-kink site, T:A(6), through an "indirect-readout" mechanism involving sequence effects on the energetics of primary-kink formation. CAP recognizes the base-pair immediately 3' to the primary-kink site, G:C(7), through a "direct-readout" mechanism involving formation of a hydrogen bond between Glu181 of CAP and G:C(7). Here, we report that substitution of the carboxylate side-chain of Glu181 of CAP by the one-methylene-group-shorter carboxylate side-chain of Asp changes DNA binding specificity at position 6 of the DNA half site, changing specificity for T:A(6) to specificity for C:G(6), and we report a crystallographic analysis defining the structural basis of the change in specificity. The Glu181-->Asp substitution eliminates the primary kink and thus eliminates indirect-readout-based specificity for T:A(6). The Glu181-->Asp substitution does not eliminate hydrogen-bond formation with G:C(7), and thus does not eliminate direct-readout-based specificity for G:C(7).  相似文献   

4.
A site-specific endonuclease, SciNI, has been partially purified from the plant pathogen Spiroplasma citri. The enzyme recognizes the sequence 5'-G-C-G-C-3' and cleaves between the first G and C. 3'-C-G-C-G-5' SciNI is an isoschizomer of HhaI, but generates DNA fragments with 5' rather than 3' single-stranded protrusions.  相似文献   

5.
The bZip proteins GCN4 and C/EBP differ in their DNA binding specificities: GCN4 binds well to the pseudopalindromic AP1 site 5'-A4T3G2A1C0T1C2'A3'T4'-3' and to the palindromic ATF/CREB sequence 5'-A4T3G2A1-C0*G0'T1'C2'A3'T4'-3'; C/EBP preferentially recognizes the palindromic sequence 5'-A4T3T2G1C0*G0'C1'A2'-A3'T4'-3'. According to the X-ray structures of GCN4-DNA complexes, five residues of the basic region of GCN4 are involved in specific base contacts: asparagine -18, alanine -15, alanine -14, serine -11 and arginine -10 (numbered relative to the start point of the leucine zipper, which we define as +1). In the basic region of C/EBP position -14 is occupied by valine instead of alanine, the other four residues being identical. Here we analyse the role of valine -14 in C/EBP-DNA complex formation. Starting from a C/EBP-GCN4 chimeric bZip peptide which displays C/EBP specificity, we systematically mutated position -14 of its basic region and characterized the DNA binding specificities of the 20 possible different peptides by gel mobility shift assays with various target sites. We present evidence that valine -14 of C/EBP interacts more strongly with thymine 2 than with cytosine 1' of the C/EBP binding site, unlike the corresponding alanine -14 of GCN4, which exclusively contacts thymine 1' of the GCN4 binding sites.  相似文献   

6.
A site-specific restriction endonuclease Fnu4H I isolated from Fusobacterium nucleatum 4H recognizes the DNA nucleotide sequence 5'G C N G C-3'/3'-C G N C G-5' and cleaves as indicated by the arrows.  相似文献   

7.
A new restriction endonuclease BspLS2I was isolated from the thermophilic bacterium Bacillus species LS2 and purified by blue sepharose and hydroxyapatite chromatographies. The enzyme is an isoschizomer of SduI from Streptococcus durans. BspLS2I recognizes the sequence 5' G(G/A/T)GC(C/T/A) decreases C 3' on double-stranded DNA and cleaves it is indicated by the arrow to yield sticky-ended DNA fragments. Maximum catalytic activity of endonuclease was found in 10 mM tris-HCl (pH 7.9) in the presence of 15-30 mM MgCl2 at 50 degrees C. The phage T4 glucosylated DNA is not cleaved by the enzyme.  相似文献   

8.
A new class II restriction endonuclease, AsnI, with a novel sequence specificity was isolated from the Gram-positive eubacterium Arthrobacter species, strain N-CM. AsnI recognizes the unambiguously defined palindromic hexanucleotide (Formula: see text) consisting of A- and T-residues. The novel enzyme in the presence of Mg2+ cleaves specifically both strands as indicated by the arrows. The staggered cuts generate 5'-protruding ends with single-stranded 5'-TA-3' dinucleotide extensions. The novel enzyme may be a useful tool for cloning experiments by complementation of the few enzymes such as PstI and PvuI cutting only once in the Ampr-gene of plasmids pBR322 and pBR328.  相似文献   

9.
The concept of the 1H-NMR window has been developed and examined through a comparative study of NOESY spectra of a self-complementary Dickerson's dodecamer (I) [5'd(5C6G7C8G9A10A11T12T13C-14G15C16G)2(3')], a self-complementary 20-mer (II) [(5'd(1C2G3C4G5C6G7C8G9A10A11T12T13C14G15C16G17C18G19C20G)2(3')] in which the core part consists of the same Dickerson's dodecamer sequence with the flanking CGCG residues at both 3' and 5'-ends, and the partly-deuteriated (shown by underlined CGCG residues at both 3' and 5'-ends) analogous duplex (III) [5'd(1C2G3C4G5C6G7C8G9A10A11T12T13C14G15C16G17C18G19C20G)2(3')] in which the core 5C to 16G part (i.e. 1H-NMR window) consists of the natural Dickerson's dodecamer sequence. A comparison of their NOESY spectra clearly demonstrates that the severe overlap of proton resonances in the larger DNA duplex (II) has been successfully reduced in the partly-deuterated duplex (III) as a result of specific incorporations of the sugar-deuteriated nucleotide residues in the latter [stereospecific > 97 atom % 2H enrichment at H2', H2' and H3' sites, approximately 85 atom % 2H enrichment at H4' and approximately 20 atom % 2H enrichment at H1' (see refs. 10 and 11) in the 20-mer duplex (III)]. These simplifications of the resonance overlap by the deuteriation approach have enabled unequivocal chemical shift assignments and extraction of the quantitative NOE data in the 1H-NMR window part of duplex (III). A comparison of the 12-nucleotide long 1H-NMR window in (III) with that of the 12-mer duplex (I) also shows the scope of studying the changes in conformation and dynamics of the core 12-mer region in (III) which result from the increase of molecular weight due to the DNA chain extension. It is noteworthy that such a study is clearly impossible for the natural 20-mer (II) because of the inherent problem of the overlap of resonances.  相似文献   

10.
The frequencies of occurrence of the 5' and 3' nearest neighbor doublets of oligonucleotides containing (G/C) and (A/T) blocks show strong trends. Specifically, the following trends are observed. Given a (G/C)n (A/T)m oligomer (where G/C)n indicates a sequence of length n composed solely of Gs and/or Cs and (A/T)m is a sequence of length m composed solely of As and/or Ts, and n = 3,2,1; m = 1,2,3) and a (G/mC)2 doublet, (G/C)n (A/T)m (G/C)2 greater than (G/C)n + 2 (A/T)m. That is the (G/C)2 doublet is preferentially located 3' of the oligomer, enclosing the (A/T)m stretch. The trends are strongest for n = 3, m = 1 and gradually weaken as the size of the (mG/C)n block decreases (with a concomitant increase of (A/T)m). (A/T)2 nearest neighbor flank preferentially encloses the (G/C)n block (to produce (A/T)2 (G/C)n (A/T)m). The (A/T)2 flank trends are weaker than the (G/C)2 flank ones. The (A/T)2 flank trends also decrease in strength as the size of the (G/C)n block decreases. The statistical significance of these trends in eukaryotes is very high. A possible correlation with DNA structural parameters, in particular groove geometry, is discussed.  相似文献   

11.
A Pseudomonas aeruginosa bacteriophage, phi PLS743, with extremely limited host range has been isolated. It belongs to the virus family Podoviridae, morphological type C1, and possesses a head diameter of 45 nm. The phage has a buoyant density in CsCl of 1.516 g/cm3, and its mass is 45 x 10(6) daltons. The phage particles are composed of double-stranded DNA (49.9 mol% G + C; 42.4 kilobase pairs) and 11 structural proteins (66% by weight). The major head protein, P5, has a Mr of 34,500. The DNA is not cut by SalI or XhoI restriction endonucleases, but is cut by PvuII (1 site), KpnI and BglII (2 sites), PvuI (4 sites), BamHI (7 sites), EcoRI (9 sites), and HindIII (12 sites). A restriction endonuclease map is presented.  相似文献   

12.
The PvuII endonuclease (PvuIIR) is a restriction enzyme from a type II restriction-modification system of Proteus vulgaris coded on plasmid pPvu1. The protein recognizes the DNA sequence 5' CAG'CTG 3' and shows no sequence homology to other restriction enzymes. This makes PvuIIR an interesting subject for structural determination. A purification procedure was developed that yields milligram quantities of the PvuIIR from plasmids expressed in the Escherichia coli strain HB101. The protein was crystallized using ammonium sulphate as precipitant. The crystals are orthorhombic, space group P2(1)2(1)2 with cell dimensions: a = 84.2 A, b = 106.2 A, c = 46.9 A. The asymmetric unit contains one PvuIIR dimer. Diffraction extends to 2.3 A, so the crystals may permit structural determination at atomic resolution.  相似文献   

13.
DNAs from phage mutants M13mp18 and M13mp18/MP-1 were used to construct two closed circular heteroduplexes. One of them carried the sequence 5'-CCTGGG-3' 3'-GGGCCC-5' with a T.G mismatch at the position 6248. The other carried the sequence 5'-CCCGGG-3' 3'-GGACCC-5' with a C.A mismatch at the same position. Heteroduplexes were exposed to 7 restriction endonucleases having recognition sites within the sequence 5'-CCCGGG-3' 3'-GGGCCC-5' and to 1 restriction endonuclease having a recognition site within the sequence 5'-CCTGGG-3' 3'-GGACCC-5'. All tested enzymes cleaved at least one mismatch-containing sequence although with reduced efficiency. Smal and Xmal tolerated both mismatch-containing sequences. Aval, Hpall, Mspl, Ncil and Nsplll were able to tolerate only the T.G containing sequence, while BstNl was able to tolerate only the C.A containing sequence. It is inferred that the tolerance displayed by Smal and Xmal depends on the presence of either the original purines or the original pyrimidines in mismatches of both the T.G and C.A type and that all other tested enzymes require the presence of the original purines in mismaches of both types.  相似文献   

14.
A Type II restriction endonuclease, MmeI, has been purified from the obligate methylotroph, Methylophilus methylotrophus. The enzyme was shown to have the non-palindromic recognition sequence 5'-T C C Pu A C (N)20-3', 3'-A G G Py T G (N)18-5' and to cleave (as indicated) on the 3' side, generating a two nucleotide 3' projection. Determination of the recognition sequence was achieved using two new computer programs; RECOG, which predicts recognition sequences from the pattern of restriction fragments obtained from DNAs of known sequence, and GELSIM, which generates graphical simulations of DNA band patterns obtained by gel electrophoresis of restriction digests of sequenced DNA molecules.  相似文献   

15.
Base substitution mutations are not distributed randomly in that most are located at a few specific hotspots sites. We have been studying 7,8-dihydro-8-oxoguanine mutagenesis in Escherichia coli in the supF gene carried in a plasmid. Among hotspots, guanine within the 5'-AGA-3' located in the anticodon site was susceptible to the induction of G:C-->T:A transversion. In this study, we constructed variants of the supF gene in which the hotspot 5'-AGA-3' was modified to 5'-AGT-3', 5'-AGG-3' and 5'-AGC-3' to determine the influence of 3' neighboring base on G:C-->T:A mutational activity. Using these variant supF genes propagated in a 7,8-dihydro-8-oxoguanine repair-deficient host, we found that guanine within 5'-AGA-3' and 5'-AGG-3' produce G:C-->T:A, but guanine within 5'-AGT-3' and 5'-AGC-3' reduce the formation of G:C-->T:A. These changes were thus due to the effect of sequence context on the efficiency of mutation formation at the sites of 7,8-dihydro-8-oxoguanine. We also observed a longer range base-pair effect on hotspot formation.  相似文献   

16.
Site specific endonuclease from Fusobacterium nucleatum.   总被引:17,自引:12,他引:5       下载免费PDF全文
Four different isolates of Fusobacterium nucleatum (A,C,D and E) contain restriction endonucleases of differing specificity. Whilst many of the endonucleases are isochizomers of known enzymes, two novel activities are Fnu DII which recognizes and cleaves the sequence 5'-CGCT-3'/3'-GCGC-5' AND Fnu EI which recognizes and cleaves the sequence 5'-GATC-3'/3'-CTAG-5' irrespective of the extent of methylation of the adenine residues.  相似文献   

17.
F Laue  L R Evans  M Jarsch  N L Brown  C Kessler 《Gene》1991,97(1):87-95
A series of class-II restriction endonucleases (ENases) was discovered in the halophilic, phototrophic, gas-vacuolated cyanobacterium Dactylococcopsis salina sp. nov. The six novel enzymes are characterized by the following recognition sequences and cut positions: 5'-C decreases CRYGG-3' (DsaI); 5'-GG decreases CC-3' (DsaII); 5'-R decreases GATCY-3' (DsaIII); 5'-G decreases GWCC-3' (DsaIV); 5'-decreases CCNGG-3' (DsaV); and 5'-GTMKAC-3' (DsaVI), where W = A or T, M = A or C, K = G or T, and N = A, G, C or T. In addition, traces of further possible activity were detected. DsaI has a novel sequence specificity and DsaV is an isoschizomer of ScrFI, but with a novel cut specificity. A purification procedure was established to separate all six ENases, resulting in their isolation free of contaminating nuclease activities. DsaI cleavage is influenced by N6-methyladenine residues [derived from the Escherichia coli-encoded DNA methyltransferase (MTase) M.Eco damI] within the overlapping sequence, 5'-CCRYMGGATC-3'; DsaV hydrolysis is inhibited by a C-5-methylcytosine residue in its recognition sequence (5'-CMCNGG-3'), generated in some DsaV sites by the E. coli-encoded MTase, M.Eco dcmI.  相似文献   

18.
G:T mispairs in DNA originate spontaneously via deamination of 5-methylcytosine. Such mispairs are restored to normal G:C pairs by both E. coli K strains and human cells. In this study we have analyzed the repair by human cell extracts of G:T mismatches in various DNA contexts. We performed two sets of experiments. In the first, repair was sequence specific in that G:T mispairs at CpG sites at four different CpG sites were repaired, but a G:T mismatch at a GpG site was not. Cytosine hemimethylation did not block repair of a substrate containing a CpG/GpT mismatch. In the second set of experiments, substrates with a G:T mismatch at a fixed position were constructed with an A, T, G, or C 5' to the mismatched G, and alterations in the complementary strand to allow otherwise perfect Watson-Crick pairing. All were incised just 5' to the mismatched T and competed for repair incision with a G:T substrate in which a C was 5' to the mismatched G. Thus human G:T mismatch activity shows sequence specificity, incising G:T mismatched pairs at some DNA sites, but not at others. At an incisable site, however, incision is little influenced by the base 5' to the mismatched G.  相似文献   

19.
The microstructural requirements for optimal interaction of neocarzinostatin chromophore (NCS-C) with DNA have been investigated using a series of hexadeoxyribonucleotides with modified bases such as O6-methyl G (MeG), I, 5-methyl C (MeC), U, or 5-Bromo U (BrU) at specific sites in its preferred trinucleotide 5'GNaNb3':5'Na,Nb,C3' (Na = A, C, or T). Results show that MeG:C and G:MeC in place of G:C improve direct strand cleavage at the target Nb (Nb = T greater than A much greater than C greater than G), whereas MeC:G and C:MeG in place of Na:Nb, hinder cleavage. The optimal base target at Nb appears to be determined by its ability to form T:A type base pairing instead of C:G type. The observed differences in DNA strand cleavage patterns can be rationalized by induced changes in target site structure and are compatible with a model for NCS-C:DNA interaction in which the naphthoate moiety intercalates between 5'GNa3', and the activated tetrahydro-s-indacene, lying in the minor groove, abstracts a hydrogen atom from C-5' of Nb.  相似文献   

20.
A new type II restriction endonuclease designated BsiY I has been purified from a thermophilic soil Bacillus stearothermophilus strain. This enzyme recognizes and cleaves the highly degenerate sequence 5' CCNNNNN!NNGG 3'. During the identification of the recognition sequence of BsiY I, we discovered that there should be five G nucleotides instead of four at position 1227-1230 of the plasmid pACYC177.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号